CN102847725B - 感应电动机的控制装置及感应电动机的控制方法 - Google Patents

感应电动机的控制装置及感应电动机的控制方法 Download PDF

Info

Publication number
CN102847725B
CN102847725B CN201210214749.7A CN201210214749A CN102847725B CN 102847725 B CN102847725 B CN 102847725B CN 201210214749 A CN201210214749 A CN 201210214749A CN 102847725 B CN102847725 B CN 102847725B
Authority
CN
China
Prior art keywords
torque
control
rotary speed
induction conductivity
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210214749.7A
Other languages
English (en)
Other versions
CN102847725A (zh
Inventor
服部哲
永田宽
井上大辅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011144329A external-priority patent/JP5721564B2/ja
Priority claimed from JP2011144315A external-priority patent/JP5721563B2/ja
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of CN102847725A publication Critical patent/CN102847725A/zh
Application granted granted Critical
Publication of CN102847725B publication Critical patent/CN102847725B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Abstract

本发明提供一种感应电动机的控制装置,包括:转矩特性设定装置(21),其通过在时间序列上求取对应于感应电动机的动作条件而所需的转矩的值,并与预先确定了与感应电动机的旋转速度相应的转矩的转矩控制模式进行比较,来确认是否满足所需的转矩,在基本速度以下的速度区域中不满足所需的转矩的情况下,变更转矩控制模式以使恒转矩控制中的励磁电流的最大值变高,在基本速度以上的速度区域中不满足所需的转矩的情况下,将基本速度变更为比通常高;以及磁通指令变更装置(140),对应于变更后的转矩控制模式,来变更磁场控制模式。由此,在感应电动机的控制中,能不损害装置的耐久性而实现以比通常高的转矩进行的控制。

Description

感应电动机的控制装置及感应电动机的控制方法
技术领域
本发明涉及感应电动机的控制装置以及感应电动机的控制方法,特别涉及用于临时得到比通常高的转矩的控制。
背景技术
在轧机中,进行使用感应电动机来对被轧材进行轧加工。在一般的感应电动机中,以如下方法来进行控制:到基本速度为止进行转矩恒定的控制,从基本速度起到最高速度为止,使电动机输出恒定(功率恒定)。
在轧机中,通过以在轧机入侧以及出侧对被轧材施加张力的状态,在旋转的作业辊间碾压被轧材进行加工,并送出加工后的被轧材,来连续地执行轧加工。而且,在轧机中,电动机用于对被轧材给予张力,或者得到加工所需的旋转力。
电动机在设备规划时选择、设置具有能得到轧制操作所需的转矩或输出的转矩-速度特性的物件。而且,作为对感应电动机的转矩-速度特性进行变更的方法,有取代牺牲高速度域下的转矩来提高低速度域下的转矩的方法(例如,参照专利文献1)、或取代缩窄可利用的速度域来将转矩维持得较高的方法(例如,参照专利文献2)。
另一方面,作为在对感应电动机的转矩-速度特性进行变更的情况下的具体的处理,提出了通过在电动机控制中切换使用预先存储的多个磁场模式来作为不同特性的电动机而使用的方法(例如,参照专利文献3)、或在电动机控制中通过修正磁场来得到大的电动机转矩的方法(例如,参照专利文献4)。
【先行技术文献】
【专利文献】
【专利文献1】日本特开2006-42562号公报
【专利文献2】日本特开2006-42570号公报
【专利文献3】日本特开2000-116199号公报
【专利文献4】日本特开平8-70600号公报
发明要解决的课题
在设备规划时,假设作为某产品的被轧材,选择得到其生产能实现那样的输出的电动机。在此情况下,若还考虑生产的机会非常低的被轧材来选择电动机,则在大多数轧制操作中,电动机的输出变得无效。另外,还会产生需要对需要超过设备规划时的假设的转矩或输出那样的被轧材进行轧制的情况。在这样的情况下,现状是例如在降低压下率、抑制转矩上下功夫来实施轧制。作为产品而所需的板厚根据产品规格来确定,因此存在降低压下率会导致增加轧制次数从而操作效率下降的问题。
为了解决以上的问题,在基本(BASE)速度区域中,为了临时地得到高转矩,需要变更电动机的转矩特性。在此,上述基本速度一般是指在可利用的速度范围中与最高的转矩对应的速度。另外,在应用感应电动机的除轧制设备以外的工作机械或铁道车辆、输送设备等中,也会产生根据操作条件而电动机所要求的转矩较大变动的情况。在所要求的转矩大于电动机输出转矩的情况下,不能满足操作条件。在这样的情况下,若能变更电动机的转矩特性以得到高转矩,则也能对应。
在此情况下,如专利文献3所记载,若选择预先存储的多个磁场模式来进行使用,则只能以预先确定的磁场模式来使用电动机,从而将不能充分发挥电动机性能。另外,如专利文献4所记载,若修正磁场来得到大的转矩,则在旋转速度增大的情况下,电动机的端子电压也增大,若达到最大电压则需要减弱磁场,因此存在输出转矩下降的问题。
如此,在用于临时得到高转矩的感应电动机的控制中,需要将转矩电流以及励磁电流的至少一者设为比通常的控制高的值。这能通过提高对感应电动机施加的电压来实现。然而,感应电动机所容许的电压有界限,若施加超过了该界限的电压,则会导致装置的故障或耐久性的下降。
发明内容
本发明的课题在于,在感应电动机的控制中,能不损害装置的耐久性而实现以比通常高的转矩进行的控制。
本发明的一形态是一种感应电动机的控制装置,该感应电动机通过用于使磁场产生的励磁电流、以及用于使与所述磁场相应的转矩产生的转矩电流来得到转矩,其中,在旋转速度达到基本速度之前的期间,进行使转矩成为恒定的恒转矩控制,且在从基本速度起到最高(TOP)速度为止的期间,进行使感应电动机的输出成为恒定的恒输出控制,进行控制使得:在通常的控制中,基本速度处励磁电路的电压成为最大,在恒输出控制中,使端子电压随旋转速度的增加而变高以维持最大的励磁电路的电压,且在最高速度下施加最大的端子电压,且进行控制使得:在用于临时得到高转矩的高转矩控制中,基本速度处的端子电压成为比通常的控制的基本速度处的端子电压高的值,在恒输出控制中,对应于旋转速度的增加来调整励磁电路的电压以使端子电压不超过界限值,且使励磁电流比通常的控制高。
另外,本发明的另一形态是一种感应电动机的控制方法,该感应电动机通过用于使磁场产生的励磁电流、以及用于使与所述磁场相应的转矩产生的转矩电流来得到转矩,其中,在旋转速度达到基本速度之前的期间,进行使转矩成为恒定的恒转矩控制,且在从基本速度起到最高速度为止的期间,进行使感应电动机的输出成为恒定的恒输出控制,进行控制使得:在通常的控制中,基本速度处励磁电路的电压成为最大,在恒输出控制中,使端子电压随旋转速度的增加而变高以维持最大的励磁电路的电压,且在最高速度处施加最大的端子电压,且进行控制使得:在用于临时得到高转矩的高转矩控制中,基本速度处的端子电压成为比通常的控制的基本速度处的端子电压高的值,在恒输出控制中,对应于旋转速度的增加来调整励磁电路的电压以使端子电压不超过界限值,且使励磁电流比通常的控制高。
另外,本发明的一形态是一种感应电动机的控制装置,具备:转矩特性设定装置21,其通过在时间序列上求取对应于所述感应电动机的动作条件而所需的转矩的值,并与预先确定了与感应电动机的旋转速度相应的转矩的转矩控制模式进行比较,来确认是否满足所需的转矩的值,在比规定的旋转速度慢的速度区域中不满足所需的转矩的值的情况下,变更转矩控制模式以使恒转矩控制中的励磁电流的最大值变高;以及磁通指令变更装置140,其对应于变更后的转矩控制模式,来变更磁场控制模式。
另外,本发明的另一形态是一种感应电动机的控制方法,其中,通过在时间序列上求取对应于所述感应电动机的动作条件而所需的转矩的值,并与预先确定了与感应电动机的旋转速度相应的转矩的转矩控制模式进行比较,来确认是否满足所需的转矩的值,在比规定的旋转速度慢的速度区域中不满足所需的转矩的值的情况下,变更转矩控制模式以使恒转矩控制中的励磁电流的最大值变高,且对应于变更后的转矩控制模式,来变更磁场控制模式。
通过使用本发明,在感应电动机的控制中,能不损害装置的耐久性地实现以比通常高的转矩进行的控制。
附图说明
图1是表示本发明的实施方式所涉及的轧制装置的整体构成的图。
图2是表示本发明的实施方式所涉及的电动机控制装置的构成的图。
图3是表示本发明的实施方式所涉及的电动机控制装置的构成的图。
图4是表示本发明的实施方式所涉及的感应电动机的等效电路的图。
图5是表示本发明的实施方式所涉及的感应电动机的电流以及电压的矢量关系的图。
图6是表示一般的感应电动机的控制中的转矩-速度特性的图。
图7是表示轧制所需的电转矩的式子的图。
图8是表示在感应电动机中所要求的转矩-速度特性的例子的图。
图9是表示本发明的实施方式所涉及的感应电动机的转矩-速度特性的图。
图10是表示现有技术所涉及的感应电动机的转矩-速度特性的图。
图11是表示转矩倍率与线电流的变化之间的关系的图。
图12是表示本发明的实施方式所涉及的感应电动机的转矩-速度特性的图。
图13是表示本发明的实施方式所涉及的感应电动机的转矩-速度特性的图。
图14是表示本发明的实施方式所涉及的感应电动机的控制系统构成的图。
图15是表示本发明的实施方式所涉及的轧制操作状态的图。
图16是表示本发明的实施方式所涉及的转矩-速度特性与必要转矩的比较例的图。
图17是表示本发明的实施方式所涉及的转矩-速度特性与必要转矩的比较例的图。
图18是表示本发明的实施方式所涉及的转矩-速度特性的变更动作的图。
图19是表示本发明的实施方式所涉及的转矩-速度特性的变更动作的图。
图20是表示本发明的实施方式所涉及的转矩电流指令的变更方式的图。
图21是表示本发明的实施方式所涉及的电动机控制装置的构成的图。
图22是表示本发明的实施方式所涉及的电动机控制装置的构成的图。
图23是表示一般的感应电动机的控制中的转矩-速度特性的图。
图24是表示在感应电动机中所要求的转矩-速度特性的例子的图。
图25是表示本发明的实施方式所涉及的感应电动机的转矩-速度特性的图。
图26是表示感应电动机的转矩-速度特性的图。
图27是表示转矩倍率与线电流的变化之间的关系的图。
图28是表示本发明的其他实施方式所涉及的感应电动机的转矩-速度特性的图。
标号说明
1  轧机
2  入侧TR
3  出侧TR
4  轧制部件(mill)速度控制装置
5  入侧TR控制装置
6  出侧TR控制装置
7  辊缝控制装置
8   入侧张力系统
9   出侧张力系统
10  轧制速度设定装置
11  入侧张力设定装置
12  出侧张力设定装置
13  入侧张力控制
14  出侧张力控制
15  入侧张力电流变换装置
16  出侧张力电流变换装置
17  出侧板厚计
18  出侧板厚控制装置
20  轧制控制装置
21  转矩特性设定装置
22  电流转矩特性设定装置
23  速度控制转矩特性设定装置
100 电动机速度控制装置
101 感应电动机
103 速度传感器
104 速度控制器
105 磁通指令器
106 励磁电流运算器
107 转矩电流励磁电流控制器
109 直流电流运算器
110 电流传感器
111 坐标变换器
112 电力变换器
113 直流电流
115 速度运算器
120 电动机电流控制装置
140 磁通指令变更装置
141  电动机速度控制装置
142  电动机电流控制装置
具体实施方式
以下,参照附图来详细说明本发明的实施方式。在本实施方式中,以在单机架轧机中应用本发明为例进行说明。图1表示单机架轧机的构成。单机架轧机相对于轧机1的轧制方向,在入侧具有入侧TR(将张力卷取机简称为TR)2,在出侧具有出侧TR3,轧制是通过在由轧机1轧制了从入侧TR2卷放出的被轧材后在出侧TR3进行卷取而执行的。
在轧机1,设置有用于通过变更辊缝而能对被轧材的板厚进行控制的辊缝控制装置7、以及用于对轧机1的速度进行控制的轧制部件速度控制装置4。入侧TR2以及出侧TR3由电动机进行驱动,而作为该电动机和用于驱动电动机的装置,设置有入侧TR控制装置5以及出侧TR控制装置6。发往这些控制装置的指令由轧制控制装置20输出。
此外,在单机架轧机中,进行交替轧制方向的转向轧制,因此根据轧制方向,入侧、出侧反转,但作为机械构成上的定义,在本实施例中,将轧机左侧设为入侧张力卷取机,将轧机右侧设为出侧张力卷取机。
在轧制时,由轧制速度设定装置10对轧制部件速度控制装置4输出速度指令,轧制部件速度控制装置4实施控制以使轧机1的速度恒定。在轧机1的入侧、出侧,通过对被轧材施加张力来稳定且高效地实施轧制。故而,对所需的张力进行计算的装置是入侧张力设定装置11以及出侧张力设定装置12。
入侧张力电流变换装置15以及出侧张力电流变换装置16基于由入侧张力设定装置11以及出侧张力设定装置12各自计算出的入侧以及出侧张力设定值,来求取用于得到为了对被轧材施加设定张力而所需的电动机转矩的电流值。入侧张力电流变换装置15以及出侧张力电流变换装置16将像上述那样所求出的各自的电流值给赋予入侧TR控制装置5以及出侧TR控制装置6。
入侧TR控制装置5以及出侧TR控制装置6控制电动机电流,以成为从入侧张力电流变换装置15以及出侧张力电流变换装置16所赋予的电流。由此,通过以电动机电流而对入侧TR2以及出侧TR3所赋予的电动机转矩,来对被轧材施加规定的张力。
张力电流变换装置15、16基于TR机械系统以及TR的电动机控制装置的模型来运算成为张力设定值那样的电流设定值(电动机转矩电流设定值),但在使用的模型中包含误差。故而,入侧张力控制13以及出侧张力控制14使用由设置于轧机1的入侧以及出侧的入侧张力计8以及出侧张力计9测量出的实际张力来对张力设定值加入修正,并输入到张力电流变换装置15、16。由此,修正在入侧TR控制装置5以及出侧TR控制装置6中所设定的电流值。此外,在此所谓的TR控制装置由用于驱动TR机械系统的电动机以及其控制装置构成。
另外,被轧材的板厚在产品质量方面重要,因此实施板厚控制。出侧板厚控制装置18根据由出侧板厚计17检测出的实际板厚,使用辊缝控制装置7来操作轧机1的辊缝,由此控制轧机1出侧的板厚。
如上所述,在单机架轧机中,用于卷取以及卷放出的TR使用使由电动机产生的转矩为恒定的转矩恒定控制,进行通过使用由张力计检测出的实际张力来修正电动机电流指令从而使施加到被轧材的张力恒定的控制。关于电动机转矩,根据赋予到电动机的磁场和转矩电流而确定所实际输出的电动机转矩,因此为了使转矩恒定,需要对应于磁场,来变更电流指令。
轧制是通过由入侧张力卷取机2卷放出被轧材来由轧机1轧制,并由出侧张力卷取机3对轧制后的被轧材进行卷取来执行的。图2示出了作为轧制部件速度控制装置4的感应电动机的速度控制构成。感应电动机101追随来自轧制速度设定装置10的速度指令Nref(电动机旋转速度指令)来进行驱动。速度指令Nref是旋转速度N(r/min)的目标值。此外,感应电动机101在热间轧制设备、冷间轧制设备、加工生产线设备等生产设备中被使用。
速度控制器104基于上述的速度指令Nref、与由速度传感器103检测出的感应电动机101的旋转速度N之差(Nref-N),来将转矩电流指令Iqref输出到转矩电流励磁电流控制器107。即,速度控制器104作为转矩电流控制部发挥功能。另外,磁通指令器105基于由速度传感器103检测出的旋转速度N,将磁场磁通的磁通指令φref输出到励磁电流运算器106。此外,在磁通指令器105,预先设定针对旋转速度N的磁通指令φref。将该针对旋转速度N的磁通指令φref作为磁场控制模式而使用。
磁通指令器105基于与后述的转矩-速度特性相应的磁通φ-速度特性,来决定与旋转速度N相应的磁通φ。该磁通φ-速度特性是上述的磁场控制模式。另外,速度控制器104基于与后述的转矩-速度特性相应的转矩-电流变换系数,输出与上述的(Nref-N)相应的Iqref。该转矩-速度特性由磁通指令变更装置140进行存储,若转矩-速度特性被变更,则磁通指令变更装置140对速度控制器104以及磁通指令器105分别设定与变更后的转矩-速度特性相应的转矩-电流变换系数以及磁通φ-速度特性。
励磁电流运算器106基于来自磁通指令器105的磁通指令φref,来运算感应电动机101的励磁电流,并将励磁电流指令Idref输出到励磁电流控制器106。即,磁通指令器105以及励磁电流运算器106作为励磁电流控制部发挥功能。在电流运算器109中,基于由电流传感器110检测出的在感应电动机101中流动的初级电流(定子电流),来运算转矩电流Iq以及励磁电流Id。即,电流运算器109将感应电动机101的线电流变换为与电力变换器112的输出的电源频率同步地旋转的q轴以及d轴坐标系。然后,电流运算器109输出运算出的转矩电流Iq以及励磁电流Id
转矩电流励磁电流控制器107将用于使从电流运算器109输出的转矩电流Iq追随从速度控制器104输出的转矩电流指令Iqref的转矩电压指令Vq、以及用于使从电流运算器109输出的励磁电流Id追随从励磁电流运算器106输出的励磁电流指令Idref的励磁电压指令Vd输出到坐标变换器111。此外,电流运算器109的输出的频率的设定是公知的技术,因此在图2、3中省略了与其相关的记载。
坐标变换器111将所述的转矩电压指令Vq以及励磁电压指令Vd向固定坐标系进行坐标变换,来生成3相的电压指令V。然后,坐标变换器111将所生成的电压指令V输出到电力变换器112。电力变换器112例如是PWM(脉宽调制)逆变器。
电力变换器112基于所述的电压指令V来变换直流电源113的电力(例如PWM变换),并将3相的交流电力提供到感应电动机101。通过这样构成,来控制感应电动机101的初级电流,进行感应电动机101的速度控制。
在入侧TR控制装置5以及出侧TR控制装置6中,进行用于使从TR对被轧材施加的张力为恒定的电流控制。图3示出了感应电动机的电流控制构成。与速度控制的情况不同,在电流控制的情况下直接赋予成为转矩电流指令Iqref的Iref,因此除了没有速度控制器104以外,与图2的速度控制构成相同。
图4示出了感应电动机的1相的T形等效电路。励磁电流Id流过励磁电路,转矩电流Iq流过定子电路。励磁电路构成为包含励磁电路电感Lm,定子电路构成为包含从转子电路电阻R2除以滑行S而降低的电阻(R2/S)。而且,以励磁电流Id以及转矩电流Iq的平方和的二次方根所求取的初级电流(定子电流)Is流过定子绕组。
此外,在图4中,示出了Vs为端子电压、R1为定子电路电阻、L1为定子电路电感、L2为转子电路电感、Ed为内部感应电动势(励磁电路电压)。图4所示的T形等效电路的电流以及电压的关系通过图5的矢量图来表示。通过该矢量图来决定端子电压Vs与内部感应电动势Ed的关系。ω表示电源角频率。
在此,感应电动机101的磁场φ以及转矩Tq能通过以下的式(1)以及式(2)来计算。
φ = K 1 · I d = K 1 · E d ω · L m = K 1 ′ · E d ω - - - ( 1 )
Tq=K2·φ·Iq·    (2)
在此,K1′、K2是根据感应电动机的特性而确定的系数。
若知道感应电动机的电常数,则根据上述(1)式来求励磁电流Id,若进一步知道轧制所需的转矩,则根据(2)式来求转矩电流Iq。进而,用于取得它们的线间电压Vs能通过图5而使用以下的式(3)~(4)来求取。
Vq=R1·Iq+ω·(L1+L2)·Id+Ed    (3)
Vd=ω·(L1+L2)·Iq-R1·Id       (4)
V S = 3 · V d 2 + V q 2 - - - ( 5 )
接下来,说明感应电动机的控制特性。图6是表示感应电动机的一般的控制特性的图。对于感应电动机,在达到预先确定规定的旋转速度即基本速度之前,通过使输出转矩为恒定的恒转矩控制来进行控制,而在从基本速度起到最高速度为止,通过使电动机输出(功率)为恒定的恒输出控制来进行控制。故而,若转矩电流恒定,则到基本速度为止输出转矩保持恒定,且在基本速度以上,转矩与旋转速度成反比地减少。另外,在达到基本速度之前的期间,内部感应电动势Ed成为最大,在恒输出控制的期间维持该值。
磁通指令器105在恒转矩控制时为了使磁场恒定,依照式(1),与感应电动机101的旋转速度N(角速度ω)的上升成比例地增大内部感应电动势Ed。然后,若角速度ω达到基本速度,则将内部感应电动势Ed保持为恒定。由此,在基本速度以上,磁场φ与角速度ω成反比地减少,同样,输出转矩Tq也与速度成反比地减少。此时,根据(3)~(5)式,线间电压Vs随角速度ω的上升而增加。使线间电压Vs达到线间最大电压VsMAX的角速度ω成为最高速度,感应电动机以在其以上的速度将不能旋转。
轧机中的轧制部件以及TR的电动机,对应于轧制设备的目的,根据进行轧制操作的最大速度、所需的最大转矩等来决定图6所示那样的速度-转矩特性,并制造、设置具有与其相应的特性的电动机。
图7示出了轧制所需的电动机转矩的式子的一例,但能根据产品规格和轧机规格来求取入侧TR2、轧机1、出侧TR3分别所需的转矩TqETR、TqMILL、TqDTR。在轧制设备中需要通过根据操作所需的轧制速度而求出的电动机旋转角速度ω而得到该转矩的那样的电动机。电动机旋转角速度ω能使用轧机规格根据轧制速度而求取。轧制速度能考虑操作效率或被轧材的产品规格等来决定。
图8(a)~(c)表示轧制所需的转矩-速度特性的简单的一例。在图8(a)~(c)中,以星形图标示出了所要求的转矩以及速度的组合。在图8(a)的情况下,通过选择具有转矩-速度特性A的电动机,能满足轧制所需的转矩-速度特性。
与此相对,在图8(b)的情况下,在低速区域中,基于转矩-速度特性A将不能满足转矩-速度特性。故而若想要在速度全域中满足转矩-速度特性,则需要具有转矩-速度特性B的电动机。这将需要大输出的电动机,从而电动机以及电动机控制装置的容量变大,设备投资额增大。
在此,在图8(b)的例子中,在低速度区域中要求大的转矩。故而,若能由同一电动机得到低速且大的转矩输出那样的转矩-速度特性,则即使使用相同的电动机以及电动机控制装置,也既能满足图8(a)的要求又能满足图8(b)的要求。与此相对,能对电动机施加的端子电压是有界限的,电动机的最大的输出也是有界限的。因此,为了得到比通常高的转矩,需要降低基本速度。即,在通常,作为具有转矩-速度特性A的电动机而使用,而在对需要大的转矩的轧制进行实施的情况下,若电动机控制装置作为具有图8(c)所示的转矩-速度特性C的电动机进行控制,则能不增大设备投资额地实施所要求的轧制操作。
为了实现其,本实施方式所涉及的电动机速度控制装置100增大(1)式中的Ed来增大磁场φ。要实现其,如图9所示,增大针对端子电压Vs的速度变化的增加速率,以低速度成为最大端子电压VsMAX即可。然后,在恒输出控制的期间,进行控制使感应电动机内部的励磁电路的电压即内部感应电动势Ed随旋转速度的增加而降低,以维持该最大端子电压VsMAX
而且,由于增加速率变大而比通常施加得更多的端子电压Vs的电力,用于将励磁电流Id增加得比通常的控制更高。其结果是,磁场磁通φ变高,转矩Tq变高。在此情况下,如图9所示,在超过了基本速度的规定的速度区域中,通过通常的控制而得到的转矩变低,但其目的是以低速度来得到高转矩,在轧制操作中限制轧制速度即可。
作为另一个变更转矩-速度特性的方法,有使转矩电流指令增加的方法。图10示出了在此情况下的转矩一速度特性。在此情况下,转矩与转矩电流的增加成比例地增大。若将图9中的初级电流Is的上升幅度、与图10中的初级电流Is的上升幅度进行比较,则转矩Tq的上升幅度在图9中更大,与此无关地,在图9的情况下,即,在本实施方式中应用的形态下,初级电流Is的上升幅度更少。
一般地,励磁电流是转矩电流的30%程度。例如,在想要将转矩增大10%的情况下,像从上述的式(1)、(2)求解那样,有将励磁电流增大10%的(图9的情况)方法和将转矩电流增大10%的(图10的情况)方法。而且,像上述那样励磁电流是转矩电流的30%程度,因此将励磁电流增大10%更能使线电流的增大变小。此外,线电流Is能根据以下的式(6)来求取。
I S = 3 · I d 2 + I q 2 - - - ( 6 )
图11示出了转矩与线电流的关系。在图11中,实线是表示在与变更了转矩电流的情况下的转矩倍率相应的线电流的变化的曲线,虚线是表示与在变更了励磁电流的情况下的转矩倍率相应的线电流的变化的曲线。如图11所示,与变更转矩电流的情况比较,变更励磁电流来变更转矩时,线电流变化小。因此,通过在使转矩减少的情况下操作转矩电流,且在使转矩增大的情况下操作励磁电流,既能抑制线电流的增大又能实现感应电动机转矩增大。通过抑制线电流的增大,从而不仅能抑制热损失,还能防止电动机以及电动机控制装置的发热。
图8(d)示出了有在超过基本速度的速度下需要比转矩-速度特性A大的转矩的轧制的情况。要实现其,设为转矩-速度特性D即可。在像这样变更转矩-速度特性的情况下,如图12所示,直到端子电压成为最大电压为止,对用于停止使感应电压随速度而增大的基本速度进行提高,来使恒定转矩的旋转速度区域增大。
在实施需要大转矩的轧制的情况下,若设以低速度来实施轧制,则能通过变更转矩-速度特性来对应。在此情况下,当然会发生基于电动机的发热、或电动机控制装置的容量等的制约条件,因此尽量在制约条件内进行实施。另外,该方法还能在进行规划时未考虑到轧制设备那样的需要轧制转矩的轧制的情况下利用。
如以上说明那样,轧机中所使用的电动机的转矩-速度特性通过变更电动机控制中的磁场φ的模式而改变,能在装置所容许的施加电压的范围内高效地得到高转矩。因此,在进行需要高的转矩的轧制等情况下,通过给予最优的转矩-速度特性来在现状的轧制设备内不损害设备的耐久性那样的控制,就能实现高效的轧制。
此外,在图9中,以如下情况为例进行了说明:使基本速度,即从恒转矩控制切换到恒输出控制的感应电动机的旋转速度比默认的值,即额定的值低,在达到其基本速度之前的恒转矩控制的期间使端子电压Vs到达最大值即VsMAX,此时将比默认的状态供应得更多一些的电力分配给励磁电流,在进行磁场减弱控制的恒输出控制的速度范围中,通过进行控制以使内部感应电动势Ed逐渐下降,来使励磁电流Id下降。
然而,本实施方式所涉及的主旨在于,在达到基本速度之前的恒转矩控制的期间使端子电压Vs到达VsMAX,将比默认的状态供应得多一些的电力分配给励磁电流,其结果是,使在基本速度下所发挥的转矩Tq比默认的状态高。因此,并不一定必如图9所示,使基本速度比默认的状态即额定低,如图13所示,即使维持基本速度来进行上述那样的控制,也能得到本实施方式所涉及的效果。
在此,将图13与图10比较可知,在图13、图10中,基本速度均不变化,转矩的增加量也相同,但初级电流Is的增加幅度不同,图13的情况与图10的情况相比,初级电流Is的增加幅度更窄。如此,通过使用本实施方式所涉及的感应电动机的控制装置、控制方法,即使在得到相同的电动机输出转矩的情况下,增大了励磁的一方也能以少的线电流来实现。
另一方面,对于通过在维持基本速度的状态下进行上述的控制而得到的电力的上升量,在不能得到期望的转矩Tq那样的情况下,如图9所示,通过降低基本速度的值,能在低的速度下得到期望的转矩Tq。此外,基本速度是在进行恒输出控制的速度ω的范围中的最低的速度,最高的速度是最高速度。
接下来,如图9、图12以及图13所示,说明用于进行对感应电动机的转矩-速度特性进行变更的控制的具体的构成。图14是表示在变更本实施方式所涉及的感应电动机的转矩-速度特性的情况下的控制系统构成的图。如图1所示,单机架轧机的控制构成的轧制部件速度控制装置4,具体而言,构成为具备:用于对轧机1的作业辊进行驱动的感应电动机1-101、用于对感应电动机的旋转速度进行检测的速度传感器1-103、以及电动机速度控制装置141。
另外,入侧TR控制装置5构成为具备:用于驱动入侧TR2的感应电动机2-101、用于对感应电动机的旋转速度进行检测的速度传感器2-103、以及电动机电流控制装置142。同样,出侧TR控制装置6构成为具备:用于驱动出侧TR3的感应电动机3-101、用于对感应电动机的旋转速度进行检测的速度传感器3-103、以及电动机电流控制装置142。
从轧制控制装置20内的、入侧张力电流变换装置15,对入侧TR控制装置5的电动机电流控制装置142赋予电流指令Iref,从出侧张力电流变换装置16对出侧TR控制装置6的电动机电流控制装置142给予电流指令Iref,从轧制速度设定装置10对轧制部件速度控制装置4的电动机速度控制装置141赋予速度指令Nref。电动机速度控制装置141以及电动机电流控制装置142对感应电动机1-101、2-101、3-101进行控制以成为分别所赋予的速度指令以及电流指令。
轧制所需的电动机转矩,如图7所示,针对入侧TR2以及出侧TR3,由被轧材的张力和筒径来决定。另外,针对轧机1,根据被轧材的加工所需的转矩、以及与轧机1入侧以及出侧的张力及由电动机驱动的辊径相应的转矩的和来决定。
转矩特性设定装置21如图7所示,根据产品规格和机械规格来求取轧制所需的转矩,并与电动机特性进行比较,从而确保轧制中所需的电动机的转矩。转矩特性设定装置21包括:电流控制转矩特性设定装置22,其创建针对张力卷取机等通过电流指令而驱动的电动机电流控制装置142的磁场变更指令;以及速度控制转矩特性设定装置23,其创建针对轧机等通过速度指令而驱动的电动机速度控制装置141的磁场变更指令。
电流控制转矩特性设定装置22由入侧张力设定装置11以及出侧张力设定装置12接受轧机入侧以及出侧的张力指令,并根据轧制速度模式、入侧TR2以及出侧TR3的卷筒半径,来决定进行电流控制的电动机的转矩-速度特性以使能在轧制中维持所设定的张力,且送往电动机电流控制装置142的磁通指令变更装置140,由此来变更转矩-速度特性。
图15是表示轧制操作方法的图。由于轧制是通过将从入侧TR2送出的被轧材在出侧TR3卷取来进行的,因此在轧制开始前,RETR变大,在轧制结束时,RDTR变大。另外,轧制速度也从轧制开始时的0起逐渐变大,且到轧制结束时逐渐减小为0。由于TR半径变化,因此在轧制操作中,电动机所需的转矩始终变化。
针对入侧TR,设在轧制开始时需要最大的转矩,针对出侧TR,设在轧制结束时需要最大的转矩。另外,轧制以轧机的速度为基准来实施速度操作。也就是,图15的轧制速度是轧机的速度。故而,在轧制速度恒定而TR半径大的情况下电动机旋转速度变小,在TR半径小的情况下电动机旋转速度变大。例如,入侧TR所必要的转矩如图16(c)的实线那样。
在此,若电动机的转矩-速度特性成为图16(d)的单点划线那样,则随时间经过的电动机的转矩成为图16(a)的单点划线那样,存在比实线的入侧TR必要转矩小的部分(虚线椭圆所示的电动机转矩不足的部分)。在该部分中,由于电动机转矩不足,因此不能维持被轧材的张力。
此时,若像图16(e)那样变更电动机的转矩-速度特性(提高基本速度),则如图16(b)所示,必要转矩在轧制中全部小于电动机的转矩,能维持张力。
另外,如图17(a)所示,在低速度区域中电动机转矩不足的情况下,通过将图17(d)所示的转矩特性B变更为图17(e)所示的转矩特性C(降低基本速度,提高在到达基本速度之前的恒转矩控制区域中的磁场电流),能维持张力。
电流控制转矩特性设定装置22的动作如图18所示。在此,针对入侧TR2,关于变更转矩-速度特性的情况进行说明,但针对出侧TR3也同样地变更。如图18所示,电流控制转矩特性设定装置22若从入侧张力设定装置11取得张力设定,则基于所取得的张力设定,使用在图7中说明的式子,来对与卷筒半径相应的必要转矩进行运算(S1801),如在图16(a)以及图17(a)中说明的那样,在时间序列上求取对应于感应电动机的各种动作条件而所需的转矩的值,确认现状的转矩-速度设定比必要转矩大(S1802)。即,在S1801以及S1802中,电流控制转矩特性设定装置22作为转矩确认部而发挥功能。
若S1802的确认的结果是在现状的转矩-速度设定中没有低于必要转矩的部分(S1802/否),则能维持张力,因此直接结束处理。另一方面,在现状的转矩-速度设定中有低于必要转矩的部分的情况下(S1803/是),不能维持张力,因此开始对转矩-速度设定进行变更的处理。
在此情况下,处理根据在现状的转矩-速度设定中低于必要转矩的部分的卷筒速度是否为基本速度以下而不同。在低于必要转矩的部分的卷筒速度为基本速度以下的情况下(S1803/是),为了提高转矩,如图8(c)以及图9所示,不仅使磁场电流增加,还提高基本速度(S1804),来创建新的转矩-速度特性(S1806)。即,在S1806中,电流控制转矩特性设定装置22作为转矩控制模式变更部而发挥功能。
此外,如上所述,还可能有维持基本速度地使磁场电流增加的情况。例如,在低于必要转矩的部分的卷筒速度是紧挨到达基本速度之前的速度的情况下,为了满足必要转矩,维持基本速度地使磁场电流增加。
另一方面,在卷筒速度比基本速度大的情况下,为了像图8(d)以及图12那样变更转矩-速度特性,通过使励磁电流开始减弱的速度定时变化来提高基本速度,从而创建新的转矩-速度特性(S1806)。
在S1806中创建的新的转矩-速度特性需要能由成为控制对象的入侧张力卷取机电动机2-101以及电动机电流控制装置142实现,故而必须将线间电压设为限度值以下。为此,电流控制转矩特性设定装置22根据励磁电流以及转矩电流来实施线间电压的预测计算,若线间电压超过限度值(S1807/否),则中断变更,对操作者输出在继续轧制的情况下不能维持张力的警报(S1808)。在此情况下,操作者实施是提高转矩电流进行对应还是降低张力的选择来继续轧制。当然还有停止轧制的选择。
在线电压为限度值内的情况下(S1807/是),将当前转矩-速度特性变更为“转矩-速度特性变更”(S1809),并将其输出到电动机电流控制装置内的磁通指令变更装置140。在磁通指令变更装置140中,求取成为所赋予的转矩-速度特性那样的磁通φ-速度特性,并设定到磁通指令器105。即,磁通指令变更装置140作为磁场控制模式变更部发挥功能。在此,从转矩-速度特性到磁通-速度特性能通过公知的技术根据感应电动机的电特性而求取。
若电动机的转矩-速度特性变化,则转矩-电流变换系数也变化。在入侧张力电流变换装置15中,将根据入侧设定张力以及入侧卷筒半径而求出的转矩使用转矩-电流变换系数而变换成电流,并输出到电动机电流控制装置142。磁通指令变更装置140在根据转矩-速度特性的变更而变更磁通指令器105的磁通φ-速度特性的情况下,与此对应地还变更速度控制器104的转矩-电流变换系数(S1810)。即,磁通指令变更装置140还作为对应于转矩-速度特性的变更来变更变换系数的变换系数变更部发挥功能。
在此,说明了根据由入侧张力设定装置11设定的入侧张力设定值来运算转矩的情况,但在如图1所示,实施了使用了入侧张力计8中的张力检测值的入侧张力控制13的情况下,由于入侧张力设定值+入侧张力控制13输出成为入侧张力指令,因此通过变更为使用其来进行转矩运算从而能对应。
轧机1的电动机1-101被电动机速度控制装置141控制为速度追随指令。另外,在轧机1中,由于通过轧制来加工被轧材,因此需要其所需的转矩也从电动机给予。故而,像入侧TR、出侧TR那样运算需要的转矩是困难的。
如图7所示,根据产品规格和机械规格来计算转矩TqMILL是可能的,但由于转矩臂系数以及轧制载荷式的计算误差,实际需要的轧机转矩TqMILL与计算值不同的情况较多。故而,在速度控制转矩特性设定装置23中,根据由电动机速度控制装置141实际控制的速度控制器104的输出即转矩电流指令Iqref来运算电动机所需的转矩,并使用其结果来变更转矩-速度特性。
图19表示速度控制转矩特性设定装置23的动作概要。如图19所示,速度控制转矩特性设定装置23由电动机速度控制装置141接受来自速度控制器104的输出即速度控制器转矩电流指令,并使用转矩电流换算系数来进行必要转矩运算(S1901)。此后,与图18所示的电流控制转矩特性设定装置同样。在轧机的情况下,作为不能轧制时的选项,考虑由轧机对被轧材的出侧板厚设定进行变更(设定为较厚)、或者对张力进行变更(设定为较大)。另外,将在S1910中变更后的转矩-电流换算系数在下一次的S1901中的处理中使用。
对电动机速度控制装置141内的磁通指令变更装置140赋予转矩-速度特性来创建磁通-速度特性。同时,由于磁通被变更,因此为了使电动机的输出转矩为恒定,还需要变更由速度控制器104输出的转矩电流指令。图20示出了处理概要。在速度控制器104内,设通过速度偏差ΔN的比例积分控制来求取转矩电流指令Iqref。在此情况下,转矩电流指令Iqref如以下的式(7)所示,成为比例项IqPref与积分项IqIref之和。
Iqref=IqPref+IqIref    (7)
在此,为了使电动机输出转矩保持恒定的状态下变更磁通φ,需要对应于磁场φ的变化来变更转矩电流指令Iqref。若在磁场特性切换点的前后,磁场从磁场(A)φA变化到磁场(B)φB,则在将磁场(A)中的转矩电流指令设为Iqref(A)时,需要使磁场(B)中的转矩电流指令满足以下的式(8)。
I qref ( B ) = φ A φ B I qref ( A ) - - - ( 8 )
在此,比例项输出IqPref即使磁场变化也保持恒定,因此通过积分项来实施比例项的修正。因此,将积分项的值变更为以下的式(9)。由此,即使切换磁场,也能在切换前后使电动机转矩为恒定。
I qref ( B ) = I qref ( A ) · φ A φ B + ( φ A φ B - 1 ) · I qPref ( A ) - - - ( 9 )
在图20中说明了阶梯状地切换磁场的情况,但磁场特性的切换还能以数秒种程度的时间以斜坡函数状进行。这在电流控制转矩特性设定装置22的动作中也同样。
如上所述,通过采取图14的那样的构成,在轧制操作中,能对应于轧制状态,使感应电动机的转矩-速度特性变化地进行使用。由此,能不变更电动机而实现可轧制的材料或板厚、板宽的范围,从而能抑制设备投资额。另外,与使用转矩电流来增大电动机的产生转矩的情况不同,能抑制线电流的增大,能实现转矩增大的比率的提高以及铜损(发热所带来的电流损失)的减少。进而,通过避免以超过了容许范围的电力来进行工作,能避免损害装置的耐久性。
此外,在上述实施方式中,如图1所示,以单机架轧机为例进行了说明,但不仅是单机架轧机,还能利用于将多个轧机连续排列的连轧机。
另外,在上述实施方式中,以轧机中所使用的感应电动机为例进行了说明,但不仅是轧机,还能利用于电动机所要求的操作所需的转矩根据操作条件而较大地变动那样的生产机械,例如工作机械或铁道车辆、输送设备等。
另外,图14所示的轧制控制装置20以及转矩特性设定装置21通过软件和硬件的组合来实现。即,轧制控制装置20以及转矩特性设定装置21具有CPU(中央处理单元)、RAM(随机存取存储器)、ROM(只读存储器)、HDD(硬盘驱动器)等非易失性存储介质以及LCD(液晶显示器)或键盘、鼠标等用户接口等与一般的服务器或PC(个人计算机)等的信息处理终端同样的硬件构成。
在这样的硬件构成中,通过将ROM或HDD等的记录介质中所容纳的程序读出到RAM,并由CPU依照该程序来进行运算,来构成软件控制部。通过这样构成的软件控制部与硬件的组合,来实现本实施方式所涉及的轧制控制装置20以及转矩特性设定装置21的功能。
以下,对本发明的其他实施方式进行说明。对于与上述的实施方式相同的部分,省略其说明。
轧制,如图1所示,是通过由入侧张力卷取机2卷放出被轧材,由轧机1轧制,并由出侧张力卷取机3对轧制后的被轧材进行卷取来执行的。图2示出了作为轧制部件速度控制装置4的感应电动机的速度控制构成。感应电动机101追随来自轧制速度设定装置10的速度指令Nref(电动机旋转速度指令)来进行驱动。速度指令Nref是旋转速度N(r/min)的目标值。此外,感应电动机101在热间轧制设备、冷间轧制设备、加工生产线设备等生产设备中被使用。
速度控制器104基于上述的速度指令Nref、与由速度传感器103检测出的感应电动机101的旋转速度N之差(Nref-N),来将转矩电流指令Iqref输出到转矩电流励磁电流控制器107。另外,磁通指令器105基于由速度传感器103检测出的旋转速度N,将磁场磁通的磁通指令φref输出到励磁电流运算器106。此外,在磁通指令器105,预先设定针对旋转速度N的磁场磁通。
励磁电流运算器106基于来自磁通指令器105的磁通指令φref,来运算感应电动机101的励磁电流,并将励磁电流指令Idref输出到励磁电流控制器106。在电流运算器109中,基于由电流传感器110检测出的在感应电动机101中流动的初级电流(定子电流),来运算转矩电流Iq以及励磁电流Id。即,电流运算器109将感应电动机101的线电流变换为与电力变换器112的输出的电源频率同步地旋转的q轴以及d轴坐标系。然后,电流运算器109输出运算出的转矩电流Iq以及励磁电流Id
转矩电流励磁电流控制器107将用于使从电流运算器109输出的转矩电流Iq追随从速度控制器104输出的转矩电流指令Iqref的转矩电压指令Vq、以及用于使从电流运算器109输出的励磁电流Id追随从励磁电流运算器106输出的励磁电流指令Idref的励磁电压指令Vd输出到坐标变换器111。此外,电流运算器109的输出的频率的设定是公知的技术,因此在图21、22中省略了与其相关的记载。
坐标变换器111将所述的转矩电压指令Vq以及励磁电压指令Vd向固定坐标系进行坐标变换,来生成3相的电压指令V。然后,坐标变换器111将所生成的电压指令V输出到电力变换器112。电力变换器112例如是PWM(脉宽调制)逆变器。
电力变换器112基于所述的电压指令V来变换直流电源113的电力(例如PWM变换),并将3相的交流电力提供给感应电动机101。通过这样构成,来控制感应电动机101的初级电流,进行感应电动机101的速度控制。
在入侧TR控制装置5以及出侧TR控制装置6中,进行用于使从TR对被轧材施加的张力为恒定的电流控制。图22示出了感应电动机的电流控制构成。与速度控制的情况不同,在电流控制的情况下直接赋予成为转矩电流指令Iqref的Iref,因此除了没有速度控制器104以外,与图21的速度控制构成相同。
接下来,说明感应电动机的控制特性。图23是表示感应电动机的一般的控制特性的图。对于感应电动机,在达到预先确定规定的旋转速度即基本速度之前,通过使输出转矩为恒定的恒转矩控制来进行控制,而在从基本速度起到最高速度为止,通过使电动机输出(功率)为恒定的恒输出控制来进行控制。故而,若转矩电流恒定,则到基本速度为止输出转矩保持恒定,且在基本速度以上,转矩与旋转速度成反比地减少。另外,在达到基本速度之前的期间,内部感应电动势Ed成为最大,在恒输出控制的期间维持该值。
磁通指令器105在恒转矩控制时为了使磁场恒定,依照式(1),与感应电动机101的旋转速度N(角速度ω)的上升成比例地增大内部感应电动势Ed。然后,若角速度ω达到基本速度,则将内部感应电动势Ed保持为恒定。由此,在基本速度以上,磁场φ与角速度ω成反比地减少,同样,输出转矩Tq也与速度成反比地减少。此时,根据(3)~(5)式,线间电压Vs随角速度ω的上升而增加。使线间电压Vs达到线间最大电压VsMAX的角速度ω成为最高速度,感应电动机以在其以上的速度将不能旋转。
轧机中的轧制部件以及TR的电动机,对应于轧制设备的目的,根据进行轧制操作的最大速度、所需的最大转矩等来决定图23所示那样的速度-转矩特性,并制造、设置具有与其相应的特性的电动机。
轧制所需的电动机转矩的式的一例如图7所示,能根据产品规格和轧机规格来求取入侧TR2、轧机1、出侧TR3分别所需的转矩TqETR、TqMILL、TqDTR。在轧制设备中需要通过根据操作所需的轧制速度而求出的电动机旋转角速度ω而得到该转矩的那样的电动机。电动机旋转角速度ω能使用轧机规格并根据轧制速度而求取。轧制速度能考虑操作效率或被轧材的产品规格等来决定。
图24(a)~(c)表示轧制所需的转矩-速度特性的简单的一例。在图24(a)~(c)中,以星形图标示出了所要求的转矩以及速度的组合。在图24(a)的情况下,通过选择具有转矩-速度特性A的电动机,能满足轧制所需的转矩-速度特性。
与此相对,在图24(b)的情况下,在低速区域中,基于转矩-速度特性A将不能满足转矩-速度特性。故而若想要在速度全域中满足转矩-速度特性,则需要具有转矩-速度特性B的电动机。这将需要大输出的电动机,从而电动机以及电动机控制装置的容量变大,设备投资额增大。
在此,在图24(b)的例子中,在低速度区域中要求大的转矩。故而,若能由同一电动机得到低速且大的转矩输出那样的转矩-速度特性,则即使使用相同的电动机以及电动机控制装置,也既能满足图24(a)的要求又能满足图24(b)的要求。与此相对,能对电动机施加的端子电压有界限,电动机的最大的输出也有界限。因此,为了得到比通常高的转矩,需要降低基本速度。即,在通常,作为具有转矩-速度特性A的电动机而使用,而在对需要大的转矩的轧制进行实施的情况下,若电动机控制装置作为具有图24(c)所示的转矩-速度特性C的电动机进行控制,则能不增大设备投资额地实施所要求的轧制操作。
为了实现其,本实施方式所涉及的电动机速度控制装置100增大(1)式中的Ed来增大磁场φ。要实现其,如图25所示,增大针对端子电压Vs的速度变化的增加速率,以低速度成为最大端子电压VsMAX即可。然后,在恒输出控制的期间,进行控制使感应电动机内部的励磁电路的电压即内部感应电动势Ed随旋转速度的增加而降低,以维持该最大端子电压VsMAX
而且,由于增加速率变大而比通常施加得更多的端子电压Vs的电力,用于将励磁电流Id增加得比通常的控制更高。其结果是,磁场磁通φ变高,转矩Tq变高。在此情况下,如图25所示,在超过了基本速度的规定的速度区域中,通过通常的控制而得到的转矩变低,但其目的是以低速度来得到高转矩,在轧制操作中限制轧制速度即可。
作为另一个变更转矩-速度特性的方法,有使转矩电流指令增加的方法。图26示出了在此情况下的转矩一速度特性。在此情况下,转矩与转矩电流的增加成比例地增大。若将图25中的初级电流Is的上升幅度、与图26中的初级电流Is的上升幅度进行比较,则转矩Tq的上升幅度在图25中更大,与此无关地,在图25的情况下,即,在本实施方式中应用的形态下,初级电流Is的上升幅度更少。
一般地,励磁电流是转矩电流的30%程度。例如,在想要将转矩增大10%的情况下,像从上述的式(1)、(2)求解那样,有将励磁电流增大10%的(图25的情况)方法和将转矩电流增大10%的(图26的情况)方法。而且,像上述那样励磁电流是转矩电流的30%程度,因此将励磁电流增大10%更能使线电流的增大变小。此外,线电流Is能根据以下的式(6)来求取。
I S = 3 · I d 2 + I q 2 - - - ( 6 )
图27示出了转矩与线电流的关系。在图27中,实线是表示在与变更了转矩电流的情况下的转矩倍率相应的线电流的变化的曲线,虚线是表示与在变更了励磁电流的情况下的转矩倍率相应的线电流的变化的曲线。如图27所示,与变更转矩电流的情况比较,变更励磁电流来变更转矩时,线电流变化小。因此,通过在使转矩减少的情况下操作转矩电流,且在使转矩增大的情况下操作励磁电流,既能抑制线电流的增大又能实现感应电动机转矩增大。通过抑制线电流的增大,从而不仅能抑制热损失,还能防止电动机以及电动机控制装置的发热。
在轧制操作中,轧制速度在考虑操作效率方面重要。轧制速度越大操作效率越提高。故而,期望能到尽量大的轧制速度为止,输出电动机所要求的转矩。然而,即使在得到相同的电动机输出转矩的情况下,增大了励磁的一方能以少的线电流来实现,因此通过在轧制操作所需的电动机的最大旋转速度下设为使线电压成为最大那样的磁场模式,能使线电流最小化。
在电动机控制装置的上级存在对轧制设备进行控制的轧制控制用计算机,但由于在轧制控制用计算机侧要识别进行怎样的轧制操作,因此,能根据电动机所需的最大转矩、最大旋转速度来计算使用怎样的转矩-速度曲线是恰当的。因此,从上级赋予转矩-速度特性,在电动机控制装置内创建与其相应的速度-磁场模式即可。
将由上级的轧制控制用计算机计算出的转矩-速度特性的信息保存到图21以及图22所示的磁通指令器105。磁通指令器105基于所保存的转矩-速度特性的信息,对应于从速度运算器115输入的旋转速度,来决定磁通指令φref。然后,励磁电流运算器106决定与从磁通指令器105输入的磁通指令φref相应的励磁电流指令Idref来进行输出。即,磁通指令器105以及励磁电流运算器106作为励磁电流决定部发挥功能。
在实施需要大转矩的轧制的情况下,若以低速度来实施轧制,则能通过变更转矩-速度特性来对应。在此情况下,当然会发生基于电动机的发热、或电动机控制装置的容量等的制约条件,因此尽量在制约条件内进行实施。另外,该方法还能在进行规划时未考虑到轧制设备那样的需要轧制转矩的轧制的情况下利用。
如以上说明那样,轧机中所使用的电动机的转矩-速度特性通过变更电动机控制中的磁场φ的模式而改变,能在装置所容许的施加电压的范围内高效地得到高转矩。因此,在进行需要高的转矩的轧制等情况下,通过赋予最优的转矩-速度特性,则在现状的轧制设备内不进行损害设备的耐久性那样的控制,就能实现高效的轧制。
此外,在图25中,以如下情况为例进行了说明:使基本速度,即从恒转矩控制切换到恒输出控制的感应电动机的旋转速度比默认的值即额定的值低,在达到其基本速度之前的恒转矩控制的期间使端子电压Vs到达最大值即VsMAX,此时将比默认的状态供应得更多一些的电力分配给励磁电流,在进行磁场减弱控制的恒输出控制的速度范围中,通过进行控制以使内部感应电动势Ed逐渐下降,来使励磁电流Id下降。
然而,本实施方式所涉及的主旨在于,在达到基本速度之前的恒转矩控制的期间使端子电压Vs到达VsMAX,将比默认的状态供应得多一些的电力分配给励磁电流,其结果是,使在基本速度下所发挥的转矩Tq比默认的状态高。因此,如图25所示,并不一定必使基本速度比默认的状态即额定低,如图28所示,即使维持基本速度来进行上述那样的控制,也能得到本实施方式所涉及的效果。
在此,将图28与图26比较可知,在图28、图26中,基本速度均不变化,转矩的增加量也相同,但初级电流Is的增加幅度不同,图28的情况与图26的情况相比可知,初级电流Is的增加幅度更窄。如此,通过使用本实施方式所涉及的感应电动机的控制装置、控制方法,即使在得到相同的电动机输出转矩的情况下,增大了励磁的一方能以少的线电流来实现。
另一方面,对于通过在维持基本速度的状态下进行上述的控制而得到的电力的上升量,在不能得到期望的转矩Tq那样的情况下,如图25所示,通过降低基本速度的值,能在低的速度下得到期望的转矩Tq。此外,基本速度是在进行恒输出控制的速度ω的范围中的最低的速度,而最高的速度是最高速度。
另外,在上述实施方式中,如图1所示,以单机架轧机为例进行了说明,但不仅是单机架轧机,还能利用于将多个轧机连续排列的连轧机。

Claims (14)

1.一种感应电动机的控制装置,该感应电动机通过用于产生磁场的励磁电流、以及用于产生与所述磁场相应的转矩的转矩电流来得到转矩,所述感应电动机的控制装置的特征在于包括:
励磁电流控制部,其在达到预先确定的规定的旋转速度之前的期间,进行使转矩成为恒定的恒转矩控制,且在从所述规定的旋转速度起到最大的旋转速度为止的期间,通过使所述励磁电流减少,来进行使根据转矩以及旋转速度而求取的感应电动机的输出成为恒定的恒输出控制,在所述恒转矩控制中,将所述励磁电流固定为最大值,且在所述恒输出控制中,依照使所述励磁电流随旋转速度的上升而减少的磁场控制模式,来控制所述励磁电流;
转矩确认部,其通过在时间序列上求取对应于所述感应电动机的动作条件而所需的所述感应电动机的旋转速度和转矩的值,并与预先确定了与所述感应电动机的旋转速度相应的转矩的表示旋转速度与转矩的关系的转矩控制模式进行比较,来确认是否满足所求出的所述所需的所述感应电动机的旋转速度和转矩的值;
转矩控制模式变更部,其在比所述规定的旋转速度慢的速度区域中不满足所求出的所述所需的所述感应电动机的旋转速度和转矩的值的情况下,变更所述转矩控制模式以使所述恒转矩控制中的所述励磁电流的最大值变高;和
磁场控制模式变更部,其对应于变更后的所述转矩控制模式,来变更所述磁场控制模式。
2.根据权利要求1所述的感应电动机的控制装置,其特征在于,
所述转矩控制模式变更部,在比所述规定的旋转速度慢的速度区域中不满足所求出的所述所需的转矩的值的情况下,变更所述转矩控制模式以使所述规定的旋转速度比通常的控制中的规定的旋转速度低。
3.根据权利要求1所述的感应电动机的控制装置,其特征在于,
所述转矩控制模式变更部,在比所述规定的旋转速度快的速度区域中不满足所求出的所述所需的转矩的值的情况下,变更所述转矩控制模式以使所述规定的旋转速度比通常的控制中的规定的旋转速度高。
4.根据权利要求1所述的感应电动机的控制装置,其特征在于,
所述感应电动机在通过以至少一对辊夹持被轧材来进行轧制的轧机中用于所述辊的旋转,
所述感应电动机的控制装置包括:转矩电流控制部,其基于变换系数来将所述被轧材的张力指令值变换成所述转矩电流的指令值;和
变换系数变更部,其对应于变更后的所述转矩控制模式,来变更所述变换系数。
5.根据权利要求1所述的感应电动机的控制装置,其特征在于,
所述转矩控制模式变更部,在变更了所述转矩控制模式的情况下,计算根据变更后的供应给所述感应电动机的所述励磁电流以及所述转矩电流而确定的线电流的值,并确认其计算结果是否在预先确定的限度值内,在所述线电流的值超过了所述限度值的情况下,对操作者通知不能控制。
6.一种感应电动机的控制方法,该感应电动机通过用于产生磁场的励磁电流、以及用于产生与所述磁场相应的转矩的转矩电流来得到转矩,所述感应电动机的控制方法的特征在于,
在达到预先确定的规定的旋转速度之前的期间,进行使转矩成为恒定的恒转矩控制,且在从所述规定的旋转速度起到最大的旋转速度为止的期间,通过使所述励磁电流减少,来进行使根据转矩以及旋转速度而求取的感应电动机的输出成为恒定的恒输出控制,在所述恒转矩控制中,将所述励磁电流固定为最大值,且在所述恒输出控制中,依照使所述励磁电流随旋转速度的上升而减少的磁场控制模式,来控制所述励磁电流,
通过在时间序列上求取对应于所述感应电动机的动作条件而所需的所述感应电动机的旋转速度和转矩的值,并与预先确定了与所述感应电动机的旋转速度相应的转矩的表示旋转速度与转矩的关系的转矩控制模式进行比较,来确认是否满足所求出的所述所需的所述感应电动机的旋转速度和转矩的值,
在比所述规定的旋转速度慢的速度区域中不满足所求出的所述所需的所述感应电动机的旋转速度和转矩的值的情况下,变更所述转矩控制模式以使所述恒转矩控制中的所述励磁电流的最大值变高,
对应于变更后的所述转矩控制模式,来变更所述磁场控制模式。
7.根据权利要求6所述的感应电动机的控制方法,其特征在于,
在比所述规定的旋转速度慢的速度区域中不满足所求出的所述所需的转矩的值的情况下,变更所述转矩控制模式以使所述规定的旋转速度比通常的控制中的规定的旋转速度低。
8.根据权利要求6所述的感应电动机的控制方法,其特征在于,
在比所述规定的旋转速度快的速度区域中不满足所求出的所述所需的转矩的值的情况下,变更所述转矩控制模式以使所述规定的旋转速度比通常的控制中的规定的旋转速度高。
9.一种感应电动机的控制装置,该感应电动机通过用于产生磁场的励磁电流、以及用于产生与所述磁场相应的转矩的转矩电流来得到转矩,所述感应电动机的控制装置的特征在于,
在达到预先确定的规定的旋转速度之前的期间,进行使转矩成为恒定的恒转矩控制,且在从所述规定的旋转速度起到最大的旋转速度为止的期间,进行使根据转矩以及旋转速度而求取的感应电动机的输出成为恒定的恒输出控制,
进行控制使得:在通常的控制中,在达到所述规定的旋转速度之前的期间,所述感应电动机内部的励磁电路的电压成为最大,在所述恒输出控制中,施加到所述感应电动机上的端子电压随所述旋转速度的增加而变高以维持所述最大的励磁电路的电压,在最大的旋转速度时,施加最大的端子电压,
并且进行控制使得:在用于临时得到高转矩的高转矩控制中,在达到该高转矩控制中的规定的旋转速度之前的期间,施加到所述感应电动机上的端子电压成为比所述通常的控制的所述规定的旋转速度处的端子电压高的值,在所述恒输出控制中,对应于所述旋转速度的增加来调整所述感应电动机内部的励磁电路的电压以使所述端子电压不超过预先确定的界限值,且通过比通常的控制施加得大的所述端子电压,来使所述励磁电流比通常的控制高。
10.根据权利要求9所述的感应电动机的控制装置,其特征在于,
进行控制使得:在所述高转矩控制中,在达到所述规定的旋转速度之前的期间,所述端子电压成为最大,而在所述恒输出控制中,维持所述最大的端子电压。
11.根据权利要求9所述的感应电动机的控制装置,其特征在于,
所述高转矩控制中的规定的旋转速度是比所述通常的控制中的规定的旋转速度低的旋转速度。
12.根据权利要求9所述的感应电动机的控制装置,其特征在于,
包括:励磁电流决定部,其基于所述感应电动机的旋转速度以及对应于旋转速度而所需的转矩,来决定所述高转矩控制中的励磁电流。
13.根据权利要求12所述的感应电动机的控制装置,其特征在于,
所述励磁电流决定部基于所述感应电动机的旋转速度以及对应于旋转速度而所需的转矩,来决定用于使感应电动机的线电流成为最小的励磁电流。
14.一种感应电动机的控制方法,该感应电动机通过用于产生磁场的励磁电流、以及用于产生与所述磁场相应的转矩的转矩电流来得到转矩,所述感应电动机的控制方法的特征在于,
在达到预先确定的规定的旋转速度之前的期间,进行使转矩成为恒定的恒转矩控制,且在从所述规定的旋转速度起到最大的旋转速度为止的期间,进行使根据转矩以及旋转速度而求取的感应电动机的输出成为恒定的恒输出控制,
进行控制使得:在通常的控制中,在达到所述规定的旋转速度之前的期间,所述感应电动机内部的励磁电路的电压成为最大,在所述恒输出控制中,施加到所述感应电动机上的端子电压随所述旋转速度的增加而变高以维持所述最大的励磁电路的电压,在最大的旋转速度时,施加最大的端子电压,
并且进行控制使得:在用于临时得到高转矩的高转矩控制中,在达到该高转矩控制中的规定的旋转速度之前的期间,施加到所述感应电动机上的端子电压成为比所述通常的控制的所述规定的旋转速度处的端子电压高的值,在所述恒输出控制中,对应于所述旋转速度的增加来调整所述感应电动机内部的励磁电路的电压以使所述端子电压不超过预先确定的界限值,且通过比通常的控制施加得大的所述端子电压,来使所述励磁电流比通常的控制高。
CN201210214749.7A 2011-06-29 2012-06-26 感应电动机的控制装置及感应电动机的控制方法 Active CN102847725B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-144329 2011-06-29
JP2011144329A JP5721564B2 (ja) 2011-06-29 2011-06-29 誘導電動機の制御装置及び誘導電動機の制御方法
JP2011144315A JP5721563B2 (ja) 2011-06-29 2011-06-29 誘導電動機の制御装置及び誘導電動機の制御方法
JP2011-144315 2011-06-29

Publications (2)

Publication Number Publication Date
CN102847725A CN102847725A (zh) 2013-01-02
CN102847725B true CN102847725B (zh) 2015-07-08

Family

ID=47394931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210214749.7A Active CN102847725B (zh) 2011-06-29 2012-06-26 感应电动机的控制装置及感应电动机的控制方法

Country Status (1)

Country Link
CN (1) CN102847725B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104438361B (zh) * 2014-11-13 2017-01-18 北京科技大学 一种轧机交流主传动机电系统加载试验测试方法
JP6603285B2 (ja) * 2017-10-19 2019-11-06 ファナック株式会社 モータ制御装置
CN112077155B (zh) * 2020-08-04 2022-03-18 首钢京唐钢铁联合有限责任公司 一种轧机轧制冲击扭矩的获取方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1062438A (zh) * 1990-10-02 1992-07-01 东芝株式会社 电动机速度控制方法及装置
CN1649251A (zh) * 2004-01-28 2005-08-03 三菱电机株式会社 电动机控制装置
CN1715095A (zh) * 2004-06-29 2006-01-04 爱信艾达株式会社 电动驱动控制装置、电动驱动控制方法及其程序
CN102098000A (zh) * 2011-01-27 2011-06-15 华中科技大学 一种感应电动机弱磁调速方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884658B1 (fr) * 2005-04-13 2007-05-18 Schneider Toshiba Inverter Procede d'ajustement de parametres d'un moteur electrique et variateur de vitesse utilisant un tel procede
JP4640422B2 (ja) * 2008-02-29 2011-03-02 株式会社デンソー ランデルロータ型モータ
JP5546804B2 (ja) * 2009-06-18 2014-07-09 ビアメカニクス株式会社 電動機駆動制御装置。

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1062438A (zh) * 1990-10-02 1992-07-01 东芝株式会社 电动机速度控制方法及装置
CN1649251A (zh) * 2004-01-28 2005-08-03 三菱电机株式会社 电动机控制装置
CN1715095A (zh) * 2004-06-29 2006-01-04 爱信艾达株式会社 电动驱动控制装置、电动驱动控制方法及其程序
CN102098000A (zh) * 2011-01-27 2011-06-15 华中科技大学 一种感应电动机弱磁调速方法

Also Published As

Publication number Publication date
CN102847725A (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
CN103051269B (zh) 同步机控制装置
CN103026615B (zh) 交流旋转机的控制装置
US20110181222A1 (en) Motor control system and method
CN102847725B (zh) 感应电动机的控制装置及感应电动机的控制方法
JP2008092739A (ja) 電力変換装置及びその制御方法
CN105684282A (zh) 磁电机驱动装置的弱磁控制
CN102403949A (zh) 马达控制装置
CN111869092B (zh) 永磁体同步电动机的控制装置、电动助力转向装置及电动车辆
JP2011166953A (ja) 機械を駆動するサーボシステムの消費電力計算機能を有するサーボシステム選定装置
CN103208964B (zh) 电力变换部控制装置、电动机特性测定方法
JP2009183051A (ja) 同期機の制御装置
US7511449B2 (en) Electric motor system implementing vector and slip control
JP5721564B2 (ja) 誘導電動機の制御装置及び誘導電動機の制御方法
JP5721563B2 (ja) 誘導電動機の制御装置及び誘導電動機の制御方法
TWI322560B (en) Control process and control device of induction motor, and steel/nonferrous facility, railway vehicle, winder, vessel, machine tool, paper machine facility and transport facility employing the control process and the control device
CN103010301A (zh) 车辆转向装置的控制装置
JP4410632B2 (ja) 誘導電動機の制御方法、制御装置、製鉄・非鉄設備、鉄道車両、巻取機、船舶、工作機械、抄紙機設備および搬送設備
CN102317194B (zh) 电梯的门控制装置
US2202419A (en) Induction motor control system
JP4113726B2 (ja) 同期電動機の制御装置
Rachev Study of dynamic behavior of induction motor drive for electric vehicle
CN102857169A (zh) 基于无速度传感器的单逆变器对双感应电动机的控制方法
JPH10194650A (ja) エスカレーターの制御装置
JP5225046B2 (ja) 可変磁束モータドライブシステム
DW et al. Electric drives

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant