CN102802550B - 提供包括延伸出进入引导器远端的可联接器械的运动限制范围的辅助视图的医疗机器人系统 - Google Patents
提供包括延伸出进入引导器远端的可联接器械的运动限制范围的辅助视图的医疗机器人系统 Download PDFInfo
- Publication number
- CN102802550B CN102802550B CN201080028525.6A CN201080028525A CN102802550B CN 102802550 B CN102802550 B CN 102802550B CN 201080028525 A CN201080028525 A CN 201080028525A CN 102802550 B CN102802550 B CN 102802550B
- Authority
- CN
- China
- Prior art keywords
- link
- contact
- guide
- far
- medical robotic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000033001 locomotion Effects 0.000 title claims abstract description 58
- 238000010586 diagram Methods 0.000 claims description 49
- 230000008859 change Effects 0.000 claims description 21
- 230000008878 coupling Effects 0.000 claims description 13
- 238000010168 coupling process Methods 0.000 claims description 13
- 238000005859 coupling reaction Methods 0.000 claims description 13
- 230000000007 visual effect Effects 0.000 claims description 9
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 230000004807 localization Effects 0.000 claims 1
- 230000001502 supplementing effect Effects 0.000 claims 1
- 239000013589 supplement Substances 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 61
- 210000000707 wrist Anatomy 0.000 description 36
- 239000012636 effector Substances 0.000 description 21
- 230000004438 eyesight Effects 0.000 description 8
- 238000005094 computer simulation Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 210000004247 hand Anatomy 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000002594 fluoroscopy Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 101100512532 Mus musculus Atf7ip2 gene Proteins 0.000 description 1
- 101100408036 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PGU1 gene Proteins 0.000 description 1
- 101100042789 Schizosaccharomyces pombe (strain 972 / ATCC 24843) psm1 gene Proteins 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 210000000589 cicatrix Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000004224 protection Effects 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000002432 robotic surgery Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00174—Optical arrangements characterised by the viewing angles
- A61B1/00183—Optical arrangements characterised by the viewing angles for variable viewing angles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/012—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
- A61B1/018—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Master-slave robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00193—Optical arrangements adapted for stereoscopic vision
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/101—Computer-aided simulation of surgical operations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/101—Computer-aided simulation of surgical operations
- A61B2034/102—Modelling of surgical devices, implants or prosthesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/101—Computer-aided simulation of surgical operations
- A61B2034/102—Modelling of surgical devices, implants or prosthesis
- A61B2034/104—Modelling the effect of the tool, e.g. the effect of an implanted prosthesis or for predicting the effect of ablation or burring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/107—Visualisation of planned trajectories or target regions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2051—Electromagnetic tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2059—Mechanical position encoders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/301—Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/302—Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/303—Surgical robots specifically adapted for manipulations within body lumens, e.g. within lumen of gut, spine, or blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/305—Details of wrist mechanisms at distal ends of robotic arms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/305—Details of wrist mechanisms at distal ends of robotic arms
- A61B2034/306—Wrists with multiple vertebrae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/08—Accessories or related features not otherwise provided for
- A61B2090/0807—Indication means
- A61B2090/0811—Indication means for the position of a particular part of an instrument with respect to the rest of the instrument, e.g. position of the anvil of a stapling instrument
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/376—Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
- A61B2090/3762—Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/35—Surgical robots for telesurgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/361—Image-producing devices, e.g. surgical cameras
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Robotics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Manipulator (AREA)
- Gynecology & Obstetrics (AREA)
Abstract
一种医疗机器人系统(100),其包括具有手术工具(231、241)的进入引导器(200),以及延伸出其远端的相机(211)。为了补充由相机捕捉的图像提供的视图,包括手术工具的可联接手臂和/或相机的辅助视图根据从指定观察点透视图的传感的或其他方式确定的关于其位置和方向的信息产生,其位置和取向的信息和运动限制范围指示一起显示在显示屏(140)。
Description
技术领域
本发明主要涉及医疗机器人系统,并且尤其涉及提供辅助视图的医疗机器人系统,辅助视图包括延伸出进入引导器远端的可联接器械(instrument)的运动限制范围。
背景技术
在执行微创手术程序中使用的医疗机器人系统,例如遥控操控系统,提供优于传统开放式手术技术的许多好处,包括:痛苦较少、住院时间较短、恢复正常活动更快、疤痕最小、缩短康复时间、以及对组织损伤较少。因此,对该医疗机器人系统的需求强并且在增加。
该医疗机器人系统的一个例子是美国加利福尼亚州森尼韦尔市IntuitiveSurgical公司的daVinci手术系统,其为微创机器人手术系统。daVinci手术系统具有许多机器人手臂,其响应通过手术部位的图像捕捉装置捕捉的外科医生观察图像对输入装置的移动,而移动所连接的医疗装置,例如图像捕捉装置和IntuitiveSurgical公司所有的EndoWrist可联接手术器械。每个医疗装置都被通过其自己的微创切口插入患者体内并定位,从而执行手术部位上的医疗程序。切口关于患者的身体定位,以便可使用多个手术器械共同执行医疗程序,并且在程序期间,图像捕捉装置可观察它,而不与其机器人手臂碰撞。
为了执行某些医疗程序,使用单进入孔从而进入患者体内执行医疗程序可有利,例如微创切口或自然身体口。例如,可首先将进入引导器插入、定位并且保持在进入孔中的适当位置。然后可将这样的器械插入进入引导器的近端,以便从其远端伸出,该器械是诸如可联接相机和多个可联接手术工具,其可用于执行医疗程序。因而,进入引导器为多个器械提供单进入孔,而同时随着进入引导器将多个器械朝着工作点引导,还这些器械捆在一起。进入引导器可为刚性或柔性的。
因为进入引导器为了适合通过微创切口或自然身体口而通常具有相对小的直径,所以在遥控操控手术工具以及遥控操控相机执行医疗程序从而对其观察时,可产生许多问题。例如,由于相机与手术工具捆绑,因此其相对于手术工具的定位受限,并且因此对手术工具的观察受限。
因而,虽然可将可联接手术工具的尖端保持在相机的视场内,但是促进手术工具可联接性的可控联接可不在相机的视场内。结果,手术工具的可控联接可在执行手术程序期间,不注意地相互碰撞(或与相机的链接碰撞),并且结果,引起对患者的伤害,或者引起其他不利地影响医疗程序的执行。
同样地,因为可联接相机通常不能观察其自身的可控联接,所以当避免与手术工具链接的碰撞时,尤其关注相机的操作者运动。此外,当提供直觉控制,从而帮助操作者遥控移动手术工具和相机时,产生此工具尖端和相机的直觉运动所需的联接运动对于操作者来说不明显或不直觉,因而使操作者甚至更难避免相机视场外的联接之间的碰撞。
进入引导器以及延伸出其远端的可联接器械的良好定位布置允许器械无障碍运动并且大范围运动,以便能够使用这些器械在目标点执行医疗程序。然而,由于相机提供的受限观察,操作者难以确定进入引导器的良好定位布置,或者延伸出进入引导器远端的可联接器械的良好定位布置。此外,大部分由于相机器械的摇动和倾斜能力,该捆绑器械布置倾向于在平常使用中进入非最优工具工作方向。
发明内容
因此,本发明一个或多于一个方面的目标是这样一种方法,其向操作者提供辅助视图,从而帮助操作者使用医疗机器人系统对患者执行医疗程序操作者,该医疗机器人系统具有可联接的器械,其延伸出经患者身上的单进入孔而插入的进入引导器的远端。
本发明一个或多于一个方面的另一目标是一种在该医疗机器人系统中实施的方法,该医疗机器人系统向操作者提供视觉指示,其指示可联接器械的可控接点何时接近其各自运动范围内的限制。
本发明一个或多于一个方面的另一目标是一种在医疗机器人系统中实施的方法,该医疗机器人系统向操作者提供视觉指示,其指示可联接器械的接点和/或链接和/或其部分何时接近不良或期望事件或条件。
通过本发明的各个方面完成这些及其他的目标,其中简要说明,一个方面是这样一种方法,其提供一种计算机产生的视图,该视图指示一个或多于一个可联接器械的接点位置和运动限制范围,该方法包含:接收一个或多于一个可联接器械的状态信息;通过包括一个或多于一个可联接器械的接点图示以及一个或多于一个接点的运动限制范围的指示而产生视图,其中,图示和指示通过使用一个或多于一个可联接器械的接收信息和向前运动而产生;以及在显示屏上显示产生的视图。
医疗机器人系统的另一方面包含:进入引导器;可控延伸出进入引导器远端的多个可联接器械;显示屏;以及处理器,其被配置成接收可联接器械的状态信息,通过包括可联接器械的接点图示以及一个或多于一个接点的运动限制范围的指示而产生视图,其中,图示和指示通过使用可联接器械的接收信息和向前运动而产生,以及在显示屏上显示产生的视图。
根据以下本发明优选实施例的说明书,其各个方面的其他目标、特征和优点将变得明显,其说明书应结合附图。
附图说明
图1示出使用利用本发明方面的医疗机器人系统的手术室的顶视图。
图2示出利用本发明方面的医疗机器人系统中,用于控制和选择性地关联装置操纵者操控左和右手可操纵的输入装置操控的组件的方框图。
图3-4分别示出利用本发明方面的医疗机器人系统中使用的,可联接相机和延伸出进入引导器远端的一对可联接手术工具的顶视图和侧视图。
图5示出利用本发明方面的医疗机器人系统中使用的进入引导器及其四个自由度运动的透视图。
图6示出利用本发明方面的医疗机器人系统中使用的,具有限定在其近端和远端之间延伸的通道的进入引导器的横截面图。
图7示出利用本发明方面的医疗机器人系统中使用的进入引导器操控器的相互作用组件的方框图。
图8示出利用本发明方面的医疗机器人系统中使用的进入引导器操控器和可联接器械的相互作用组件的方框图。
图9示出利用本发明方面的,用于提供计算机产生的辅助视图的方法的流程图。
图10示出利用本发明方面的医疗机器人系统中使用的,使用器械接点位置和向前运动而确定器械链接位置和方向的数据和过程流程图。
图11示出利用本发明方面的医疗机器人系统中使用的,使用感测到的器械尖端位置和反向运动从而确定器械接点位置的数据和过程流程图。
图12-13分别示出通过在利用本发明方面的医疗机器人系统中实施的方法,在显示屏上产生和显示的顶部和侧部辅助视图。
图14示出通过在利用本发明方面的医疗机器人系统中实施的方法,在显示屏上以单独窗口产生和显示的顶部和侧部辅助视图。
图15示出邻近利用本发明方面的医疗机器人系统中的监控器上的可联接相机捕捉的图像显示的辅助视图。
图16示出具有通过在利用本发明方面的医疗机器人系统中实施的方法在显示器上产生和显示的平截头体的可联接相机的辅助侧视图。
图17示出与利用本发明方面的医疗机器人系统中实施的方法在显示器上产生和显示的由相机捕捉的图像一起,在相机的视点的一对可联接手术工具的辅助视图的组合显示。
图18示出一种提供相应于利用本发明方面的医疗机器人系统中的装置控制模式的辅助视图模式的方法的流程图。
图19示出延伸出利用本发明方面的医疗机器人系统中的进入引导器远端的可联接器械的侧视图。
图20示出利用本发明的方面,缩回至进入引导器的可联接器械及运动限制范围的指示的辅助视图。
图21示出利用本发明的方面,延伸出进入引导器的可联接器械及运动限制范围的指示的辅助视图。
图22-25示出表示可联接器械延伸出在利用本发明方面的医疗机器人系统中使用的进入引导器远端的各种图形显示。
图26示出在利用本发明方面的医疗机器人系统中使用的夹子的图示。
图27示出在利用本发明方面的医疗机器人系统中使用的可联接相机的图示。
图28示出在利用本发明方面的医疗机器人系统中,关于延伸出进入引导器远端的可联接器械不良定位的进入引导器的简化辅助视图。
图29示出在利用本发明方面的医疗机器人系统中,关于延伸出进入引导器远端的可联接器械再定位进入引导器的简化辅助视图。
图30示出在利用本发明方面的医疗机器人系统中,延伸出进入引导器的可联接器械及在监控器中显示的器械中的一个捕捉的图像的辅助视图。
具体实施方式
例如,图1示出手术室的顶视图,其中外科医生20利用医疗机器人系统100,用于对面向上躺在手术台50上的患者40执行医疗程序。一个或多于一个助手30可位于患者40附近,从而在外科医生20通过操控输入装置108在外科医生控制台10上遥控操控执行程序时,帮助执行程序。
在该例子中,通过单进入孔150将进入引导器(EG)200插入患者40体内。虽然在该例子中,进入孔150为微创切口,但是在其他医疗程序的执行中,其可由自然身体口代替。进入引导器200由机器人手臂组件130支持和操控。
与医疗机器人系统100的其他部分一样,图1中也只简化示出机器人手臂组件130。在医疗机器人系统100的一个例子中,机器人手臂组件130包括装配臂和进入引导器操控器。装配臂用于将进入引导器200定位在进入孔150,以便其能够适当地进入该进入孔150。然后,进入引导器操控器被用于将进入引导器200自动机械插入进入孔150中和将其从中缩回。其也可用于将进入引导器200关于位于进入孔150的枢轴点纵倾、横摆和横倾/倾斜、滚动和旋转(pitch,rollandyaw)自动机械枢轴运动。该进入引导器操控器的例子是图2中的进入引导器操控器202,而图5中示出其操控进入引导器200的四个运动自由度的例子。
控制台10包括:3-D监控器104,其用于向外科医生显示手术部位的3-D图像;左和右手操控可操控的输入装置108、109;以及,处理器(在此也称为“控制器”)102。输入装置108、109可包括多种输入装置中的任意一个或多个,例如操纵杆、手套、扳机-枪、手操作控制器等等。其他允许外科医生与医疗机器人系统100相互作用的输入装置包括脚踏板105、传统的声音识别系统160和图形用户界面(GUI)170。
辅助显示屏140耦合至控制台10,用于向外科医生提供辅助视图以补充在监控器104中显示的视图。第二辅助显示屏140′也耦合至控制台10(以及处理器102),用于向助手提供辅助视图。输入装置180也耦合至控制台,从而允许助手在用于在第二辅助显示屏140′上显示的可用辅助图像之间选择。
控制台10通常与患者位于相同的房间,以便外科医生可直接监控程序,如果需要是身体可用的,并且能够直接对助手说话,而非通过电话或其他通信媒体说话。然而,应理解,外科医生也能够与患者位于不同的房间、完全不同的建筑、或者其他允许遥控手术程序的远程位置。在该情况下,控制台10可通过通信连接,例如局域网、广域网或因特网,而连接至第二辅助显示屏140′和输入装置180。
如图3-4中所示,进入引导器200具有可联接器械,如可联接手术工具231、241,以及延伸出其远端的可联接立体摄像机211。虽然仅示出两个工具231、241,但是进入引导器200还可引导在患者体内工作点上执行医疗程序所需的其他工具。例如,如图4所示,能够有通道351,其用于通过进入引导器延伸另一个可联接手术工具,并且通过其远端延伸出进入引导器的另一个可联接手术工具。每个手术工具231、241都与工具跟踪模式中的输入装置108、109中的一个关联。外科医生通过操控输入装置108、109执行医疗程序,以便控制器102引起其各自关联的手术工具231、241的相应移动,而同时随着工作点的图像由可联接相机211捕捉,外科医生在控制台监控器104上观察3-D工作点。
优选,输入装置108、109将至少具有与其关联的工具231、241相同的自由度,从而向外科医生提供输入装置108、109与工具231、241集成的远程呈现或感知,以便外科医生具有直接控制工具231、241的强烈感觉。为了该目的,监控器104也在外科医生的手附近定位,以便其将显示定向的投射图像,以便外科医生感觉到,他或她实际上直接向下看手术部位,并且工具231、241的图像看起来充分位于外科医生的手所处的位置。
另外,优选将监控器104中的实时图像投射在透视图像中,以便外科医生就像观察基本真实存在的工作点一样,能够通过其相应的输入装置108、109而操控工具231、241的末端致动器331、341。对于真实存在,其意思是,呈现的图像是模拟正在物理操控末端致动器331、341的操作者视点的真实透视图像。因而,处理器102可将末端致动器331、341的坐标转换为感知位置,以便在监控器104上示出的透视图像为这样的图像,即如果外科医生直接位于末端致动器331、341之后将看到的图像。
处理器102执行系统100中的各种功能。其执行的一个重要功能是通过总线110上的控制信号而转化和传递输入装置108、109的机械运动,以便外科医生能够有效地操控装置,例如当时选择性地关联输入装置108、109的工具231、241、相机211以及进入引导器200。另一功能是执行在此描述的各种方法和控制器功能。
虽然作为处理器描述,但是应明白,实际上处理器102可由硬件、软件和固件的任何组合实施。同样地,其在此描述的功能可由一个单元执行,或被分割为不同组件,其每个都可依次由硬件、软件和固件的任何组合实施。此外,虽然示出部分或物理邻近控制台10,但是处理器102也可包含贯穿该系统分布的许多子组。
对于在此描述的医疗机器人系统的各个方面的结构和运行的另外细节,例如参考美国专利号6,493,608,“AspectsofaControlSystemofaMinimallyInvasiveSurgicalApparatus”,以及美国专利号6,671,581,“CameraReferencedControlinaMinimallyInvasiveSurgicalApparatus”,其被包含在此以供参考。
图2作为例子,示出用于控制并且选择性地连接装置操控器和输入装置108、109的组件的方框图。可使用各种手术工具,例如夹子、切割器和手术针,从而在患者体内的手术部位执行医疗程序。在该例子中,使用两个手术工具231、241从而自动机械执行该程序,并且使用相机211观察程序。工具231、241和相机211被通过进入引导器200的通道插入。如参考图1所述,使用机器人手臂组件130的装配部分将进入引导器200通过进入孔150插入患者体内,并且由机器人手臂组件130的进入引导器操控器(EGM)202将其朝着将执行手术程序的工作点机动。
每个装置231、241、211、200都有其自身的操控器操控。特别地,相机211由相机操控器(ECM)212操控、第一手术工具231由第一工具操控器(PSM1)232操控、第二手术工具241由第二工具操控器(PSM2)242操控、而进入引导器200由进入引导器操控器(EGM)202操控。为了不过度拖累附图,所以未示出装置231、241、211、200,而仅在附图中示出其各自的操控器232、242、212、202。
每个器械操控器232、242、212都是这样的机械组件,其带有致动器,并且提供机械、无菌界面,从而向其各个可联接器械传送运动。每个器械操控器232、242、212都是这样的机械组件,即通过其操控器接收运动,并且通过电缆传输,将该运动传播至其远端联接(例如,接点)。该接点可为棱柱式(例如,直线运动)或转动式(例如,其绕机械轴枢轴转动)的。此外,器械可具有这样的内部机械约束(例如,电缆、传动装置、凸轮、皮带等等),其迫使接点以预定方式一起移动。每组机械约束接点都执行特定轴运动,并且可将约束设计为对转接点(例如,啮合扣接点)。也要注意,这样,该器械可具有比可用致动器多于一个的接点。
相反,进入引导器操控器202具有不同的构造和操控。以下参考图7描述进入引导器操控器202的各部分和操控的说明。
在该例子中,每个输入装置108、109都可选择性地关联装置211、231、241、200其中之一,以便该关联装置可由输入装置通过其控制器和操控器控制。例如,通过将开关258、259分别放置在工具跟踪模式“T2”和“T1”,左和右输入装置可分别关联第一和第二手术工具231、241,后者被通过其各自的控制器233、243(优选在处理器102中实施)和操控器232、242远程自动机械控制,以便外科医生可对患者执行医疗程序,同时进入引导器200被锁定在适当位置。
当相机211或进入引导器200由外科医生再定位时,左和右输入装置其中之一或其两者可关联相机211或进入引导器200,以便外科医生可通过其各自的控制器(213或203)和操控器(212、202)移动相机或进入引导器200。在该情况下,手术工具231、241中分离的一个被其控制器相对于进入引导器200锁定在适当位置。例如,通过将开关258、259分别放置在相机定位模式“C2”和“C1”中,左和右输入装置108、109可关联相机211,后者被通过其控制器213(优选在处理器102中实施)和操控器远程自动机械控制,以便外科医生可定位相机211,同时手术工具231、241和进入引导器200被其各自的控制器233、243、203锁定在适当位置。如果仅使用一个输入装置定位相机,那么仅将一个开关258、259放置在其相机定位模式中,而同时另一个开关258、259保持为其工具跟踪模式,以便其各自的输入装置可继续控制其关联的手术工具。
另一方面,通过将开关258、259分别放置在进入引导器定位模式“G2”和“G1”中,左和右输入装置108、109可关联进入引导器200,后者被通过其控制器203(优选在处理器102中实施)和操控器202远程自动机械控制,以便外科医生可定位进入引导器200,同时手术工具231、241和相机211被其各自的控制器233、243、213相对于进入引导器200锁定在适当位置。与相机定位模式一样,如果仅使用一个输入装置定位进入引导器,那么仅将一个开关258、259放置在其进入引导器定位模式中,而同时另一个开关258、259保持为其工具跟踪模式,以便其各自的输入装置可继续控制其关联的手术工具。
可由外科医生以传统方式使用GUI170或声音识别系统160执行该例子中输入装置108、109和其他装置的选择性关联。可替换地,输入装置108、109的关联可由外科医生通过以下方式改变,即通过按下一个输入装置108、109上的按钮或踩下脚踏板105、或使用任何其他广为人知的模式转换技术。
图3-4作为例子,分别示出进入引导器200远端的顶视图和右侧视图,其中相机211和手术工具231、241延伸在外。如图5中简化(未按比例)进入引导器200的透视图所示的一样,进入引导器200的形状通常为圆柱形,并且具有沿其长度中心延伸的轴X′。也被称为遥控中心“RC”的枢轴点用作以下两者的原点,即具有示出的X、Y和Z轴的固定参考系,以及具有示出的X′、Y′和Z′轴的进入引导器参考系的原点。当系统100处于进入引导器定位模式时,进入引导器操控器202能够响应一个或多于一个关联的输入装置的运动,使进入引导器200关于Z轴(其保持空间固定),在遥控中心“RC”以横倾ψ枢轴转动。另外,进入引导器操控器202能够响应一个或多于一个关联的输入装置的运动,使进入引导器200关于Y′轴(其垂直于进入引导器200的纵轴X′)以纵倾θ枢轴转动,能够响应一个或多于一个关联的输入装置的运动,使进入引导器200关于纵轴X′以横摆φ转动,并且能够沿其纵轴X′在插入/缩回或进/出“I/O”方向直线移动进入引导器200。注意,与空间固定的Z轴不同,X′和Y′轴随着进入引导器200移动。
如图7所示,进入引导器操控器(EGM)202具有四个致动器701-704以及四个相应的组件711-714,前者用于致动进入引导器200的四个自由度运动(即纵倾θ、横倾ψ、横摆φ以及进/出I/O),后者用于将其执行。
重新参考图3-4,可联接相机211通过通道321延伸,并且可联接手术工具231、241分别通过进入引导器200的通道431、441延伸。相机211包括尖端311(其容纳连接至相机控制器的立体摄像机,以及连接至外部光源的光纤电缆)、第一第二和第三链接322、324、326、第一和第二接点组件(在此也简称为“接点”)323、325,以及腕组件327。第一接点组件323耦合第一和第二链接322、324,而第二接点组件325耦合第二和第三链接324、326,以便第二链接324可关于第一接点组件323纵倾和横倾,而第一和第三链接322、326彼此保持平行。
第一和第二接点323、325被称为“啮合扣接点”,因为其一起合作运行,以便随着第二链接324绕第一接点纵倾和/或横倾枢轴旋转时,第三链接326绕第二接点325以互补方式枢轴旋转,所以第一和第三链接322、326彼此始终保持平行。第一链接322也可在横摆以及通过通道321的移进移出(例如,朝着工作点插入以及从工作点缩回)中绕其纵轴旋转。腕组件327也具有纵倾和横倾角运动的能力,以便可将相机的尖端311向上或向下,以及向右或向左定向或其组合定向。
工具231、241的接点和链接在构造和运行中与相机的接点和链接类似。特别地,工具231包括由例如参考图8中描述的致动器驱动的末端受动器331(具有夹子338、339)、第一、第二和第三链接332、334、336、第一和第二接头组件333、335、以及腕组件337。(加上用于致动末端受动器331的另外的致动器)同样地,工具241包括由例如参考图8中描述的致动器驱动的末端受动器341(具有夹子348、349)、第一、第二和第三链接342、344、346、第一和第二接头组件343、345、以及腕组件347。(加上用于致动末端受动器341的另外的致动器)
图8作为例子,图解可联接器械(例如可联接相机211和可联接手术工具231、241)及其相应的器械操控器(例如相机操控器212和工具操控器232、242)的相互作用部分图。每个器械都包括用于完成器械(包括其末端受动器)联接的许多可致动组件821-823、831-833、870,并且其相应的操控器包括用于致动该可致动组件的许多致动器801-803、811-813、860。
另外,也可提供许多界面机构。例如,在无菌操控器/器械界面中提供纵倾/横倾耦合机构840、850(分别用于啮合扣接点纵倾/横倾和腕组件纵倾/横倾)以及齿轮齿数比845、855(分别用于器械横摆和末端受动器致动),从而在器械接点空间中实现器械接点的要求运动范围,而同时满足操控器致动器空间紧凑约束,并且保持穿过该界面的运动的精确传动。虽然以单块840示出,但是啮合扣接点致动器801、802(以#1和#2区分)以及啮合扣接点纵倾/横倾组件821、822之间的耦合可包括一对耦合机构——在无菌界面每一侧上都有一个(即一个处于界面的操控器侧上,一个处于界面的器械侧上)。同样地,虽然以单块850示出,但是腕致动器812、813(以#1和#2区分)以及腕纵倾/横倾接点组件832、833之间的耦合也可包含一对耦合机构——在无菌界面每一侧上都有一个。
啮合扣接点纵倾组件821和啮合扣接点横倾组件822两者共用第一、第二和第三链接(例如,可联接相机211的链接322、324、326)以及第一和第二接点(例如联接相机211的接点322、325)。除了这些公用组件,啮合扣接点纵倾和倾组件821、822也包括这样的机械耦合,其耦合第一和第二接点(通过啮合扣耦合840)及啮合扣接点纵倾和横倾致动器801、802,以便第二链接可以可控地关于这样的线枢轴旋转,其穿过第一链接,并且沿对于第一链接(例如,可联接相机211的链接322)的纵轴为纬度的轴,并且第二链接可以可控地关于这样的线枢轴旋转,其穿过第一链接,并且沿垂直于第一链接的纬度和精度轴的轴。
进/出(I/O)组件823包括第一链接(例如,可联接相机211的链接322)和界面,后者通过传动系统将进/出(I/O)组件823耦合至第一链接,以便第一链接通过I/O组件823的致动而可控地沿其纵轴直线运动。横摆组件831包括第一链接和界面,通过一个或多于一个个将横摆致动器811(例如马达的转子)的滚动元件耦合至第一连接的齿轮(即具有齿轮齿比数845),以便第一链接通过横摆致动器811的致动,可控地绕其纵轴转动。
器械操控器(例如,相机操控器212)包括经腕组件(例如,可联接相机211的腕组件327)的腕耦合850纵倾和横倾接点822、833致动的腕致动器812、813,以便引起器械尖端相对于腕组件可控地在上-下(即纵倾)和侧至侧(即横倾)方向枢轴转动。把手组件870包括末端受动器(例如,手术工具231的末端受动器331)和界面,通过将把手组件860耦合至末端受动器的一个或多于一个齿轮,以便可控地致动末端受动器。
图9作为例子,示出在医疗机器人系统100的控制器102中实施的方法的流程图,其用于提供产生包括可联接器械的辅助视图的计算机,例如可联接相机211和/或一个或多于一个可联接手术工具231、241,其延伸出进入引导器200的远端。为了本例子的目的,假设可联接相机211和手术工具231、241延伸出进入引导器200的远端,并且被包括在辅助视图中。然而,应明白,本方法适用于可联接器械的任何组合,包括那些不具有可联接相机和/或那些具有可替换类型的图像捕捉装置,例如超声波探针的器械。应进一步明白,本方法适用于具有比在此描述的可控接点多于一个或更少接点的可联接器械。特别地,本方法也适用于高度接合或相反可弯曲器械和/或进入引导器,例如这样的工具,其可用于可控地通过患者体内的各种迂回曲折,到达执行医疗程序的目标点。
在901,本方法确定产生或不产生辅助视图。如果901中的确定为否,那么本方法就循环返回至周期性检查,从而了解情况是否改变。另一方面,如果在901中的确定为是,那么本方法继续进入902。将产生辅助视图的指示被编程在控制器102中,自动产生或通过操作者命令产生。
在902,本方法接收状态信息,例如每个器械211、231、241和进入引导器200的位置和方向。可通过被耦合至其各个操控器212、232、242、202中的致动器的编码器提供该信息。可替换地,可由传感器提供该信息,该传感器耦合至器械211、231、241以及进入引导器操控器202的接头和/或链接,或者耦合至相应的操控器和器械之间的界面的耦合机构、齿轮和传动系统,以便测量其运动。在该第二种情况下,可在器械211、231、241以及进入引导器操控器202中包括传感器,例如转动传感器和直线传感器,前者传感回转接点的转动运动,后者传感器械211、231、241以及进入引导器操控器202中棱柱接点的直线运动。也可使用其他传感器,用于提供器械211、231、241以及进入引导器200的位置和方向信息,例如传感和跟踪可跟踪元件的外部传感器,该元件可为放置在器械211、231、241以及进入引导器操控器202的关键点(例如在其接点、链接和/或尖端上)的主动元件(例如,无线电频率、电磁元件等等)或被动元件(例如,磁性元件等等)。
在903中,本方法使用在902接收的信息以及向前运动和器械211、231、241、进入引导器200、以及进入引导器操控器202的已知构造,产生延伸出进入引导器200的远端的可联接相机211和可联接手术工具231、241的三维计算机模型。在该例子中产生的计算机模型可参考图5所示的遥控中心参考系(X、Y、Z轴)。可替换地,产生的计算机模型可参考在进入引导器200的远端定义的参考系。在后一种情况下,如果进入引导器200从遥控中心的方向和延伸不需要在已通过本方法产生的辅助视图中考虑,那么就可在902中省略进入引导器200的位置和方向信息。
例如,参考图10,如果在902接收的状态信息为器械的接点位置1001,那么就可使用器械的运动模型1003将该信息应用于器械的向前运动1002,从而产生相对于参考系1004的器械链接位置和方向1005。如果在902中接收的的状态信息为操控器/器械界面中的啮合扣耦合和齿轮机构的传感状态,那么一般也可应用相同的过程。
另一方面,参考图11,如果在902接收的状态信息为器械的尖端位置1101(在参考系1004中),那么就可使用器械的运动模型1003和传感器参考系将该信息用于至器械的反转运动1102,从而产生器械的接点位置1001。然后,可如参考图10描述的,应用器械的接点位置1001,从而产生相对于参考系1004的器械链接位置和方向1005。
可替换地,也参考图11,如果在902提供的状态信息仅限于相机的尖端位置,那么就可通过使用传统图像处理技术,并且然后将其位置转化为参考系1004,经识别相机211捕捉的图像尖端而确定手术工具231、241的尖端相对于相机参考系的位置,以便可如参考图10所述,应用相机和工具尖端的位置,从而产生相对于参考系1004的器械链接位置和方向1005。
在904,本方法调整将两者在参考系中的三维空间的计算机模型视图调整至指定的观察点(其中,在此应将“观察点”理解为包括位置和方向),即延伸出进入引导器200的远端的可联接相机211和可联接手术工具231、241。例如,图12图解了延伸出进入引导器200的远端的可联接相机211和可联接手术工具231、241的顶视图,其相应于高于并且稍微在进入引导器200的远端之后的观察点。作为另一个例子,图13图解了延伸出进入引导器200的远端的可联接相机211和可联接手术工具231、241的侧视图,其相应于进入引导器200右侧并且稍微在其之前的观察点。注意,虽然图12-13中描述的辅助视图为二维的,但是其也可为三维的,因为能够从产生的计算机模型获得三维信息。在后一种情况下,正在进行显示的辅助显示屏140将肯定为与监控器104一样的三维显示屏。
可将观察点设为固定点,例如提供图12所示透视图的等大(三维)视图的固定点。当工具231、241如图所示“肘向外”弯曲时(其为使用手术工具231、241执行医疗程序的典型构造),该透视图向外科医生提供可联接相机211和可联接手术工具231、241的清晰视图。另一方面,当使用第三手术工具时(例如,如图6所示,插入通道351),图13的透视图的侧视图可另外有用,因为第三手术工具可在可联接相机211之下,并且因此在图12的透视图中模糊。
比将观察点始终设置在固定点更好,也可取决于当时可操控的控制模式(即参考图2所述的模式之一)而自动改变观察点。作为例子,图18图解了这样的方法,其用于取决于当前在医疗机器人系统100中操控的控制模式,自动改变辅助视图模式。特别地,使用本方法,当在1801将医疗机器人系统100确定为工具跟踪模式时,在1802执行第一辅助视图模式,而当在1803将医疗机器人系统100确定为进入引导器定位模式时,在1804执行第二辅助视图模式,当在1805将医疗机器人系统100确定为相机定位模式时,在1806执行第三辅助视图模式。选择用于每种控制模式的视图模式,以便在该模式期间,外科医生执行动作最受益。例如,在工具跟踪和相机定位模式下,当时移动手术工具231、241和相机211其中之一或两者,并且因此如图12和图13所述,延伸出进入引导器200的远端的可联接相机211和可联接手术工具231、241的辅助视图对于避免相机211视场之外链接之间碰撞有用。另一方面,在进入引导器定位模式中,将可联接相机211和可联接手术工具231、241锁定在相对于进入引导器200的位置,并且因此提供如图16和图17所述的其他物品的信息的辅助视图,或空间透视图中的进入引导器200的计算机产生视图可有用。
可替换地,在执行医疗程序期间,可提供改变观察点的操作者可选择装置。例如,GUI170或声音识别系统160可适合向外科医生提供交互式装置,用于选择和/或改变联接相机211和/或可联接手术工具231、241的观察模式和/或观察点,因为其延伸出进入引导器200的远端。外科医生也可使用输入装置108、109上的按钮或脚踏板105,从而选择观察模式。对于助手,可使用输入装置180以及管理显示屏140′的GUI,用于选择观察模式。因而,外科医生和助手当时观看的观察模式可被在当时对于其特殊任务而优化。在图12-17以及图20-30中示出该操作者可选观察模式和观察角度的例子。
在905,本方法渲染计算机模型。在该情况下的渲染包括将三维性质添加至本方法,例如器械211、231、241和进入引导器200的远端的已知构造特征,填充任何缺口从而制作立体模型,并且提供天然着色和遮蔽。另外,渲染可包括替换一个或多于一个器械211、231、241(或其一个或多于一个接点或链接或其部分)的颜色或亮度,以便器械(或接点或链接或其部分)用于识别目的而突出。
可替换地,替换一个或多于一个器械(或其接点或链接或其部分)的颜色、强度、或闪亮或不亮(例如,闪光)的频率可作为这样的警告,即器械(或接点或链接或其部分)接近不良事件或条件,例如接近其运动范围的限制,或太靠近或与另一器械碰撞。当使用颜色作为警告时,当达到将避免的事件的警告阈值时(例如,运动限制或碰撞范围),颜色可从第一颜色(例如,绿色)变为第二颜色(例如,黄色),并且当达到将避免的事件时,从第二颜色变为第三颜色(例如,红色)。当使用亮度作为警告时,颜色的强度随着器械(或其部分)超过警告阈值朝着这样的将避免的事件而变化,其中当达到该事件时具有最大强度。当使用颜色闪光作为警告时,颜色的闪光频率随着器械(或其部分)超过警告阈值朝着这样的将避免的事件而变化,其中当达到该事件时具有最大强度。警告阈值可基于器械(或其部分,例如其接点)的运动范围,或基于器械(或其部分)和其可碰撞的另一器械(或其部分)之间的距离。确定警告阈值时,器械的运动速度也可为一个因素。例如可使用GUI170,由操作者编程警告阈值,或由处理器102中的可编程算法自动确定警告阈值,其考虑其他因素,例如器械的运动速度。
可替换地,替换一个或多于一个器械211、231、241(或其接点、链接、或其部分)的颜色、强度、或闪亮或不亮(例如,闪光)的频率可作为一种警报,即器械(或接点或链接或其部分)接近期望事件或条件,例如执行或观察医疗程序的最佳位置或构造。在该情况下,可定义警报阈值,以便可通过以上关于警告阈值和不良事件或条件所述的类似方式,改变一个或多于一个器械211、231、241(或其接点、链接、或其部分)的颜色、强度、和/或闪光,除了在该情况下,当达到和最大化警报阈值时,该变化开始,或者另外当达到或另外实现期望事件或条件时,其终止。可通过概念上类似于警告阈值的方式,由操作者编程警报阈值,或由可编程算法自动确定该警报阈值。
作为用于识别、警告或警报目的的该器械辅助照明的例子,图15在窗口1502中示出相机211和手术工具231、241的辅助视图,其中已对相机211进行辅助照明。作为用于识别、警告或警报目的的该器械接点辅助照明的例子,图12示出已对手术工具231、241的接点进行辅助照明。作为用于警报目的的器械部分辅助照明的例子,图14示出经辅助照明的手术工具241的部分1402以及相机211的部分1403,从而指示这些部分危险地接近于碰撞。
当辅助图像的观察点相同或直接在该相机211之后时,渲染也可包括将相机211捕捉的图像覆盖在辅助视图上。作为例子,图17图解了作为覆盖至手术工具231、241的辅助视图渲染的相机211的捕捉图像1700,其已由相机211的观察点(或右后)产生。在该例子中,显示在辅助显示屏140(和/或辅助显示屏140′)上的手术工具231、241的辅助视图包括覆盖捕捉图像1700中的部分(例如,1731、1741)以及盖捕捉图像1700外的部分(例如,1732、1742)。因而,手术工具231、232在捕捉图像1700之外的部分向外科医生提供关于其处于相机211的视场之外的各个链接或可联接手臂的另外信息。也可做捕捉图像1700之外的器械部分(例如,1732、1742)的辅助照明,用于上述识别目的或从而指示警告或警报条件。在该情况下,将捕捉图像1700覆盖在辅助视图上对于示出解剖学结构360也有利,后者在另外通常将不在辅助视图中的手术工具231、241之前。虽然该例子示出覆盖在辅助显示屏140上的辅助视图上的捕捉图像1700,但是在另外的渲染方案中,辅助视图可覆盖显示在监控器104上的捕捉图像。
比覆盖该捕捉图像更好的是,渲染也可包括以下动作,即通过仅将不在捕捉图像中显示的器械231、241的部分(即图17中器械231、241的点线部分),以适当的对齐和以镶嵌方式邻近捕捉图像,而使用辅助视图放大经相机211捕捉的图像。
除了或替代将捕捉图像覆盖在辅助图像上,或通过辅助视图放大该捕捉图像,渲染也可包括在辅助视图中提供其他有用信息。作为例子,图16图解了可联接相机211的辅助侧视图,其中在辅助视图上渲染平截头体1601,以便作为从相机尖端311的反射并随其一起移动而在辅助显示屏140上显示。注意,虽然在附图中示出的平截头体1601为截顶圆锥体,其也可以相应于监视器104中所示的捕捉图像的截棱锥出现。平截头体1601的侧面指示相机211的观察范围,而平截头体1601的基础1602显示由相机211捕捉的图像1650。注意,为了简化目的,在该例子中,已移除通常处于辅助视图中的手术工具231、241。作为另一例子,图14示出半透明球体或泡罩1401(优选为红色),当达到阈值时,其由本方法作为渲染过程的一部分显示,从而向操作者指示,手术工具241的辅助照明部分1402、1403和相机211接近于碰撞。在该情况下,辅助照明部分1402、1403优选处于球体的中心。作为另一例子,图14也示出标记或其他指示物1401,其指示当使用手术工具231、241执行医疗程序时,相机尖端311观察手术工具231、241的末端受动器的最佳位置。例如,可通过末端受动器的尖端与捕捉图像的中心等距的位置而确定最佳位置。
在906中,本方法引起渲染的计算机模型(即,辅助视图)在一个或多于一个显示屏(例如,140和140′)上以选择观察点的透视图显示。如图12-14和图16-17所示,辅助视图在辅助显示屏140上显示。如图14所示,可一次显示超过一幅辅助视图(例如,可在相同的时间,分别在窗口1421和1422中提供顶视图和侧视图)。如图15所示,可在邻近可联接相机211捕捉的图像的窗口1502中,在主监控器104上显示辅助视图,其中可联接相机211捕捉的图像在另一窗口1501中示出。虽然在该例子中,窗口1501和1502以相同尺寸出现,但是应明白,辅助视图窗口1502的位置和尺寸可变化并且始终处于本发明的范围内。同样地,如上所述,可在窗口1501中,而非在其单独窗口1502中,将辅助视图覆盖在捕捉图像上。在该情况下,覆盖辅助视图可由外科医生开关,以便在执行医疗程序期间不混乱捕捉图像。在该情况下,可通过压输入装置108、109其中之一上的按钮或踩下脚踏板105而执行开和关。可替换地,可通过使用声音识别系统160的声音激活,或通过外科医生与GUI170交互作用,或使用任何其他传统的功能转换装置而完成该步骤。
完成906之后,然后,本方法循环回901,从而重复901-906,用于处理器102的下一处理循环。
为了帮助操作者确定进入引导器200及其可联接器械定位良好(即,当在患者体内的目标点执行医疗程序期间,器械具有宽运动范围),在一个或多于一个辅助显示屏140和140′及监控器104中,向操作者提供对其显示的辅助视图中的运动限制范围的指示有用。
例如,图19示出工具器械231右侧视图,其延伸出进入引导器200的远端,其具有用于确定可在辅助视图中显示的可联接器械231的运动限制范围指示而识别的角度、链接轴和长度。由于其啮合扣构造,器械的第一和第三链接332、336彼此保持平行关系。因而,当第一接点333转动至最大角度1902时,第二接点335和腕接点337(分别在第三链接336的近端和远端)两者都处于离第一链接332的纵轴1901的最大位移1903,其可通过第二链接334的长度乘以角1902的正弦函数计算。如果第一链接332关于其纵轴1901可充分转动,就可通过这样的圆柱体定义第三链接336的边界限制,以及随后定义第二链接335和腕接点337的边界限制,该圆柱体具有最大位移1903,因为其半径和长度由延伸出进入引导器200的远端的第一链接332的最大延伸确定。因而,对于相应于沿第三链接336(或在其耦合接点335、337)的一点截取的圆柱体横截面片的二维视图,就可为器械231定义以圆形渲染的边界限制,并且可为每个延伸出进入引导器200远端的其他可联接器械定义类似的边界圆。虽然在本例子中,运动限制的接点范围类似于圆形,也可与在此对边界圆形描述类似的方式,提供椭圆形和其他接点约束边界限制。
作为例子,图20图解了计算机产生的辅助视图200,其描述了器械缩回至进入引导器的远端中时的可联接器械211、231、241、251的图示(从沿进入引导器200的纵轴X′的有利点,从远端或直接在远端之后往外看的透视图/视角(perspective)),以及分别相应于器械211、231、241、251的运动限制的范围2011、2031、2041、2051指示。
在该例子中,与参考图19所述相同,确定工具器械231的边界圆2031。以类似的方式确定其他器械的边界圆。由于工具器械231、241、251的啮合扣接点结构相同,所以其各个边界圆尺寸相同,但是彼此偏移,以便其每个圆都沿其第一链接的精度轴居中(即,在图20中其各个图示231、241、251的的中心)。然而,在该例子中,相机器械211的啮合扣接点结构不同,所以其引起更小的边界圆2011。特别地,与工具器械231、241、251相比,相机器械211对于其第一接点323具有较小的最大转动角度,或者更短的第二链接324。然而,边界圆2011也沿其相机器械211的第一链接322居中。
将当前由操作者控制的器械的边界圆与当前不由操作者控制的器械的边界圆区分有用。为了该目的,以实线圆示出边界圆2031、2041,因为其各自的可联接器械231、241当前由输入装置108、109控制(即,其处于工具跟踪模式),而以点线圆示出边界圆2011、2051,因为其各自的可联接器械211、251当前不由输入装置108、109控制。可替换地,分离器械的边界圆可完全不在辅助视图中显示,以便不以不必要或不使用的信息使其过度复杂。
当转换输入装置109的关联,所以其控制工具251而非工具231时,边界圆2051将变为实线圆,而边界圆2031将变为点线圆(或者将完全不显示),从而表示控制变化。类似地,当将输入装置108、109的关联转换为相机定位模式时,相应于相机211的边界圆2011将变为实线圆,而边界圆2031、2041将变为点线圆(或者其将完全不显示),从而表示控制变化。作为使用实线、点线和不可见圆的替换,可通过使用不同颜色的圆或其他视觉可辨方法的方案指示控制模式,例如相应于当时未主动控制的器械的边界圆闪亮或不亮。
作为例子,图21图解了辅助视图2100,其为可联接器械211、231、241、251提供另外的细节,其中示出一些器械延伸出进入引导器的远端,并且示出相应于该器械的其运动限制范围2011、2031、2041、2051的指示。在该例子中,工具器械231、241由操作者在工具跟踪模式中使用输入装置108、109控制,而当时器械251、211不由操作者控制。特别地,工具器械251不在使用中,并且缩回至进入引导器200的远端,而相机工具211在上述移动后备其控制器支持固定在某一位置,从而看起来稍微向左和向下。因此,在辅助视图2100中,示出分别相应于器械231、241的边界限制2031、2041为实线圆,而分别相应于器械211、251的边界限制2011、2051为点线圆。
因此,辅助视图2100可在进入引导器200远端的横截面片上,对每个可联接器械211、231、241、251覆盖三个横截面片,其中每个片都垂直于并且对齐进入引导器的纵轴X′。可在每个器械的第一接点(例如,图19中用于工具231的第一接点333)取得第一切片,可在每个器械的腕接点(例如,图19中用于工具231的腕接点337)取得第二切片,并且可在器械的远端(例如,图19中用于工具231的末端受动器远端338)取得第三切片。
虽然可在辅助视图2100中显示每个可联接器械211、231、241、251的第一接点、腕接点和远端的横截面,但是也可替代提供物体形式的图示,例如适当定位的圆或椭圆,其中截取横截面片。特别地,示出第一接点323、333、343、353的图示为圆或椭圆(由其各自第一接点的相同标识号识别),其在辅助视图2100中的位置指示当其延伸出进入引导器200的远端时,其各个第一链接的位置;示出腕接点327、337、347的图示为圆或椭圆(由其各自腕接点的相同标识号识别),其在辅助视图2100中的位置指示器械211、231、241的啮合扣接点的联接;并且示出远端328、338、348的图示为圆或椭圆(由其各自远端的相同标识号识别),其在辅助视图2100中的位置指示其方向。作为确定远端方向的例子,可通过远端绕第一链接332的横摆角度1907,以及分别为第三链接336和工具231的末端受动器331之间的纵轴1904、1905之间的纵倾角度1906,确定图19中工具231的远端338的方向。
为了清晰地区分远端328、338、348的图示和其各个腕接点327、337、347的图示,可通过不同颜色或不同阴暗或以另一视觉可区别方式显示远端。可替换地或另外,可显示连接段,从而识别相同器械的对应第一接点、腕接点和远端。例如,示出段2103连接第一接点333的图示和腕接点337的图示,而示出段2104连接腕接点337的图示和工具231的远端338的图示。也示出连接段2101、2102以类似的方式连接第一接点343、腕接点347以及工具241的远端348的图示。
如图21中的辅助视图2100所示,工具器械231的腕接点337接近与其边界限制2031。为了警告操作者腕接点337正在接近其运动限制范围,可提供视觉指示,例如腕接点图示的颜色或阴暗变化、最靠近腕接点的边界限制2031的部分2110的颜色或阴暗变化、和/或相应于腕接点337的段2103、2104其中之一或两者的颜色或阴暗都变化。也可使用其他的视觉指示,例如闪光、箭头或警告文字。以及也可提供音频暗示或警告,或替代在此描述的任何该视觉指示。
当啮合扣接点接近其边界限制时,除了提供指示,也期望当可联接器械211、231、241、251达到其延伸出进入引导器200的远端的最大延伸时提供指示。可在补充辅助视图中指示最大限制边界,例如在图30中,在辅助视图2100的左侧和右侧分别提供工具241、251的侧补充辅助视图3001、3002中的延伸限制3011、3012,并且当其各个第一链接靠近其延伸限制时,通过使用这样的视觉指示提供警告,例如其各个可联接器械的第一连接和/或任何其他部分的颜色或阴暗或其他变化。
作为例子,图22-25图解了可用于辅助视图2100中的图示的各种更改,用于指示可联接器械231伸出进入引导器200的远端的程度。可出于相同的目的,使用对其他器械211、241、251的图示的类似更改。如图22所示,从腕接点337的图示发射的射线2201的长度用于指示第一链接332延伸出进入引导器200的远端(即,图19中的长度1909)的程度。可替换地或另外,如图23所示,从远端338的图示发射的射线2301的长度可用于指示第一链接332延伸出进入引导器200的远端的程度。可替换地或另外,如图24所示,第一接点333、腕接点337和远端338的图示的相对尺寸、颜色和/或阴暗可用于指示第一链接332延伸出进入引导器200的远端的程度。作为例子,随着第一链接332进一步延伸出进入引导器200的远端,第一接点333、腕接点337和远端338的两个或两个以上图示之间相对尺寸的差异可变得逐渐更大。可替换地或另外,段2501、2502的图示的相对尺寸、颜色和/或阴暗可用于指示第一链接332延伸出进入引导器200的远端的程度。
除了辅助视图2100中显示指示可联接器械211、231、241、251的啮合扣接点联接、延伸/缩回的图示,以及指示器械的运动限制范围的边界的图示之外,器械远端的图示也可提供其工具或相机的其他状态信息。作为例子,图26图解了工具231的远端338的图示,其包括定义其中的角度2603的元件2601、2602,其指示末端受动器331的夹子开启或闭合多少。作为另一例子,图27图解了相机器械211的远端328(包括相机)的图示,其描述了表示相机器械211的视场的区域2701。
也可使用辅助视图2100从而当再定位进入引导器200时帮助操作者,以便为了执行医疗程序而更好地定位可联接器械。
作为例子,图28图解了进入引导器不良位置的简化辅助视图2100,其中每个腕接点327、337、347都接近其边界限制2011、2031、2041。为了简化附图,省略工具251和器械211、231、241的第一接点323、333、343的图示,以便不通过细节而使其过度复杂化。
通过转换为参考图2所述的进入引导器定位模式,可由其各个控制器而将相机器械211的相机尖端311以及工具器械231、241的末端受动器331、341的位置支持在适当位置,同时,操作者使用输入装置108、109其中之一或其两者再定位进入引导器200。特别地,当在定位进入引导器时,通过使用其各个控制器将其腕接点327、337、347和远端328、338、348支持在适当位置,而将相机尖端311和末端受动器331、341支持在适当位置。然而,第一接点323、333、343以及器械211、231、241的边界限制2011、2031、2041随着进入引导器200移动而移动。
作为例子,图29图解了这样的简化辅助视图,即进入引导器已移动距离2901,而相对于腕接点327、337、347和器械211、231、241的远端328、338、348再定位之后,以便每个腕接点327、337、347都在其边界限制2011、2031、2041内更好地定位,用于改进运动范围。
可由控制器102使用如参考图9的901-905所述的计算机执行方法产生图20-29描述的辅助视图2100,其中存在从进入引导器远端往外看的透视图产生和显示啮合扣接点横截面片和边界限制。然后,可在监控器104和/或辅助显示屏140、140′上单独显示计算机产生的辅助视图2100,或者可结合例如参考图9所述的相机捕捉图像和/或其他计算机产生的视图显示。
作为例子,图30图解了监控器104的显示屏,其中在主窗口中示出相机器械211捕捉的图像1501,而在下部中心窗口中示出延伸出进入引导器的可联接器械211、231、241的辅助视图2100,而分别在下部侧窗口中分别示出与视图2100不同视角的工具241、251的补充辅助视图3001、3002。在该视图布置中,可如参考图13-29所述,在下部中心窗口中提供啮合扣接头边界限制的指示,并且可如上所述,在下部侧图中提供可联接器械241、231的延伸限制指示。当延伸出进入引导器200的远端的可联接器械接近其各自运动限制范围和/或预示着彼此相互碰撞时,也可在此描述的辅助视图中提供视觉线索或警告。
虽然已关于优选实施例描述了本发明的各个方面,但是应理解,本发明具有附加权利要求全部范围内的全部保护的权利。
Claims (20)
1.一种医疗机器人系统(100),其包含:
进入引导器(200);
多个可联接器械(231,241,211),其可控地延伸出所述进入引导器(200)的远端;
显示屏(104,140);以及
处理器(102),其被配置成接收所述可联接器械(231,241,211)的状态信息,通过包括所述可联接器械(231,241,211)的接点(333,335,337,343,345,347,323,325,327)的图示和由一个或多于一个所述接点(333,335,337,343,345,347,323,325,327)的最大位移确定的运动限制范围(2031,2041,2011)的指示而产生视图(2100),其中所述图示和指示通过使用所述可联接器械(231,241,211)的接收信息和向前运动而产生,并且将产生的视图(2100)在所述显示屏(104,140)上显示。
2.根据权利要求1所述的医疗机器人系统(100),其中所述视图(2100)通过从所述进入引导器(200)的远端向外看的透视图产生。
3.根据权利要求2所述的医疗机器人系统(100),其中所述运动限制范围(2031,2041,2011)的指示包含一个或多于一个所述接点(333,335,337,343,345,347,323,325,327)的边界的图示。
4.根据权利要求3所述的医疗机器人系统(100),其中单独的所述联接器械(231,241,211)包含:
第一链接(332,342,322)、第二链接(334,344,324)和第三链接(336,346,326);
第一接点(333,343,323),其耦合所述第一链接(332,342,322)的远端和所述第二链接(334,344,324)的近端,以便所述第二链接(334,344,324)相对于所述第一链接(332,342,322)在所述第一接点(333,343,323)转动;以及
第二接点(335,345,325),其耦合所述第二链接(334,344,324)的远端和所述第三链接(336,346,326)的近端,以便所述第三链接(336,346,326)相对于所述第二链接(334,344,324)在所述第二接点(335,345,325)转动,其与所述第一接点(333,343,323)的转动以这样的方式协同,即所述第一链接(332,342,322)和第三链接(336,346,326)的纵轴互相平行;
其中,所述进入引导器(200)的所述远端具有多个孔(431,441,321),相应的所述可联接器械(231,241,211)可通过所述孔延伸,所述产生的视图(2100)包括所述进入引导器(200)的远端的轮廓,并且随着第一物体定位,所述接点(333,335,337,343,345,347,323,325,327)的所述图示包括所述可联接器械(231,241,211)的第一接点(333,343,323)的图示,其中其相应的孔(431,441,321)与所述进入引导器(200)的所述远端的所述轮廓有关。
5.根据权利要求4所述的医疗机器人系统(100),其中单独的所述联接器械(231,241,211)包含:
医疗装置(331,341,311),其具有近端和远端尖端;以及
第三接点(337,347,327),其耦合所述第三链接(336,346,326)的远端和所述医疗装置(331,341,311)的近端,以便所述医疗装置(331,341,311)可相对于所述第三链接(336,346,326)在所述第三接点(337,347,327)转动;
其中随着第二物体在视图(2100)中定位,所述接点(333,335,337,343,345,347,323,325,327)的图示包括所述可联接器械(231,241,211)的所述第三接点(337,347,327)的图示,从而反映其相应的第一接点(333,343,323)的转动角度、其相应的第一链接(332,342,322)绕其各自中心轴的转动角度、以及其相应的第二链接(334,344,324)的长度。
6.根据权利要求5所述的医疗机器人系统(100),其中随着第三物体定位,所述产生的视图(2100)包括所述可联接器械(231,241,211)的医疗装置(331,341,311)的远端尖端的图示,从而反映其相应的第三接点(337,347,327)的转动角度、其相应的第一链接(332,342,322)绕其各自中心轴的转动角度、以及其相应的医疗装置(331,341,311)从其近端延伸到远端尖端的长度。
7.根据权利要求6所述的医疗机器人系统(100),其中所述可联接器械(231,241,211)的一个或多于一个所述接点(333,335,337,343,345,347,323,325,327)的边界的图示包括视图(2100)中所述第二物体的位置边界。
8.根据权利要求7所述的医疗机器人系统(100),其中所述视图(2100)中第二物体的位置边界包含与相应的第一物体共享公共中心的边界圆。
9.根据权利要求8所述的医疗机器人系统(100),其中相应于所述可联接器械(231,241,211)中的几个操作者可操控的可联接器械的所述边界圆通过实线在所述显示屏(104,140)上显示,而相应于所述可联接器械(231,241,211)中的几个操作者不可操控的可联接器械的所述边界圆不在所述显示屏(104,140)上显示。
10.根据权利要求8所述的医疗机器人系统(100),其中所述第二物体随着所述第二物体接近其相应的边界圆而改变颜色。
11.根据权利要求8所述的医疗机器人系统(100),其中至少一部分所述边界圆随着其相应的第二物体接近所述边界圆而改变颜色。
12.根据权利要求6所述的医疗机器人系统(100),其中所述单独的所述可联接器械(231,241,211)的所述第一链接(332,342,322)可延伸出所述进入引导器(200)的所述远端,并且所述第一链接(332,342,322)的延伸长度由这样的射线长度指示,所述射线从其单独的所述可联接器械(231,241,211)的其相应的第一、第二或第三物体中至少其中之一上放射。
13.根据权利要求6所述的医疗机器人系统(100),其中所述单独的所述可联接器械(231,241,211)的所述第一链接(332,342,322)可延伸出所述进入引导器(200)的所述远端,并且所述第一链接(332,342,322)的延伸长度以这样的颜色变化指示,所述颜色变化为其单独的所述可联接器械(231,241,211)的其相应的第一、第二或第三物体中至少其中之一的颜色变化。
14.根据权利要求6所述的医疗机器人系统(100),其中所述单独的所述可联接器械(231,241,211)的所述第一链接(332,342,322)可延伸出所述进入引导器(200)的所述远端,并且所述第一链接(332,342,322)的延伸长度由这样的相对尺寸变化指示,所述相对尺寸变化为其单独的所述一个或多于一个可联接器械(231,241,211)的其相应的第一、第二或第三物体中至少其中两个之间的相对尺寸变化。
15.根据权利要求6所述的医疗机器人系统(100),其中所述视图(2100)进一步包含第一段(2103,2101)和第二段(2104,2102)的图示,其中第一段连接所述第一和第二物体;第二段连接所述第二和第三物体,单独的所述可联接器械(231,241,211)的所述第一链接(332,342,322)能够延伸出所述进入引导器(200)的远端,并且所述第一链接(332,342,322)的延伸长度以这样的颜色变化指示,所述颜色变化为其单独的所述可联接器械(231,241,211)的其相应的第一段(2103,2101)和第二段(2104,2102)中至少其中之一的颜色变化。
16.根据权利要求6所述的医疗机器人系统(100),其中所述视图(2100)进一步包含第一段(2103,2101)和第二段(2104,2102)的图示,其中第一段连接所述第一和第二物体;第二段连接所述第二和第三物体,单独的所述可联接器械(231,241,211)的所述第一链接(332,342,322)能够延伸出所述进入引导器(200)的远端,并且所述第一链接(332,342,322)的延伸长度由这样的尺寸变化指示,所述尺寸变化为单独的所述一个或多于一个可联接器械(231,241,211)的其相应的第一段(2103,2101)和第二段(2104,2102)中至少其中之一的尺寸变化。
17.根据权利要求6所述的医疗机器人系统(100),其中所述视图(2100)进一步包含第一段(2103,2101)和第二段(2104,2102)的图示,其中第一段连接所述第一和第二物体;第二段连接所述第二和第三物体,单独的所述可联接器械(231,241,211)的所述第一链接(332,342,322)能够延伸出所述进入引导器(200)的远端,并且所述第一链接(332,342,322)的延伸长度由这样的形状变化指示,所述形状变化为其单独的所述一个或多于一个可联接器械(231,241,211)的其相应的第一段(2103,2101)和第二段(2104,2102)中至少其中之一的形状变化。
18.根据权利要求6所述的医疗机器人系统(100),其中一个所述可联接器械(231,241,211)的所述医疗装置(331,341,311)包括第一元件(338,348),其铰链连接至第二元件(339,349),以便所述第一元件(338,348)和第二元件(339,349)可控地开启和闭合,产生所述第一元件(338,348)和第二元件(339,349)之间的一个角度,并且其相应的第三物体具有两个夹子,所述两个夹子被显示从而指示所述第一元件(338,348)和第二元件(339,349)之间的所述角度。
19.根据权利要求6所述的医疗机器人系统(100),其中一个所述可联接器械(231,241,211)包括可联接相机器械(211),并且显示的视图(2100)用于补充由可联接相机器械(211)捕捉的图像。
20.根据权利要求19所述的医疗机器人系统(100),其中相应于所述可联接相机器械(211)的医疗装置(311)的第三物体具有这样的区域,所述区域在所述显示屏(104,140)上显示,从而指示所述可联接相机器械(211)的视场。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610085951.2A CN105748026B (zh) | 2009-06-23 | 2010-06-11 | 提供包括延伸出进入引导器远端的可联接器械的运动限制范围的辅助视图的医疗机器人系统 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/489,566 | 2009-06-23 | ||
US12/489,566 US9089256B2 (en) | 2008-06-27 | 2009-06-23 | Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide |
PCT/US2010/038246 WO2010151438A1 (en) | 2009-06-23 | 2010-06-11 | Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610085951.2A Division CN105748026B (zh) | 2009-06-23 | 2010-06-11 | 提供包括延伸出进入引导器远端的可联接器械的运动限制范围的辅助视图的医疗机器人系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102802550A CN102802550A (zh) | 2012-11-28 |
CN102802550B true CN102802550B (zh) | 2016-03-09 |
Family
ID=42359537
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610085951.2A Active CN105748026B (zh) | 2009-06-23 | 2010-06-11 | 提供包括延伸出进入引导器远端的可联接器械的运动限制范围的辅助视图的医疗机器人系统 |
CN201080028525.6A Active CN102802550B (zh) | 2009-06-23 | 2010-06-11 | 提供包括延伸出进入引导器远端的可联接器械的运动限制范围的辅助视图的医疗机器人系统 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610085951.2A Active CN105748026B (zh) | 2009-06-23 | 2010-06-11 | 提供包括延伸出进入引导器远端的可联接器械的运动限制范围的辅助视图的医疗机器人系统 |
Country Status (5)
Country | Link |
---|---|
US (4) | US9089256B2 (zh) |
EP (1) | EP2445436B1 (zh) |
KR (2) | KR101726188B1 (zh) |
CN (2) | CN105748026B (zh) |
WO (1) | WO2010151438A1 (zh) |
Families Citing this family (194)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8944070B2 (en) | 1999-04-07 | 2015-02-03 | Intuitive Surgical Operations, Inc. | Non-force reflecting method for providing tool force information to a user of a telesurgical system |
US9789608B2 (en) | 2006-06-29 | 2017-10-17 | Intuitive Surgical Operations, Inc. | Synthetic representation of a surgical robot |
US8062211B2 (en) | 2006-06-13 | 2011-11-22 | Intuitive Surgical Operations, Inc. | Retrograde instrument |
US10258425B2 (en) | 2008-06-27 | 2019-04-16 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide |
US10008017B2 (en) | 2006-06-29 | 2018-06-26 | Intuitive Surgical Operations, Inc. | Rendering tool information as graphic overlays on displayed images of tools |
US9718190B2 (en) | 2006-06-29 | 2017-08-01 | Intuitive Surgical Operations, Inc. | Tool position and identification indicator displayed in a boundary area of a computer display screen |
US20090192523A1 (en) | 2006-06-29 | 2009-07-30 | Intuitive Surgical, Inc. | Synthetic representation of a surgical instrument |
US9084623B2 (en) * | 2009-08-15 | 2015-07-21 | Intuitive Surgical Operations, Inc. | Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide |
US9138129B2 (en) | 2007-06-13 | 2015-09-22 | Intuitive Surgical Operations, Inc. | Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide |
US9089256B2 (en) | 2008-06-27 | 2015-07-28 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide |
US8903546B2 (en) | 2009-08-15 | 2014-12-02 | Intuitive Surgical Operations, Inc. | Smooth control of an articulated instrument across areas with different work space conditions |
US9469034B2 (en) | 2007-06-13 | 2016-10-18 | Intuitive Surgical Operations, Inc. | Method and system for switching modes of a robotic system |
US8620473B2 (en) | 2007-06-13 | 2013-12-31 | Intuitive Surgical Operations, Inc. | Medical robotic system with coupled control modes |
US8864652B2 (en) | 2008-06-27 | 2014-10-21 | Intuitive Surgical Operations, Inc. | Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip |
WO2011123669A1 (en) * | 2010-03-31 | 2011-10-06 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Intuitive user interface control for remote catheter navigation and 3d mapping and visualization systems |
US8918211B2 (en) * | 2010-02-12 | 2014-12-23 | Intuitive Surgical Operations, Inc. | Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument |
US9492927B2 (en) | 2009-08-15 | 2016-11-15 | Intuitive Surgical Operations, Inc. | Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose |
JP5571432B2 (ja) * | 2010-03-30 | 2014-08-13 | カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | 医療用ロボットシステム |
US8672837B2 (en) | 2010-06-24 | 2014-03-18 | Hansen Medical, Inc. | Methods and devices for controlling a shapeable medical device |
EP3263058A1 (en) | 2010-06-28 | 2018-01-03 | Brainlab AG | Generating images for at least two displays in image-guided surgery |
US9486189B2 (en) | 2010-12-02 | 2016-11-08 | Hitachi Aloka Medical, Ltd. | Assembly for use with surgery system |
US9538982B2 (en) * | 2010-12-18 | 2017-01-10 | Massachusetts Institute Of Technology | User interface for ultrasound scanning system |
US9119655B2 (en) | 2012-08-03 | 2015-09-01 | Stryker Corporation | Surgical manipulator capable of controlling a surgical instrument in multiple modes |
US8578810B2 (en) * | 2011-02-14 | 2013-11-12 | Intuitive Surgical Operations, Inc. | Jointed link structures exhibiting preferential bending, and related methods |
JP6113666B2 (ja) | 2011-02-15 | 2017-04-12 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | ステープル又は血管シール器具におけるナイフ位置のインジケータ |
WO2012131660A1 (en) * | 2011-04-01 | 2012-10-04 | Ecole Polytechnique Federale De Lausanne (Epfl) | Robotic system for spinal and other surgeries |
WO2012131658A1 (en) * | 2011-04-01 | 2012-10-04 | Ecole Polytechnique Federale De Lausanne (Epfl) | Small active medical robot and passive holding structure |
JP5800610B2 (ja) * | 2011-07-07 | 2015-10-28 | オリンパス株式会社 | 医療用マスタスレーブマニピュレータ |
JP5800609B2 (ja) * | 2011-07-07 | 2015-10-28 | オリンパス株式会社 | 医療用マスタスレーブマニピュレータ |
CN103607971B (zh) | 2011-07-07 | 2016-08-31 | 奥林巴斯株式会社 | 医疗主从操作器 |
US9089353B2 (en) | 2011-07-11 | 2015-07-28 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
JP6081061B2 (ja) | 2011-08-04 | 2017-02-15 | オリンパス株式会社 | 手術支援装置 |
JP5931497B2 (ja) | 2011-08-04 | 2016-06-08 | オリンパス株式会社 | 手術支援装置およびその組立方法 |
JP5841451B2 (ja) | 2011-08-04 | 2016-01-13 | オリンパス株式会社 | 手術器具およびその制御方法 |
JP6005950B2 (ja) | 2011-08-04 | 2016-10-12 | オリンパス株式会社 | 手術支援装置及びその制御方法 |
JP6009840B2 (ja) | 2011-08-04 | 2016-10-19 | オリンパス株式会社 | 医療機器 |
JP6000641B2 (ja) | 2011-08-04 | 2016-10-05 | オリンパス株式会社 | マニピュレータシステム |
JP5936914B2 (ja) | 2011-08-04 | 2016-06-22 | オリンパス株式会社 | 操作入力装置およびこれを備えるマニピュレータシステム |
JP6021353B2 (ja) | 2011-08-04 | 2016-11-09 | オリンパス株式会社 | 手術支援装置 |
JP5953058B2 (ja) | 2011-08-04 | 2016-07-13 | オリンパス株式会社 | 手術支援装置およびその着脱方法 |
US9161772B2 (en) | 2011-08-04 | 2015-10-20 | Olympus Corporation | Surgical instrument and medical manipulator |
WO2013018908A1 (ja) | 2011-08-04 | 2013-02-07 | オリンパス株式会社 | 医療用マニピュレータおよび手術支援装置 |
WO2013018861A1 (ja) | 2011-08-04 | 2013-02-07 | オリンパス株式会社 | 医療用マニピュレータおよびその制御方法 |
JP6021484B2 (ja) | 2011-08-04 | 2016-11-09 | オリンパス株式会社 | 医療用マニピュレータ |
EP3845190B1 (en) | 2012-05-01 | 2023-07-12 | Board of Regents of the University of Nebraska | Single site robotic device and related systems |
US9326823B2 (en) * | 2012-05-02 | 2016-05-03 | University Of Maryland, College Park | Real-time tracking and navigation system and method for minimally invasive surgical procedures |
US11253327B2 (en) * | 2012-06-21 | 2022-02-22 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
KR102235965B1 (ko) | 2012-08-03 | 2021-04-06 | 스트리커 코포레이션 | 로봇 수술을 위한 시스템 및 방법 |
US9226796B2 (en) | 2012-08-03 | 2016-01-05 | Stryker Corporation | Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path |
US9770305B2 (en) | 2012-08-08 | 2017-09-26 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
EP2882331A4 (en) | 2012-08-08 | 2016-03-23 | Univ Nebraska | ROBOTIC SURGICAL DEVICES, SYSTEMS AND CORRESPONDING METHODS |
US20150238276A1 (en) * | 2012-09-30 | 2015-08-27 | M.S.T. Medical Surgery Technologies Ltd. | Device and method for assisting laparoscopic surgery - directing and maneuvering articulating tool |
US10507066B2 (en) | 2013-02-15 | 2019-12-17 | Intuitive Surgical Operations, Inc. | Providing information of tools by filtering image areas adjacent to or on displayed images of the tools |
CN108309453B (zh) | 2013-02-15 | 2021-10-08 | 直观外科手术操作公司 | 用于手术器械的近端控制的系统和方法 |
US9057600B2 (en) | 2013-03-13 | 2015-06-16 | Hansen Medical, Inc. | Reducing incremental measurement sensor error |
CA2906672C (en) | 2013-03-14 | 2022-03-15 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to force control surgical systems |
US9271663B2 (en) | 2013-03-15 | 2016-03-01 | Hansen Medical, Inc. | Flexible instrument localization from both remote and elongation sensors |
US9014851B2 (en) | 2013-03-15 | 2015-04-21 | Hansen Medical, Inc. | Systems and methods for tracking robotically controlled medical instruments |
US10667883B2 (en) | 2013-03-15 | 2020-06-02 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
US9375844B2 (en) * | 2013-03-15 | 2016-06-28 | Intuitive Surgical Operations, Inc. | Geometrically appropriate tool selection assistance for determined work site dimensions |
US9629595B2 (en) | 2013-03-15 | 2017-04-25 | Hansen Medical, Inc. | Systems and methods for localizing, tracking and/or controlling medical instruments |
US11020016B2 (en) | 2013-05-30 | 2021-06-01 | Auris Health, Inc. | System and method for displaying anatomy and devices on a movable display |
CA2918531A1 (en) | 2013-07-17 | 2015-01-22 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems and related methods |
JP6027947B2 (ja) * | 2013-07-26 | 2016-11-16 | オリンパス株式会社 | マニピュレータシステム |
US11324419B2 (en) * | 2013-08-20 | 2022-05-10 | Biosense Webster (Israel) Ltd. | Graphical user interface for medical imaging system |
US9283048B2 (en) | 2013-10-04 | 2016-03-15 | KB Medical SA | Apparatus and systems for precise guidance of surgical tools |
JP6305088B2 (ja) * | 2014-02-07 | 2018-04-04 | オリンパス株式会社 | 手術システムおよび手術システムの作動方法 |
US10039605B2 (en) | 2014-02-11 | 2018-08-07 | Globus Medical, Inc. | Sterile handle for controlling a robotic surgical system from a sterile field |
JP6353665B2 (ja) * | 2014-02-21 | 2018-07-04 | オリンパス株式会社 | マニピュレータの初期化方法、マニピュレータ、およびマニピュレータシステム |
JP6165080B2 (ja) * | 2014-02-21 | 2017-07-19 | オリンパス株式会社 | マニピュレータシステムの初期化方法 |
CN106456265B (zh) * | 2014-03-17 | 2019-07-30 | 直观外科手术操作公司 | 使用逆运动学在关节极限下的遥控操作手术系统和控制方法 |
CN110192919B (zh) | 2014-03-17 | 2022-11-25 | 直观外科手术操作公司 | 用于保持工具姿态的系统和方法 |
EP3119338B1 (en) * | 2014-03-17 | 2020-05-06 | Intuitive Surgical Operations, Inc. | Automatic push-out to avoid range of motion limits |
WO2015142956A1 (en) | 2014-03-17 | 2015-09-24 | Intuitive Surgical Operations, Inc. | Systems and methods for offscreen indication of instruments in a teleoperational medical system |
CN106102633B (zh) * | 2014-03-17 | 2019-06-07 | 直观外科手术操作公司 | 用于远程操作医疗系统的结构调整系统和方法 |
EP3119323B1 (en) * | 2014-03-17 | 2019-08-28 | Intuitive Surgical Operations, Inc. | System and machine readable medium executing a method for recentering imaging devices and input controls |
EP3243476B1 (en) | 2014-03-24 | 2019-11-06 | Auris Health, Inc. | Systems and devices for catheter driving instinctiveness |
US9724168B2 (en) | 2014-04-22 | 2017-08-08 | Bio-Medical Engineering (HK) Limited | Robotic devices and systems for performing single incision procedures and natural orifice translumenal endoscopic surgical procedures, and methods of configuring robotic devices and systems |
US10500008B2 (en) | 2014-04-22 | 2019-12-10 | Bio-Medical Engineering (HK) Limited | Surgical arm system with internally driven gear assemblies |
US9895200B2 (en) | 2014-04-22 | 2018-02-20 | Bio-Medical Engineering (HK) Limited | Robotic devices and systems for performing single incision procedures and natural orifice translumenal endoscopic surgical procedures, and methods of configuring robotic devices and systems |
US9855108B2 (en) | 2014-04-22 | 2018-01-02 | Bio-Medical Engineering (HK) Limited | Robotic devices and systems for performing single incision procedures and natural orifice translumenal endoscopic surgical procedures, and methods of configuring robotic devices and systems |
US11801099B2 (en) | 2014-04-22 | 2023-10-31 | Bio-Medical Engineering (HK) Limited | Robotic devices and systems for performing single incision procedures and natural orifice translumenal endoscopic surgical procedures, and methods of configuring robotic devices and systems |
WO2015161677A1 (en) * | 2014-04-22 | 2015-10-29 | Bio-Medical Engineering (HK) Limited | Single access surgical robotic devices and systems, and methods of configuring single access surgical robotic devices and systems |
US11154368B2 (en) | 2014-04-22 | 2021-10-26 | Bio-Medical Engineering (HK) Limited | Port assembly for use with robotic devices and systems to perform single incision procedures and natural orifice translumenal endoscopic surgical procedures |
US11090123B2 (en) | 2014-04-22 | 2021-08-17 | Bio-Medical Engineering (HK) Limited | Robotic devices and systems for performing single incision procedures and natural orifice translumenal endoscopic surgical procedures, and methods of configuring robotic devices and systems |
US10004562B2 (en) | 2014-04-24 | 2018-06-26 | Globus Medical, Inc. | Surgical instrument holder for use with a robotic surgical system |
KR20150128049A (ko) * | 2014-05-08 | 2015-11-18 | 삼성전자주식회사 | 수술 로봇 및 그 제어방법 |
WO2015175218A1 (en) * | 2014-05-13 | 2015-11-19 | Covidien Lp | Surgical robotic arm support systems and methods of use |
WO2015193479A1 (en) | 2014-06-19 | 2015-12-23 | KB Medical SA | Systems and methods for performing minimally invasive surgery |
US10058395B2 (en) | 2014-08-01 | 2018-08-28 | Intuitive Surgical Operations, Inc. | Active and semi-active damping in a telesurgical system |
WO2016035406A1 (ja) * | 2014-09-05 | 2016-03-10 | オリンパス株式会社 | 内視鏡システム |
JP6689832B2 (ja) | 2014-09-30 | 2020-04-28 | オーリス ヘルス インコーポレイテッド | 仮軌道および可撓性内視鏡を有する構成可能なロボット手術システム |
CN106163373B (zh) * | 2014-10-15 | 2018-05-01 | 奥林巴斯株式会社 | 信号处理装置和内窥镜系统 |
US10314463B2 (en) | 2014-10-24 | 2019-06-11 | Auris Health, Inc. | Automated endoscope calibration |
WO2016069989A1 (en) * | 2014-10-30 | 2016-05-06 | Intuitive Surgical Operations, Inc. | System and method for an articulated arm based tool guide |
EP3217890B1 (en) | 2014-11-11 | 2020-04-08 | Board of Regents of the University of Nebraska | Robotic device with compact joint design |
WO2016087539A2 (en) | 2014-12-02 | 2016-06-09 | KB Medical SA | Robot assisted volume removal during surgery |
WO2016131903A1 (en) | 2015-02-18 | 2016-08-25 | KB Medical SA | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
EP3068002B1 (en) | 2015-03-12 | 2019-11-06 | Schleuniger Holding AG | Cable processing machine with improved precision mechanism for cable processing |
EP3628264B1 (en) * | 2015-03-17 | 2024-10-16 | Intuitive Surgical Operations, Inc. | Systems and methods for rendering onscreen identification of instruments in a teleoperational medical system |
WO2016164824A1 (en) * | 2015-04-09 | 2016-10-13 | Auris Surgical Robotics, Inc. | Surgical system with configurable rail-mounted mechanical arms |
SG11201805324SA (en) * | 2015-04-22 | 2018-07-30 | Bio Medical Eng Hk Ltd | Robotic devices and systems for performing single incision procedures and natural orifice translumenal endoscopic surgical procedures, and methods of configuring robotic devices and systems |
WO2016169360A1 (en) * | 2015-04-22 | 2016-10-27 | Bio-Medical Engineering (HK) Limited | Robotic devices and systems for performing single incision procedures and natural orifice translumenal endoscopic surgical procedures, and methods of configuring robotic devices and systems |
WO2016194539A1 (ja) * | 2015-05-29 | 2016-12-08 | オリンパス株式会社 | 医療用マニピュレータシステム |
CN114027986B (zh) | 2015-08-03 | 2024-06-14 | 内布拉斯加大学董事会 | 机器人手术装置系统及相关方法 |
EP3321044A4 (en) * | 2015-08-25 | 2019-05-29 | Kawasaki Jukogyo Kabushiki Kaisha | REMOTELY CONTROLLED MANIPULATOR SYSTEM AND METHOD FOR OPERATION THEREOF |
EP3344179B1 (en) | 2015-08-31 | 2021-06-30 | KB Medical SA | Robotic surgical systems |
AU2016323982A1 (en) | 2015-09-18 | 2018-04-12 | Auris Health, Inc. | Navigation of tubular networks |
WO2017059412A1 (en) * | 2015-10-02 | 2017-04-06 | Vanderbilt University | Concentric tube robot |
US10646199B2 (en) | 2015-10-19 | 2020-05-12 | Clarius Mobile Health Corp. | Systems and methods for remote graphical feedback of ultrasound scanning technique |
US10143526B2 (en) | 2015-11-30 | 2018-12-04 | Auris Health, Inc. | Robot-assisted driving systems and methods |
US10154886B2 (en) * | 2016-01-06 | 2018-12-18 | Ethicon Llc | Methods, systems, and devices for controlling movement of a robotic surgical system |
US10219868B2 (en) | 2016-01-06 | 2019-03-05 | Ethicon Llc | Methods, systems, and devices for controlling movement of a robotic surgical system |
US10130429B1 (en) | 2016-01-06 | 2018-11-20 | Ethicon Llc | Methods, systems, and devices for controlling movement of a robotic surgical system |
US9949798B2 (en) * | 2016-01-06 | 2018-04-24 | Ethicon Endo-Surgery, Llc | Methods, systems, and devices for controlling movement of a robotic surgical system |
CN108463184B (zh) * | 2016-01-19 | 2021-08-13 | 提坦医疗公司 | 用于机器人外科手术系统的图形用户界面 |
JP7125349B2 (ja) * | 2016-02-11 | 2022-08-24 | アリネックス, インコーポレイテッド | 画像誘導後鼻神経アブレーションの方法およびデバイス |
US10751136B2 (en) | 2016-05-18 | 2020-08-25 | Virtual Incision Corporation | Robotic surgical devices, systems and related methods |
CN109195544B (zh) * | 2016-07-14 | 2021-07-20 | 直观外科手术操作公司 | 计算机辅助式远程操作系统中的次级器械控制 |
US11839433B2 (en) | 2016-09-22 | 2023-12-12 | Medtronic Navigation, Inc. | System for guided procedures |
US9931025B1 (en) * | 2016-09-30 | 2018-04-03 | Auris Surgical Robotics, Inc. | Automated calibration of endoscopes with pull wires |
US11751948B2 (en) | 2016-10-25 | 2023-09-12 | Mobius Imaging, Llc | Methods and systems for robot-assisted surgery |
US10251716B2 (en) * | 2016-12-19 | 2019-04-09 | Ethicon Llc | Robotic surgical system with selective motion control decoupling |
US10244926B2 (en) | 2016-12-28 | 2019-04-02 | Auris Health, Inc. | Detecting endolumenal buckling of flexible instruments |
AU2018243364B2 (en) | 2017-03-31 | 2023-10-05 | Auris Health, Inc. | Robotic systems for navigation of luminal networks that compensate for physiological noise |
EP3614931A1 (en) | 2017-04-28 | 2020-03-04 | Stryker Corporation | System and method for indicating mapping of console-based surgical systems |
CN110831498B (zh) | 2017-05-12 | 2022-08-12 | 奥瑞斯健康公司 | 活检装置和系统 |
US10022192B1 (en) | 2017-06-23 | 2018-07-17 | Auris Health, Inc. | Automatically-initialized robotic systems for navigation of luminal networks |
KR102341451B1 (ko) | 2017-06-28 | 2021-12-23 | 아우리스 헬스, 인코포레이티드 | 기기의 삽입 보상을 위한 로봇 시스템, 방법 및 비일시적 컴퓨터 가독 저장 매체 |
US10426559B2 (en) | 2017-06-30 | 2019-10-01 | Auris Health, Inc. | Systems and methods for medical instrument compression compensation |
US10772703B2 (en) * | 2017-08-25 | 2020-09-15 | Titan Medical Inc. | Methods and apparatuses for positioning a camera of a surgical robotic system to capture images inside a body cavity of a patient during a medical procedure |
US11051894B2 (en) | 2017-09-27 | 2021-07-06 | Virtual Incision Corporation | Robotic surgical devices with tracking camera technology and related systems and methods |
US10145747B1 (en) | 2017-10-10 | 2018-12-04 | Auris Health, Inc. | Detection of undesirable forces on a surgical robotic arm |
US10555778B2 (en) | 2017-10-13 | 2020-02-11 | Auris Health, Inc. | Image-based branch detection and mapping for navigation |
US11058493B2 (en) | 2017-10-13 | 2021-07-13 | Auris Health, Inc. | Robotic system configured for navigation path tracing |
WO2019083886A1 (en) | 2017-10-25 | 2019-05-02 | Intuitive Surgical Operations, Inc. | SYSTEM AND METHOD FOR REPOSITIONING INPUT CONTROL DEVICES |
WO2019113249A1 (en) | 2017-12-06 | 2019-06-13 | Auris Health, Inc. | Systems and methods to correct for uncommanded instrument roll |
US20190175059A1 (en) * | 2017-12-07 | 2019-06-13 | Medtronic Xomed, Inc. | System and Method for Assisting Visualization During a Procedure |
CN110869173B (zh) | 2017-12-14 | 2023-11-17 | 奥瑞斯健康公司 | 用于估计器械定位的系统与方法 |
US11160615B2 (en) | 2017-12-18 | 2021-11-02 | Auris Health, Inc. | Methods and systems for instrument tracking and navigation within luminal networks |
CN117140580A (zh) | 2018-01-05 | 2023-12-01 | 内布拉斯加大学董事会 | 具有紧凑型关节设计的单臂机器人装置及相关系统和方法 |
JP6999824B2 (ja) | 2018-01-17 | 2022-01-19 | オーリス ヘルス インコーポレイテッド | 調節可能なアーム支持体を有する外科用プラットフォーム |
CN110891514B (zh) | 2018-02-13 | 2023-01-20 | 奥瑞斯健康公司 | 用于驱动医疗器械的系统和方法 |
CN110913791B (zh) | 2018-03-28 | 2021-10-08 | 奥瑞斯健康公司 | 用于显示所估计的器械定位的系统和方法 |
KR102489198B1 (ko) | 2018-03-28 | 2023-01-18 | 아우리스 헬스, 인코포레이티드 | 위치 센서의 정합을 위한 시스템 및 방법 |
US10058396B1 (en) * | 2018-04-24 | 2018-08-28 | Titan Medical Inc. | System and apparatus for insertion of an instrument into a body cavity for performing a surgical procedure |
JP7250824B2 (ja) | 2018-05-30 | 2023-04-03 | オーリス ヘルス インコーポレイテッド | 位置センサベースの分岐予測のためのシステム及び方法 |
EP3801189B1 (en) | 2018-05-31 | 2024-09-11 | Auris Health, Inc. | Path-based navigation of tubular networks |
EP3801280B1 (en) | 2018-05-31 | 2024-10-02 | Auris Health, Inc. | Robotic systems for navigation of luminal network that detect physiological noise |
JP7146949B2 (ja) | 2018-05-31 | 2022-10-04 | オーリス ヘルス インコーポレイテッド | 画像ベースの気道分析及びマッピング |
US20190365487A1 (en) * | 2018-06-04 | 2019-12-05 | Epica International, Inc. | Articulated apparatus for surgery |
US10881280B2 (en) | 2018-08-24 | 2021-01-05 | Auris Health, Inc. | Manually and robotically controllable medical instruments |
US11197728B2 (en) * | 2018-09-17 | 2021-12-14 | Auris Health, Inc. | Systems and methods for concomitant medical procedures |
US12076100B2 (en) | 2018-09-28 | 2024-09-03 | Auris Health, Inc. | Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures |
CN112770690A (zh) | 2018-09-28 | 2021-05-07 | 奥瑞斯健康公司 | 用于对接医疗器械的系统和方法 |
CN113016038B (zh) * | 2018-10-12 | 2024-06-18 | 索尼集团公司 | 避免与机器人手术设备碰撞的触觉障碍 |
US11602402B2 (en) | 2018-12-04 | 2023-03-14 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11254009B2 (en) | 2018-12-20 | 2022-02-22 | Auris Health, Inc. | Systems and methods for robotic arm alignment and docking |
KR20210111259A (ko) | 2018-12-28 | 2021-09-10 | 아우리스 헬스, 인코포레이티드 | 로봇 의료 시스템 및 방법을 위한 경피 시스 |
US11903658B2 (en) | 2019-01-07 | 2024-02-20 | Virtual Incision Corporation | Robotically assisted surgical system and related devices and methods |
WO2020163076A1 (en) | 2019-02-08 | 2020-08-13 | Auris Health, Inc. | Robotically controlled clot manipulation and removal |
CN113453642A (zh) | 2019-02-22 | 2021-09-28 | 奥瑞斯健康公司 | 具有用于可调式臂支撑件的机动臂的外科平台 |
KR20210149805A (ko) | 2019-04-08 | 2021-12-09 | 아우리스 헬스, 인코포레이티드 | 동시 절차를 위한 시스템, 방법, 및 작업흐름 |
US11166774B2 (en) * | 2019-04-17 | 2021-11-09 | Cilag Gmbh International | Robotic procedure trocar placement visualization |
US11628020B2 (en) | 2019-06-19 | 2023-04-18 | Virtuoso Surgical, Inc. | Insertable robot for minimally invasive surgery |
WO2020263520A1 (en) | 2019-06-26 | 2020-12-30 | Auris Health, Inc. | Systems and methods for robotic arm alignment and docking |
US11717147B2 (en) | 2019-08-15 | 2023-08-08 | Auris Health, Inc. | Medical device having multiple bending sections |
JP7451686B2 (ja) | 2019-08-30 | 2024-03-18 | オーリス ヘルス インコーポレイテッド | 器具画像信頼性システム及び方法 |
KR20220058569A (ko) | 2019-08-30 | 2022-05-09 | 아우리스 헬스, 인코포레이티드 | 위치 센서의 가중치-기반 정합을 위한 시스템 및 방법 |
EP4028221A1 (en) | 2019-09-10 | 2022-07-20 | Auris Health, Inc. | Systems and methods for kinematic optimization with shared robotic degrees-of-freedom |
CN110522516B (zh) * | 2019-09-23 | 2021-02-02 | 杭州师范大学 | 一种用于手术导航的多层次交互可视化方法 |
EP4034349A1 (en) | 2019-09-26 | 2022-08-03 | Auris Health, Inc. | Systems and methods for collision detection and avoidance |
WO2021059238A1 (en) * | 2019-09-27 | 2021-04-01 | Auris Health, Inc. | Robotically-actuated medical retractors |
EP4021686A1 (en) * | 2019-11-19 | 2022-07-06 | Google LLC | Methods and systems for graphical user interfaces to control remotely located robots |
USD940736S1 (en) | 2019-11-20 | 2022-01-11 | Titan Medical Inc. | Display screen or portion thereof with a graphical user interface |
JP2023505466A (ja) * | 2019-12-12 | 2023-02-09 | コーニンクレッカ フィリップス エヌ ヴェ | 超音波プローブをガイドするためのシステム及び方法 |
CN118383870A (zh) | 2019-12-31 | 2024-07-26 | 奥瑞斯健康公司 | 用于经皮进入的对准界面 |
WO2021137109A1 (en) | 2019-12-31 | 2021-07-08 | Auris Health, Inc. | Alignment techniques for percutaneous access |
EP4084721A4 (en) | 2019-12-31 | 2024-01-03 | Auris Health, Inc. | IDENTIFICATION OF AN ANATOMIC FEATURE AND AIMING |
WO2022003485A1 (en) | 2020-06-29 | 2022-01-06 | Auris Health, Inc. | Systems and methods for detecting contact between a link and an external object |
US11357586B2 (en) | 2020-06-30 | 2022-06-14 | Auris Health, Inc. | Systems and methods for saturated robotic movement |
US11931901B2 (en) | 2020-06-30 | 2024-03-19 | Auris Health, Inc. | Robotic medical system with collision proximity indicators |
US12029522B2 (en) * | 2020-09-23 | 2024-07-09 | Verb Surgical Inc. | Deep disengagement detection during telesurgery |
CN114601564B (zh) * | 2020-10-08 | 2023-08-22 | 深圳市精锋医疗科技股份有限公司 | 手术机器人及其图形化控制装置、图形化显示方法 |
CN112043396B (zh) * | 2020-10-08 | 2022-03-04 | 深圳市精锋医疗科技股份有限公司 | 手术机器人及其图形化控制装置、图形化显示方法 |
CN111991084B (zh) * | 2020-10-08 | 2022-04-26 | 深圳市精锋医疗科技股份有限公司 | 手术机器人及其虚拟成像控制方法、虚拟成像控制装置 |
JP7566601B2 (ja) | 2020-12-03 | 2024-10-15 | 株式会社メディカロイド | ロボット手術システムおよび表示方法 |
CN112641513B (zh) * | 2020-12-15 | 2022-08-12 | 深圳市精锋医疗科技股份有限公司 | 手术机器人及其控制方法、控制装置 |
CN112587244A (zh) * | 2020-12-15 | 2021-04-02 | 深圳市精锋医疗科技有限公司 | 手术机器人及其控制方法、控制装置 |
CN113040915B (zh) * | 2021-03-12 | 2024-06-04 | 杭州柳叶刀机器人有限公司 | 机器人安全边界控制装置及方法、电子设备和存储介质 |
JP2024529064A (ja) * | 2021-08-06 | 2024-08-01 | リブスメド インコーポレーテッド | 手術用ロボットアーム |
WO2023023730A1 (en) * | 2021-08-24 | 2023-03-02 | Rmi Oceania Pty Ltd | Diagnostic imaging system |
US20230073575A1 (en) * | 2021-09-08 | 2023-03-09 | Cilag Gmbh International | Laparoscopic view direct motion control of mirrored endoluminal device |
WO2024013651A1 (en) * | 2022-07-13 | 2024-01-18 | Auris Health, Inc. | Dynamic flexible scope drive and methods of using same |
Family Cites Families (427)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3628535A (en) | 1969-11-12 | 1971-12-21 | Nibot Corp | Surgical instrument for implanting a prosthetic heart valve or the like |
US3818284A (en) | 1972-12-07 | 1974-06-18 | Marotta Scientific Controls | Valve control with pulse width modulation |
US3890552A (en) | 1972-12-29 | 1975-06-17 | George C Devol | Dual-armed multi-axes program controlled manipulators |
US3923166A (en) | 1973-10-11 | 1975-12-02 | Nasa | Remote manipulator system |
US3905215A (en) | 1974-06-26 | 1975-09-16 | John R Wright | Ultrasensitive force measuring instrument employing torsion balance |
US4150326A (en) | 1977-09-19 | 1979-04-17 | Unimation, Inc. | Trajectory correlation and error detection method and apparatus |
US4349837A (en) | 1979-07-03 | 1982-09-14 | Spar Aerospace Limited | Satellite servicing |
US5493595A (en) | 1982-02-24 | 1996-02-20 | Schoolman Scientific Corp. | Stereoscopically displayed three dimensional medical imaging |
US4588348A (en) | 1983-05-27 | 1986-05-13 | At&T Bell Laboratories | Robotic system utilizing a tactile sensor array |
US4577621A (en) | 1984-12-03 | 1986-03-25 | Patel Jayendrakumar I | Endoscope having novel proximate and distal portions |
JPS61230895A (ja) | 1985-04-04 | 1986-10-15 | 三菱重工業株式会社 | マニプレ−タ干渉防止装置 |
US4672963A (en) | 1985-06-07 | 1987-06-16 | Israel Barken | Apparatus and method for computer controlled laser surgery |
US4644237A (en) | 1985-10-17 | 1987-02-17 | International Business Machines Corp. | Collision avoidance system |
US4722056A (en) | 1986-02-18 | 1988-01-26 | Trustees Of Dartmouth College | Reference display systems for superimposing a tomagraphic image onto the focal plane of an operating microscope |
JPH085018B2 (ja) | 1986-02-26 | 1996-01-24 | 株式会社日立製作所 | 遠隔マニピユレ−シヨン方法及び装置 |
US4762456A (en) | 1986-06-11 | 1988-08-09 | Nelson Arthur J | Accommodations to exchange containers between vessels |
JPH0766290B2 (ja) | 1986-06-26 | 1995-07-19 | 東芝機械株式会社 | 工具経路生成方法 |
US4791934A (en) | 1986-08-07 | 1988-12-20 | Picker International, Inc. | Computer tomography assisted stereotactic surgery system and method |
GB2194656B (en) | 1986-09-03 | 1991-10-09 | Ibm | Method and system for solid modelling |
US4759074A (en) | 1986-10-28 | 1988-07-19 | General Motors Corporation | Method for automatically inspecting parts utilizing machine vision and system utilizing same |
JPH0829509B2 (ja) | 1986-12-12 | 1996-03-27 | 株式会社日立製作所 | マニピユレ−タの制御装置 |
US4839838A (en) | 1987-03-30 | 1989-06-13 | Labiche Mitchell | Spatial input apparatus |
US4860215A (en) | 1987-04-06 | 1989-08-22 | California Institute Of Technology | Method and apparatus for adaptive force and position control of manipulators |
US4863133A (en) | 1987-05-26 | 1989-09-05 | Leonard Medical | Arm device for adjustable positioning of a medical instrument or the like |
US4762455A (en) | 1987-06-01 | 1988-08-09 | Remote Technology Corporation | Remote manipulator |
US4831549A (en) | 1987-07-28 | 1989-05-16 | Brigham Young University | Device and method for correction of robot inaccuracy |
US4833383A (en) | 1987-08-13 | 1989-05-23 | Iowa State University Research Foundation, Inc. | Means and method of camera space manipulation |
US5079699A (en) | 1987-11-27 | 1992-01-07 | Picker International, Inc. | Quick three-dimensional display |
US5170347A (en) | 1987-11-27 | 1992-12-08 | Picker International, Inc. | System to reformat images for three-dimensional display using unique spatial encoding and non-planar bisectioning |
EP0326768A3 (en) | 1988-02-01 | 1991-01-23 | Faro Medical Technologies Inc. | Computer-aided surgery apparatus |
US4815450A (en) | 1988-02-01 | 1989-03-28 | Patel Jayendra I | Endoscope having variable flexibility |
US5251127A (en) | 1988-02-01 | 1993-10-05 | Faro Medical Technologies Inc. | Computer-aided surgery apparatus |
US5046022A (en) | 1988-03-10 | 1991-09-03 | The Regents Of The University Of Michigan | Tele-autonomous system and method employing time/position synchrony/desynchrony |
US5187796A (en) | 1988-03-29 | 1993-02-16 | Computer Motion, Inc. | Three-dimensional vector co-processor having I, J, and K register files and I, J, and K execution units |
US4989253A (en) | 1988-04-15 | 1991-01-29 | The Montefiore Hospital Association Of Western Pennsylvania | Voice activated microscope |
US4979949A (en) | 1988-04-26 | 1990-12-25 | The Board Of Regents Of The University Of Washington | Robot-aided system for surgery |
US4891767A (en) | 1988-06-02 | 1990-01-02 | Combustion Engineering, Inc. | Machine vision system for position sensing |
JPH01310875A (ja) | 1988-06-07 | 1989-12-14 | Fujitsu Ltd | 双腕マニピュレータの遠隔操作方法 |
US4984157A (en) | 1988-09-21 | 1991-01-08 | General Electric Company | System and method for displaying oblique planar cross sections of a solid body using tri-linear interpolation to determine pixel position dataes |
GB2226245A (en) | 1988-11-18 | 1990-06-27 | Alan Crockard | Endoscope, remote actuator and aneurysm clip applicator. |
US4942539A (en) | 1988-12-21 | 1990-07-17 | Gmf Robotics Corporation | Method and system for automatically determining the position and orientation of an object in 3-D space |
US5099846A (en) | 1988-12-23 | 1992-03-31 | Hardy Tyrone L | Method and apparatus for video presentation from a variety of scanner imaging sources |
US5098426A (en) | 1989-02-06 | 1992-03-24 | Phoenix Laser Systems, Inc. | Method and apparatus for precision laser surgery |
US5184009A (en) | 1989-04-10 | 1993-02-02 | Wright Scott M | Optical attenuator movement detection system |
US5053976A (en) | 1989-05-22 | 1991-10-01 | Honda Giken Kogyo Kabushiki Kaisha | Method of teaching a robot |
US5257203A (en) | 1989-06-09 | 1993-10-26 | Regents Of The University Of Minnesota | Method and apparatus for manipulating computer-based representations of objects of complex and unique geometry |
DE3935256C1 (zh) | 1989-10-23 | 1991-01-03 | Bauerfeind, Peter, Dr., 8264 Waldkraiburg, De | |
US5181823A (en) | 1989-10-27 | 1993-01-26 | Grumman Aerospace Corporation | Apparatus and method for producing a video display |
ES2085885T3 (es) | 1989-11-08 | 1996-06-16 | George S Allen | Brazo mecanico para sistema interactivo de cirugia dirigido por imagenes. |
US5086401A (en) | 1990-05-11 | 1992-02-04 | International Business Machines Corporation | Image-directed robotic system for precise robotic surgery including redundant consistency checking |
EP0487110B1 (en) | 1990-11-22 | 1999-10-06 | Kabushiki Kaisha Toshiba | Computer-aided diagnosis system for medical use |
US5217003A (en) | 1991-03-18 | 1993-06-08 | Wilk Peter J | Automated surgical system and apparatus |
US5217453A (en) | 1991-03-18 | 1993-06-08 | Wilk Peter J | Automated surgical system and apparatus |
US5176702A (en) | 1991-04-04 | 1993-01-05 | Symbiosis Corporation | Ratchet locking mechanism for surgical instruments |
US5251611A (en) | 1991-05-07 | 1993-10-12 | Zehel Wendell E | Method and apparatus for conducting exploratory procedures |
US5313306A (en) | 1991-05-13 | 1994-05-17 | Telerobotics International, Inc. | Omniview motionless camera endoscopy system |
US5181514A (en) | 1991-05-21 | 1993-01-26 | Hewlett-Packard Company | Transducer positioning system |
US5266875A (en) | 1991-05-23 | 1993-11-30 | Massachusetts Institute Of Technology | Telerobotic system |
US5417210A (en) | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US5279309A (en) | 1991-06-13 | 1994-01-18 | International Business Machines Corporation | Signaling device and method for monitoring positions in a surgical operation |
US5182641A (en) | 1991-06-17 | 1993-01-26 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Composite video and graphics display for camera viewing systems in robotics and teleoperation |
US5261404A (en) | 1991-07-08 | 1993-11-16 | Mick Peter R | Three-dimensional mammal anatomy imaging system and method |
US5184601A (en) | 1991-08-05 | 1993-02-09 | Putman John M | Endoscope stabilizer |
US5889670A (en) | 1991-10-24 | 1999-03-30 | Immersion Corporation | Method and apparatus for tactilely responsive user interface |
US5230623A (en) | 1991-12-10 | 1993-07-27 | Radionics, Inc. | Operating pointer with interactive computergraphics |
US5531742A (en) | 1992-01-15 | 1996-07-02 | Barken; Israel | Apparatus and method for computer controlled cryosurgery |
US6963792B1 (en) | 1992-01-21 | 2005-11-08 | Sri International | Surgical method |
EP0776738B1 (en) | 1992-01-21 | 2002-04-03 | Sri International | An endoscopic surgical instrument |
US5631973A (en) | 1994-05-05 | 1997-05-20 | Sri International | Method for telemanipulation with telepresence |
DE4204397C2 (de) | 1992-02-14 | 2001-08-30 | Sinz Dirk Peter | Transportbehälter |
US5737500A (en) | 1992-03-11 | 1998-04-07 | California Institute Of Technology | Mobile dexterous siren degree of freedom robot arm with real-time control system |
US5430643A (en) | 1992-03-11 | 1995-07-04 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Configuration control of seven degree of freedom arms |
US5321353A (en) | 1992-05-13 | 1994-06-14 | Storage Technolgy Corporation | System and method for precisely positioning a robotic tool |
US5482029A (en) | 1992-06-26 | 1996-01-09 | Kabushiki Kaisha Toshiba | Variable flexibility endoscope system |
US5361768A (en) | 1992-06-30 | 1994-11-08 | Cardiovascular Imaging Systems, Inc. | Automated longitudinal position translator for ultrasonic imaging probes, and methods of using same |
US5239246A (en) | 1992-07-08 | 1993-08-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Force reflection with compliance control |
AT399647B (de) | 1992-07-31 | 1995-06-26 | Truppe Michael | Anordnung zur darstellung des inneren von körpern |
US5657429A (en) | 1992-08-10 | 1997-08-12 | Computer Motion, Inc. | Automated endoscope system optimal positioning |
US5524180A (en) | 1992-08-10 | 1996-06-04 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US5762458A (en) | 1996-02-20 | 1998-06-09 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US5515478A (en) | 1992-08-10 | 1996-05-07 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US5754741A (en) | 1992-08-10 | 1998-05-19 | Computer Motion, Inc. | Automated endoscope for optimal positioning |
US5397323A (en) | 1992-10-30 | 1995-03-14 | International Business Machines Corporation | Remote center-of-motion robot for surgery |
US5788688A (en) | 1992-11-05 | 1998-08-04 | Bauer Laboratories, Inc. | Surgeon's command and control |
US5629594A (en) | 1992-12-02 | 1997-05-13 | Cybernet Systems Corporation | Force feedback system |
DE9302650U1 (de) | 1993-02-24 | 1993-04-15 | Karl Storz GmbH & Co, 7200 Tuttlingen | Medizinische Zange |
AU687045B2 (en) | 1993-03-31 | 1998-02-19 | Luma Corporation | Managing information in an endoscopy system |
WO1994026167A1 (en) | 1993-05-14 | 1994-11-24 | Sri International | Remote center positioner |
US5791231A (en) | 1993-05-17 | 1998-08-11 | Endorobotics Corporation | Surgical robotic system and hydraulic actuator therefor |
AU7468494A (en) | 1993-07-07 | 1995-02-06 | Cornelius Borst | Robotic system for close inspection and remote treatment of moving parts |
US5382885A (en) | 1993-08-09 | 1995-01-17 | The University Of British Columbia | Motion scaling tele-operating system with force feedback suitable for microsurgery |
US5343385A (en) | 1993-08-17 | 1994-08-30 | International Business Machines Corporation | Interference-free insertion of a solid body into a cavity |
US5503320A (en) | 1993-08-19 | 1996-04-02 | United States Surgical Corporation | Surgical apparatus with indicator |
FR2709656B1 (fr) | 1993-09-07 | 1995-12-01 | Deemed Int Sa | Installation pour opération de microchirurgie assistée par ordinateur et procédés mis en Óoeuvre par ladite installation. |
SE9303253D0 (sv) | 1993-10-05 | 1993-10-05 | Siemens Elema Ab | Instrument för titthålskirurgi |
JPH08107875A (ja) | 1994-08-18 | 1996-04-30 | Olympus Optical Co Ltd | 内視鏡形状検出装置 |
US6059718A (en) | 1993-10-18 | 2000-05-09 | Olympus Optical Co., Ltd. | Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope |
US5876325A (en) | 1993-11-02 | 1999-03-02 | Olympus Optical Co., Ltd. | Surgical manipulation system |
US5842473A (en) | 1993-11-29 | 1998-12-01 | Life Imaging Systems | Three-dimensional imaging system |
AU7601094A (en) | 1993-12-15 | 1995-07-03 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US6241725B1 (en) | 1993-12-15 | 2001-06-05 | Sherwood Services Ag | High frequency thermal ablation of cancerous tumors and functional targets with image data assistance |
JPH07184923A (ja) | 1993-12-28 | 1995-07-25 | Hitachi Ltd | 遠隔微細手術支援装置 |
US5454827A (en) | 1994-05-24 | 1995-10-03 | Aust; Gilbert M. | Surgical instrument |
US5835693A (en) | 1994-07-22 | 1998-11-10 | Lynch; James D. | Interactive system for simulation and display of multi-body systems in three dimensions |
US6115053A (en) | 1994-08-02 | 2000-09-05 | New York University | Computer animation method and system for synthesizing human-like gestures and actions |
NO300407B1 (no) | 1994-08-30 | 1997-05-26 | Vingmed Sound As | Apparat for endoskop- eller gastroskopundersökelse av pasienter |
US6120433A (en) | 1994-09-01 | 2000-09-19 | Olympus Optical Co., Ltd. | Surgical manipulator system |
US5528955A (en) | 1994-09-08 | 1996-06-25 | Hannaford; Blake | Five axis direct-drive mini-robot having fifth actuator located at non-adjacent joint |
JP3695779B2 (ja) | 1994-09-27 | 2005-09-14 | オリンパス株式会社 | マニピュレータシステム |
US5765561A (en) | 1994-10-07 | 1998-06-16 | Medical Media Systems | Video-based surgical targeting system |
JPH08132372A (ja) | 1994-11-08 | 1996-05-28 | Toshiba Corp | ロボットの制御方法 |
JP3642812B2 (ja) | 1994-11-17 | 2005-04-27 | 株式会社町田製作所 | 医療用観察装置 |
JP3640087B2 (ja) | 1994-11-29 | 2005-04-20 | 豊田工機株式会社 | 工作機械 |
JPH08154321A (ja) | 1994-11-29 | 1996-06-11 | Tokyo Electric Power Co Inc:The | 遠隔操作ロボット |
JPH08164148A (ja) | 1994-12-13 | 1996-06-25 | Olympus Optical Co Ltd | 内視鏡下手術装置 |
US5575764A (en) | 1994-12-14 | 1996-11-19 | Van Dyne; Leonard A. | Prosthetic joint with dynamic torque compensator |
JP3539645B2 (ja) | 1995-02-16 | 2004-07-07 | 株式会社日立製作所 | 遠隔手術支援装置 |
US6019724A (en) | 1995-02-22 | 2000-02-01 | Gronningsaeter; Aage | Method for ultrasound guidance during clinical procedures |
JPH08224241A (ja) | 1995-02-22 | 1996-09-03 | Olympus Optical Co Ltd | 医療用マニピュレータ |
US5836880A (en) | 1995-02-27 | 1998-11-17 | Micro Chemical, Inc. | Automated system for measuring internal tissue characteristics in feed animals |
US5817022A (en) | 1995-03-28 | 1998-10-06 | Sonometrics Corporation | System for displaying a 2-D ultrasound image within a 3-D viewing environment |
US5797849A (en) | 1995-03-28 | 1998-08-25 | Sonometrics Corporation | Method for carrying out a medical procedure using a three-dimensional tracking and imaging system |
JPH08275958A (ja) | 1995-04-07 | 1996-10-22 | Olympus Optical Co Ltd | 手術用マニピュレータ装置 |
US5887121A (en) | 1995-04-21 | 1999-03-23 | International Business Machines Corporation | Method of constrained Cartesian control of robotic mechanisms with active and passive joints |
JP3986099B2 (ja) | 1995-05-02 | 2007-10-03 | オリンパス株式会社 | 手術用マニピュレータシステム |
US5814038A (en) | 1995-06-07 | 1998-09-29 | Sri International | Surgical manipulator for a telerobotic system |
US5759151A (en) | 1995-06-07 | 1998-06-02 | Carnegie Mellon University | Flexible steerable device for conducting exploratory procedures |
US5649956A (en) | 1995-06-07 | 1997-07-22 | Sri International | System and method for releasably holding a surgical instrument |
US5551432A (en) | 1995-06-19 | 1996-09-03 | New York Eye & Ear Infirmary | Scanning control system for ultrasound biomicroscopy |
WO1997000649A1 (en) | 1995-06-20 | 1997-01-09 | Wan Sing Ng | Articulated arm for medical procedures |
US6702736B2 (en) | 1995-07-24 | 2004-03-09 | David T. Chen | Anatomical visualization system |
US6256529B1 (en) | 1995-07-26 | 2001-07-03 | Burdette Medical Systems, Inc. | Virtual reality 3D visualization for surgical procedures |
DE19529950C1 (de) | 1995-08-14 | 1996-11-14 | Deutsche Forsch Luft Raumfahrt | Verfahren zum Nachführen eines Stereo-Laparoskops in der minimalinvasiven Chirurgie |
US5638819A (en) | 1995-08-29 | 1997-06-17 | Manwaring; Kim H. | Method and apparatus for guiding an instrument to a target |
US5784542A (en) | 1995-09-07 | 1998-07-21 | California Institute Of Technology | Decoupled six degree-of-freedom teleoperated robot system |
US5825982A (en) | 1995-09-15 | 1998-10-20 | Wright; James | Head cursor control interface for an automated endoscope system for optimal positioning |
US5601085A (en) | 1995-10-02 | 1997-02-11 | Nycomed Imaging As | Ultrasound imaging |
JPH09141580A (ja) | 1995-11-22 | 1997-06-03 | Yaskawa Electric Corp | 直接教示ロボットの動作範囲制限装置 |
US5987591A (en) | 1995-12-27 | 1999-11-16 | Fanuc Limited | Multiple-sensor robot system for obtaining two-dimensional image and three-dimensional position information |
US5624398A (en) | 1996-02-08 | 1997-04-29 | Symbiosis Corporation | Endoscopic robotic surgical tools and methods |
US5855583A (en) | 1996-02-20 | 1999-01-05 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US6063095A (en) | 1996-02-20 | 2000-05-16 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US5971976A (en) | 1996-02-20 | 1999-10-26 | Computer Motion, Inc. | Motion minimization and compensation system for use in surgical procedures |
US6699177B1 (en) | 1996-02-20 | 2004-03-02 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US6436107B1 (en) | 1996-02-20 | 2002-08-20 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
WO1997044089A1 (en) | 1996-05-17 | 1997-11-27 | Biosense Inc. | Self-aligning catheter |
US5797900A (en) | 1996-05-20 | 1998-08-25 | Intuitive Surgical, Inc. | Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5792135A (en) | 1996-05-20 | 1998-08-11 | Intuitive Surgical, Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5807377A (en) | 1996-05-20 | 1998-09-15 | Intuitive Surgical, Inc. | Force-reflecting surgical instrument and positioning mechanism for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US6167296A (en) | 1996-06-28 | 2000-12-26 | The Board Of Trustees Of The Leland Stanford Junior University | Method for volumetric image navigation |
GB9616261D0 (en) | 1996-08-02 | 1996-09-11 | Philips Electronics Nv | Virtual environment manipulation device modelling and control |
US6642836B1 (en) | 1996-08-06 | 2003-11-04 | Computer Motion, Inc. | General purpose distributed operating room control system |
JP3550966B2 (ja) | 1996-09-18 | 2004-08-04 | 株式会社日立製作所 | 手術装置 |
US7302288B1 (en) | 1996-11-25 | 2007-11-27 | Z-Kat, Inc. | Tool position indicator |
DE19649082C1 (de) | 1996-11-27 | 1998-01-08 | Fraunhofer Ges Forschung | Vorrichtung zur Fernsteuerung eines Werkzeugs |
US5810008A (en) | 1996-12-03 | 1998-09-22 | Isg Technologies Inc. | Apparatus and method for visualizing ultrasonic images |
US7666191B2 (en) | 1996-12-12 | 2010-02-23 | Intuitive Surgical, Inc. | Robotic surgical system with sterile surgical adaptor |
US6331181B1 (en) | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
US5853367A (en) | 1997-03-17 | 1998-12-29 | General Electric Company | Task-interface and communications system and method for ultrasound imager control |
US6656110B1 (en) | 1997-04-16 | 2003-12-02 | Karl Storz Gmbh & Co. Kg | Endoscopic system |
KR100223601B1 (ko) | 1997-05-29 | 1999-10-15 | 윤종용 | 액정 표시 장치 |
US5938678A (en) | 1997-06-11 | 1999-08-17 | Endius Incorporated | Surgical instrument |
JPH11309A (ja) | 1997-06-12 | 1999-01-06 | Hitachi Ltd | 画像処理装置 |
US6231565B1 (en) | 1997-06-18 | 2001-05-15 | United States Surgical Corporation | Robotic arm DLUs for performing surgical tasks |
US6330837B1 (en) | 1997-08-28 | 2001-12-18 | Microdexterity Systems, Inc. | Parallel mechanism |
US6002184A (en) | 1997-09-17 | 1999-12-14 | Coactive Drive Corporation | Actuator with opposing repulsive magnetic forces |
EP1015944B1 (en) | 1997-09-19 | 2013-02-27 | Massachusetts Institute Of Technology | Surgical robotic apparatus |
US6714839B2 (en) | 1998-12-08 | 2004-03-30 | Intuitive Surgical, Inc. | Master having redundant degrees of freedom |
US5993391A (en) | 1997-09-25 | 1999-11-30 | Kabushiki Kaisha Toshiba | Ultrasound diagnostic apparatus |
AU1452199A (en) | 1997-11-07 | 1999-05-31 | Hill-Rom, Inc. | Medical equipment controller |
US6129670A (en) | 1997-11-24 | 2000-10-10 | Burdette Medical Systems | Real time brachytherapy spatial registration and visualization system |
US6358749B1 (en) | 1997-12-02 | 2002-03-19 | Ozo Diversified Automation, Inc. | Automated system for chromosome microdissection and method of using same |
US5842993A (en) | 1997-12-10 | 1998-12-01 | The Whitaker Corporation | Navigable ultrasonic imaging probe assembly |
US6292712B1 (en) | 1998-01-29 | 2001-09-18 | Northrop Grumman Corporation | Computer interface system for a robotic system |
WO1999038646A1 (en) | 1998-02-03 | 1999-08-05 | Hexel Corporation | Systems and methods employing a rotary track for machining and manufacturing |
DE69922791T2 (de) | 1998-02-19 | 2005-12-08 | California Institute Of Technology, Pasadena | Gerät zur bereitstellung eines spherischen sehfeldes während endoskopischen eingriffen |
US6810281B2 (en) | 2000-12-21 | 2004-10-26 | Endovia Medical, Inc. | Medical mapping system |
US7297142B2 (en) | 1998-02-24 | 2007-11-20 | Hansen Medical, Inc. | Interchangeable surgical instrument |
JP3582348B2 (ja) | 1998-03-19 | 2004-10-27 | 株式会社日立製作所 | 手術装置 |
US5980461A (en) | 1998-05-01 | 1999-11-09 | Rajan; Subramaniam D. | Ultrasound imaging apparatus for medical diagnostics |
EP2289423A1 (en) | 1998-05-14 | 2011-03-02 | David N. Krag | System for bracketing tissue |
US6425865B1 (en) | 1998-06-12 | 2002-07-30 | The University Of British Columbia | Robotically assisted medical ultrasound |
US6184868B1 (en) | 1998-09-17 | 2001-02-06 | Immersion Corp. | Haptic feedback control devices |
AU5391999A (en) | 1998-08-04 | 2000-02-28 | Intuitive Surgical, Inc. | Manipulator positioning linkage for robotic surgery |
US6383951B1 (en) | 1998-09-03 | 2002-05-07 | Micron Technology, Inc. | Low dielectric constant material for integrated circuit fabrication |
US5993390A (en) | 1998-09-18 | 1999-11-30 | Hewlett- Packard Company | Segmented 3-D cardiac ultrasound imaging method and apparatus |
JP4101951B2 (ja) | 1998-11-10 | 2008-06-18 | オリンパス株式会社 | 手術用顕微鏡 |
WO2000028882A2 (en) | 1998-11-18 | 2000-05-25 | Microdexterity Systems, Inc. | Medical manipulator for use with an imaging device |
US8527094B2 (en) | 1998-11-20 | 2013-09-03 | Intuitive Surgical Operations, Inc. | Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures |
US6468265B1 (en) | 1998-11-20 | 2002-10-22 | Intuitive Surgical, Inc. | Performing cardiac surgery without cardioplegia |
US6459926B1 (en) | 1998-11-20 | 2002-10-01 | Intuitive Surgical, Inc. | Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery |
US6659939B2 (en) | 1998-11-20 | 2003-12-09 | Intuitive Surgical, Inc. | Cooperative minimally invasive telesurgical system |
US6398726B1 (en) | 1998-11-20 | 2002-06-04 | Intuitive Surgical, Inc. | Stabilizer for robotic beating-heart surgery |
US6852107B2 (en) | 2002-01-16 | 2005-02-08 | Computer Motion, Inc. | Minimally invasive surgical training using robotics and tele-collaboration |
US6951535B2 (en) | 2002-01-16 | 2005-10-04 | Intuitive Surgical, Inc. | Tele-medicine system that transmits an entire state of a subsystem |
US6342889B1 (en) | 1998-11-27 | 2002-01-29 | Dicomit Dicom Information Technologies Corp. | Method and system for selecting at least one optimal view of a three dimensional image |
US6522906B1 (en) | 1998-12-08 | 2003-02-18 | Intuitive Surgical, Inc. | Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure |
US6620173B2 (en) | 1998-12-08 | 2003-09-16 | Intuitive Surgical, Inc. | Method for introducing an end effector to a surgical site in minimally invasive surgery |
US6799065B1 (en) | 1998-12-08 | 2004-09-28 | Intuitive Surgical, Inc. | Image shifting apparatus and method for a telerobotic system |
US6325808B1 (en) | 1998-12-08 | 2001-12-04 | Advanced Realtime Control Systems, Inc. | Robotic system, docking station, and surgical tool for collaborative control in minimally invasive surgery |
US6493608B1 (en) | 1999-04-07 | 2002-12-10 | Intuitive Surgical, Inc. | Aspects of a control system of a minimally invasive surgical apparatus |
US6770081B1 (en) | 2000-01-07 | 2004-08-03 | Intuitive Surgical, Inc. | In vivo accessories for minimally invasive robotic surgery and methods |
JP2000193893A (ja) | 1998-12-28 | 2000-07-14 | Suzuki Motor Corp | 検査用挿入管の屈曲装置 |
US6224542B1 (en) | 1999-01-04 | 2001-05-01 | Stryker Corporation | Endoscopic camera system with non-mechanical zoom |
US6394998B1 (en) | 1999-01-22 | 2002-05-28 | Intuitive Surgical, Inc. | Surgical tools for use in minimally invasive telesurgical applications |
US6602185B1 (en) | 1999-02-18 | 2003-08-05 | Olympus Optical Co., Ltd. | Remote surgery support system |
US6084371A (en) | 1999-02-19 | 2000-07-04 | Lockheed Martin Energy Research Corporation | Apparatus and methods for a human de-amplifier system |
CN1202882C (zh) | 1999-02-25 | 2005-05-25 | 是永哲也 | 电气治疗仪 |
US7324081B2 (en) | 1999-03-02 | 2008-01-29 | Siemens Aktiengesellschaft | Augmented-reality system for situation-related support of the interaction between a user and an engineering apparatus |
US6243624B1 (en) | 1999-03-19 | 2001-06-05 | Northwestern University | Non-Linear muscle-like compliant controller |
US6569084B1 (en) | 1999-03-31 | 2003-05-27 | Olympus Optical Co., Ltd. | Endoscope holder and endoscope device |
US8944070B2 (en) | 1999-04-07 | 2015-02-03 | Intuitive Surgical Operations, Inc. | Non-force reflecting method for providing tool force information to a user of a telesurgical system |
US6424885B1 (en) | 1999-04-07 | 2002-07-23 | Intuitive Surgical, Inc. | Camera referenced control in a minimally invasive surgical apparatus |
US6594552B1 (en) | 1999-04-07 | 2003-07-15 | Intuitive Surgical, Inc. | Grip strength with tactile feedback for robotic surgery |
JP2000300579A (ja) | 1999-04-26 | 2000-10-31 | Olympus Optical Co Ltd | 多機能マニピュレータ |
JP3668865B2 (ja) | 1999-06-21 | 2005-07-06 | 株式会社日立製作所 | 手術装置 |
US7637905B2 (en) | 2003-01-15 | 2009-12-29 | Usgi Medical, Inc. | Endoluminal tool deployment system |
US8574243B2 (en) | 1999-06-25 | 2013-11-05 | Usgi Medical, Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
JP4302246B2 (ja) | 1999-08-25 | 2009-07-22 | 住友ベークライト株式会社 | 医療用処置具挿入具 |
US8768516B2 (en) | 2009-06-30 | 2014-07-01 | Intuitive Surgical Operations, Inc. | Control of medical robotic system manipulator about kinematic singularities |
US8004229B2 (en) | 2005-05-19 | 2011-08-23 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US7594912B2 (en) | 2004-09-30 | 2009-09-29 | Intuitive Surgical, Inc. | Offset remote center manipulator for robotic surgery |
JP3454235B2 (ja) | 1999-10-06 | 2003-10-06 | 株式会社日立製作所 | 生体磁場計測装置 |
JP2001104333A (ja) | 1999-10-07 | 2001-04-17 | Hitachi Ltd | 手術支援装置 |
US6312435B1 (en) | 1999-10-08 | 2001-11-06 | Intuitive Surgical, Inc. | Surgical instrument with extended reach for use in minimally invasive surgery |
JP2001202531A (ja) | 1999-10-15 | 2001-07-27 | Hitachi Kokusai Electric Inc | 動画像編集方法 |
US6654031B1 (en) | 1999-10-15 | 2003-11-25 | Hitachi Kokusai Electric Inc. | Method of editing a video program with variable view point of picked-up image and computer program product for displaying video program |
AU4305201A (en) | 1999-11-29 | 2001-06-04 | Board Of Trustees Of The Leland Stanford Junior University | Method and apparatus for transforming view orientations in image-guided surgery |
US6204620B1 (en) | 1999-12-10 | 2001-03-20 | Fanuc Robotics North America | Method of controlling an intelligent assist device |
US20190090967A1 (en) | 1999-12-14 | 2019-03-28 | Intuitive Surgical Operations, Inc. | Display of computer generated image of an out-of-view portion of a medical device adjacent a real-time image of an in-view portion of the medical device |
DE19961971B4 (de) | 1999-12-22 | 2009-10-22 | Forschungszentrum Karlsruhe Gmbh | Vorrichtung zum sicheren automatischen Nachführen eines Endoskops und Verfolgen eines Instruments |
US6847922B1 (en) * | 2000-01-06 | 2005-01-25 | General Motors Corporation | Method for computer-aided layout of manufacturing cells |
JP2001287183A (ja) | 2000-01-31 | 2001-10-16 | Matsushita Electric Works Ltd | 自動搬送ロボット |
DE10004264C2 (de) | 2000-02-01 | 2002-06-13 | Storz Karl Gmbh & Co Kg | Vorrichtung zur intrakorporalen, minimal-invasiven Behandlung eines Patienten |
US6817973B2 (en) | 2000-03-16 | 2004-11-16 | Immersion Medical, Inc. | Apparatus for controlling force for manipulation of medical instruments |
US7819799B2 (en) | 2000-03-16 | 2010-10-26 | Immersion Medical, Inc. | System and method for controlling force applied to and manipulation of medical instruments |
DE10015826A1 (de) | 2000-03-30 | 2001-10-11 | Siemens Ag | System und Verfahren zur Erzeugung eines Bildes |
US6984203B2 (en) | 2000-04-03 | 2006-01-10 | Neoguide Systems, Inc. | Endoscope with adjacently positioned guiding apparatus |
US20010055062A1 (en) | 2000-04-20 | 2001-12-27 | Keiji Shioda | Operation microscope |
DE10025285A1 (de) | 2000-05-22 | 2001-12-06 | Siemens Ag | Vollautomatische, robotergestützte Kameraführung unter Verwendung von Positionssensoren für laparoskopische Eingriffe |
US6645196B1 (en) | 2000-06-16 | 2003-11-11 | Intuitive Surgical, Inc. | Guided tool change |
US6599247B1 (en) | 2000-07-07 | 2003-07-29 | University Of Pittsburgh | System and method for location-merging of real-time tomographic slice images with human vision |
EP1182541A3 (de) | 2000-08-22 | 2005-11-30 | Siemens Aktiengesellschaft | System und Verfahren zum kombinierten Einsatz verschiedener Display-/Gerätetypen mit systemgesteuerter kontextabhängiger Informationsdarstellung |
JP4765155B2 (ja) | 2000-09-28 | 2011-09-07 | ソニー株式会社 | オーサリング・システム及びオーサリング方法、並びに記憶媒体 |
US7194118B1 (en) | 2000-11-10 | 2007-03-20 | Lucid, Inc. | System for optically sectioning and mapping surgically excised tissue |
US6718194B2 (en) | 2000-11-17 | 2004-04-06 | Ge Medical Systems Global Technology Company, Llc | Computer assisted intramedullary rod surgery system with enhanced features |
DE10063089C1 (de) | 2000-12-18 | 2002-07-25 | Siemens Ag | Anwendergesteuerte Verknüpfung von Informationen innerhalb eines Augmented-Reality-Systems |
EP1351619A4 (en) | 2001-01-16 | 2011-01-05 | Microdexterity Systems Inc | SURGICAL MANIPULATOR |
US7766894B2 (en) | 2001-02-15 | 2010-08-03 | Hansen Medical, Inc. | Coaxial catheter system |
US6765569B2 (en) | 2001-03-07 | 2004-07-20 | University Of Southern California | Augmented-reality tool employing scene-feature autocalibration during camera motion |
JP3769469B2 (ja) | 2001-03-28 | 2006-04-26 | 株式会社東芝 | 操作訓練用装置 |
US6456901B1 (en) | 2001-04-20 | 2002-09-24 | Univ Michigan | Hybrid robot motion task level control system |
US6862561B2 (en) | 2001-05-29 | 2005-03-01 | Entelos, Inc. | Method and apparatus for computer modeling a joint |
US7607440B2 (en) | 2001-06-07 | 2009-10-27 | Intuitive Surgical, Inc. | Methods and apparatus for surgical planning |
US6887245B2 (en) | 2001-06-11 | 2005-05-03 | Ge Medical Systems Global Technology Company, Llc | Surgical drill for use with a computer assisted surgery system |
WO2002100284A1 (en) | 2001-06-13 | 2002-12-19 | Volume Interactions Pte Ltd | A guide system |
CA2486525C (en) | 2001-06-13 | 2009-02-24 | Volume Interactions Pte. Ltd. | A guide system and a probe therefor |
US20040243147A1 (en) | 2001-07-03 | 2004-12-02 | Lipow Kenneth I. | Surgical robot and robotic controller |
WO2003007129A2 (en) | 2001-07-13 | 2003-01-23 | Broks Automation, Inc. | Trajectory planning and motion control strategies for a planar three-degree-of-freedom robotic arm |
US6550757B2 (en) | 2001-08-07 | 2003-04-22 | Hewlett-Packard Company | Stapler having selectable staple size |
JP3579379B2 (ja) | 2001-08-10 | 2004-10-20 | 株式会社東芝 | 医療用マニピュレータシステム |
US6587750B2 (en) | 2001-09-25 | 2003-07-01 | Intuitive Surgical, Inc. | Removable infinite roll master grip handle and touch sensor for robotic surgery |
US20040238732A1 (en) | 2001-10-19 | 2004-12-02 | Andrei State | Methods and systems for dynamic virtual convergence and head mountable display |
JP3529373B2 (ja) | 2001-11-09 | 2004-05-24 | ファナック株式会社 | 作業機械のシミュレーション装置 |
US6663559B2 (en) | 2001-12-14 | 2003-12-16 | Endactive, Inc. | Interface for a variable direction of view endoscope |
US6941192B2 (en) | 2002-01-31 | 2005-09-06 | Abb Research Ltd. | Robot machining tool position and orientation calibration |
AU2003218010A1 (en) | 2002-03-06 | 2003-09-22 | Z-Kat, Inc. | System and method for using a haptic device in combination with a computer-assisted surgery system |
US8010180B2 (en) | 2002-03-06 | 2011-08-30 | Mako Surgical Corp. | Haptic guidance system and method |
US7831292B2 (en) | 2002-03-06 | 2010-11-09 | Mako Surgical Corp. | Guidance system and method for surgical procedures with improved feedback |
JP2003300444A (ja) | 2002-04-11 | 2003-10-21 | Hitachi Ltd | 移動体の運転支援装置 |
JP4056791B2 (ja) | 2002-05-22 | 2008-03-05 | 策雄 米延 | 骨折整復誘導装置 |
US6678582B2 (en) | 2002-05-30 | 2004-01-13 | Kuka Roboter Gmbh | Method and control device for avoiding collisions between cooperating robots |
US6783491B2 (en) | 2002-06-13 | 2004-08-31 | Vahid Saadat | Shape lockable apparatus and method for advancing an instrument through unsupported anatomy |
EP1531749A2 (en) | 2002-08-13 | 2005-05-25 | Microbotics Corporation | Microsurgical robot system |
US20040176751A1 (en) | 2002-08-14 | 2004-09-09 | Endovia Medical, Inc. | Robotic medical instrument system |
US20040044295A1 (en) | 2002-08-19 | 2004-03-04 | Orthosoft Inc. | Graphical user interface for computer-assisted surgery |
JP4169549B2 (ja) | 2002-09-06 | 2008-10-22 | オリンパス株式会社 | 内視鏡 |
US7331967B2 (en) | 2002-09-09 | 2008-02-19 | Hansen Medical, Inc. | Surgical instrument coupling mechanism |
JP2004105638A (ja) | 2002-09-20 | 2004-04-08 | Shimadzu Corp | 超音波診断装置 |
US20040077940A1 (en) | 2002-10-11 | 2004-04-22 | Kienzle Thomas C. | Instrument guide for use with a tracking system |
US6899672B2 (en) | 2002-11-08 | 2005-05-31 | Scimed Life Systems, Inc. | Endoscopic imaging system including removable deflection device |
JP2004174662A (ja) | 2002-11-27 | 2004-06-24 | Fanuc Ltd | ロボットの動作状態解析装置 |
SE0203908D0 (sv) | 2002-12-30 | 2002-12-30 | Abb Research Ltd | An augmented reality system and method |
JP2004223128A (ja) | 2003-01-27 | 2004-08-12 | Hitachi Ltd | 医療行為支援装置および方法 |
FR2850775B1 (fr) | 2003-01-30 | 2005-07-22 | Ge Med Sys Global Tech Co Llc | Dispositif d'imagerie medicale a reorientation semi-automatique d'objet radiologique |
JP3972854B2 (ja) | 2003-04-10 | 2007-09-05 | ソニー株式会社 | ロボットの運動制御装置 |
US7381183B2 (en) | 2003-04-21 | 2008-06-03 | Karl Storz Development Corp. | Method for capturing and displaying endoscopic maps |
JP3975959B2 (ja) | 2003-04-23 | 2007-09-12 | トヨタ自動車株式会社 | ロボット動作規制方法とその装置およびそれを備えたロボット |
CA2522097C (en) | 2003-04-28 | 2012-09-25 | Stephen James Crampton | Cmm arm with exoskeleton |
WO2005000139A1 (en) | 2003-04-28 | 2005-01-06 | Bracco Imaging Spa | Surgical navigation imaging system |
EP1628632B1 (en) | 2003-05-21 | 2013-10-09 | The Johns Hopkins University | Devices and systems for minimally invasive surgery of the throat and other portions of mammalian body |
CN1846181A (zh) | 2003-06-20 | 2006-10-11 | 美国发那科机器人有限公司 | 多个机械手的跟踪和镜像微动 |
US8753262B2 (en) | 2003-07-29 | 2014-06-17 | Hoya Corporation | Internal treatment apparatus having circumferential side holes |
US20050054895A1 (en) | 2003-09-09 | 2005-03-10 | Hoeg Hans David | Method for using variable direction of view endoscopy in conjunction with image guided surgical systems |
DE202004014857U1 (de) | 2003-09-29 | 2005-04-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung zur virtuellen Lagebetrachtung wenigstens eines in einen Körper intrakorporal eingebrachten medizinischen Instruments |
JP2005110878A (ja) | 2003-10-06 | 2005-04-28 | Olympus Corp | 手術支援システム |
JP3708097B2 (ja) | 2003-10-08 | 2005-10-19 | ファナック株式会社 | ロボットの手動送り装置 |
WO2005043319A2 (en) | 2003-10-21 | 2005-05-12 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for intraoperative targeting |
US20050096502A1 (en) | 2003-10-29 | 2005-05-05 | Khalili Theodore M. | Robotic surgical device |
JP3732494B2 (ja) | 2003-10-31 | 2006-01-05 | ファナック株式会社 | シミュレーション装置 |
US20050107680A1 (en) | 2003-11-18 | 2005-05-19 | Kopf J. D. | Stereotaxic instrument with linear coordinate scales coupled to split-image microscopic image display system |
US7774044B2 (en) | 2004-02-17 | 2010-08-10 | Siemens Medical Solutions Usa, Inc. | System and method for augmented reality navigation in a medical intervention procedure |
US20050267359A1 (en) | 2004-05-27 | 2005-12-01 | General Electric Company | System, method, and article of manufacture for guiding an end effector to a target position within a person |
DE102004026813A1 (de) | 2004-06-02 | 2005-12-29 | Kuka Roboter Gmbh | Verfahren und Vorrichtung zum Steuern von Handhabungsgeräten |
US7979157B2 (en) | 2004-07-23 | 2011-07-12 | Mcmaster University | Multi-purpose robotic operating system and method |
US8480566B2 (en) | 2004-09-24 | 2013-07-09 | Vivid Medical, Inc. | Solid state illumination for endoscopy |
US7238056B2 (en) | 2004-10-12 | 2007-07-03 | Dekko Technologies, Inc. | Electrical connector |
WO2006086021A2 (en) | 2004-10-25 | 2006-08-17 | University Of Dayton | Method and system to provide improved accuracies in multi-jointed robots through kinematic robot model parameters determination |
US8872906B2 (en) | 2005-01-05 | 2014-10-28 | Avantis Medical Systems, Inc. | Endoscope assembly with a polarizing filter |
US20060149129A1 (en) | 2005-01-05 | 2006-07-06 | Watts H D | Catheter with multiple visual elements |
US7763015B2 (en) | 2005-01-24 | 2010-07-27 | Intuitive Surgical Operations, Inc. | Modular manipulator support for robotic surgery |
US7837674B2 (en) | 2005-01-24 | 2010-11-23 | Intuitive Surgical Operations, Inc. | Compact counter balance for robotic surgical systems |
CN101160104B (zh) | 2005-02-22 | 2012-07-04 | 马科外科公司 | 触觉引导系统及方法 |
WO2006111966A2 (en) | 2005-04-18 | 2006-10-26 | M.S.T. Medical Surgery Technologies Ltd | Means and methods of improving laparoscopic surgery |
US8208988B2 (en) | 2005-05-13 | 2012-06-26 | General Electric Company | System and method for controlling a medical imaging device |
US8108072B2 (en) | 2007-09-30 | 2012-01-31 | Intuitive Surgical Operations, Inc. | Methods and systems for robotic instrument tool tracking with adaptive fusion of kinematics information and image information |
US9789608B2 (en) | 2006-06-29 | 2017-10-17 | Intuitive Surgical Operations, Inc. | Synthetic representation of a surgical robot |
US10555775B2 (en) | 2005-05-16 | 2020-02-11 | Intuitive Surgical Operations, Inc. | Methods and system for performing 3-D tool tracking by fusion of sensor and/or camera derived data during minimally invasive robotic surgery |
US8971597B2 (en) | 2005-05-16 | 2015-03-03 | Intuitive Surgical Operations, Inc. | Efficient vision and kinematic data fusion for robotic surgical instruments and other applications |
US9492240B2 (en) | 2009-06-16 | 2016-11-15 | Intuitive Surgical Operations, Inc. | Virtual measurement tool for minimally invasive surgery |
US8073528B2 (en) | 2007-09-30 | 2011-12-06 | Intuitive Surgical Operations, Inc. | Tool tracking systems, methods and computer products for image guided surgery |
JP2006321027A (ja) | 2005-05-20 | 2006-11-30 | Hitachi Ltd | マスタ・スレーブ式マニピュレータシステム及びその操作入力装置 |
EP1887961B1 (en) | 2005-06-06 | 2012-01-11 | Intuitive Surgical Operations, Inc. | Laparoscopic ultrasound robotic surgical system |
US8398541B2 (en) | 2006-06-06 | 2013-03-19 | Intuitive Surgical Operations, Inc. | Interactive user interfaces for robotic minimally invasive surgical systems |
US20070005002A1 (en) | 2005-06-30 | 2007-01-04 | Intuitive Surgical Inc. | Robotic surgical instruments for irrigation, aspiration, and blowing |
EP3395508A1 (en) | 2005-06-30 | 2018-10-31 | Intuitive Surgical Operations Inc. | Indicator for tool state communication in multi-arm robotic telesurgery |
CN101247852B (zh) | 2005-07-25 | 2011-12-07 | 卡尔·奥托 | 用于计划和供给放射治疗的方法和装置 |
JP2007029232A (ja) | 2005-07-25 | 2007-02-08 | Hitachi Medical Corp | 内視鏡手術操作支援システム |
JP2009507617A (ja) | 2005-09-14 | 2009-02-26 | ネオガイド システムズ, インコーポレイテッド | 経腔的及び他の操作を行うための方法及び装置 |
JP4728075B2 (ja) | 2005-09-28 | 2011-07-20 | オリンパスメディカルシステムズ株式会社 | 内視鏡システム |
JP2007090481A (ja) | 2005-09-28 | 2007-04-12 | Fanuc Ltd | ロボットシミュレーション装置 |
US20070106307A1 (en) | 2005-09-30 | 2007-05-10 | Restoration Robotics, Inc. | Methods for implanting follicular units using an automated system |
US8111904B2 (en) | 2005-10-07 | 2012-02-07 | Cognex Technology And Investment Corp. | Methods and apparatus for practical 3D vision system |
EP1937176B1 (en) | 2005-10-20 | 2019-04-17 | Intuitive Surgical Operations, Inc. | Auxiliary image display and manipulation on a computer display in a medical robotic system |
US8303505B2 (en) | 2005-12-02 | 2012-11-06 | Abbott Cardiovascular Systems Inc. | Methods and apparatuses for image guided medical procedures |
US8190238B2 (en) | 2005-12-09 | 2012-05-29 | Hansen Medical, Inc. | Robotic catheter system and methods |
US7689320B2 (en) | 2005-12-20 | 2010-03-30 | Intuitive Surgical Operations, Inc. | Robotic surgical system with joint motion controller adapted to reduce instrument tip vibrations |
US7741802B2 (en) | 2005-12-20 | 2010-06-22 | Intuitive Surgical Operations, Inc. | Medical robotic system with programmably controlled constraints on error dynamics |
US7453227B2 (en) | 2005-12-20 | 2008-11-18 | Intuitive Surgical, Inc. | Medical robotic system with sliding mode control |
US7819859B2 (en) | 2005-12-20 | 2010-10-26 | Intuitive Surgical Operations, Inc. | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
CN101340852B (zh) | 2005-12-20 | 2011-12-28 | 直观外科手术操作公司 | 机器人外科系统的器械对接装置 |
US9241767B2 (en) | 2005-12-20 | 2016-01-26 | Intuitive Surgical Operations, Inc. | Method for handling an operator command exceeding a medical device state limitation in a medical robotic system |
US9266239B2 (en) | 2005-12-27 | 2016-02-23 | Intuitive Surgical Operations, Inc. | Constraint based control in a minimally invasive surgical apparatus |
US7930065B2 (en) | 2005-12-30 | 2011-04-19 | Intuitive Surgical Operations, Inc. | Robotic surgery system including position sensors using fiber bragg gratings |
US9962066B2 (en) | 2005-12-30 | 2018-05-08 | Intuitive Surgical Operations, Inc. | Methods and apparatus to shape flexible entry guides for minimally invasive surgery |
US7835823B2 (en) | 2006-01-05 | 2010-11-16 | Intuitive Surgical Operations, Inc. | Method for tracking and reporting usage events to determine when preventive maintenance is due for a medical robotic system |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
EP1815950A1 (en) | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Robotic surgical system for performing minimally invasive medical procedures |
EP1815949A1 (en) | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Medical robotic system with manipulator arm of the cylindrical coordinate type |
US8167823B2 (en) | 2009-03-24 | 2012-05-01 | Biomet Manufacturing Corp. | Method and apparatus for aligning and securing an implant relative to a patient |
ITMI20060443A1 (it) | 2006-03-13 | 2007-09-14 | Ethicon Endo Surgery Inc | Dispositivo per la manipolazione di tessuto corporeo |
US8016749B2 (en) | 2006-03-21 | 2011-09-13 | Boston Scientific Scimed, Inc. | Vision catheter having electromechanical navigation |
JP4382052B2 (ja) | 2006-03-28 | 2009-12-09 | 川崎重工業株式会社 | 駆動体の制御装置および制御方法 |
US8518024B2 (en) | 2006-04-24 | 2013-08-27 | Transenterix, Inc. | System and method for multi-instrument surgical access using a single access port |
US8924021B2 (en) | 2006-04-27 | 2014-12-30 | Honda Motor Co., Ltd. | Control of robots from human motion descriptors |
JP4883563B2 (ja) | 2006-04-27 | 2012-02-22 | 学校法人慶應義塾 | マニピュレータ装置 |
DE602007007610D1 (de) * | 2006-05-17 | 2010-08-19 | Hansen Medical Inc | Roboterinstrumentensystem |
US7683565B2 (en) | 2006-05-19 | 2010-03-23 | Mako Surgical Corp. | Method and apparatus for controlling a haptic device |
WO2007137208A2 (en) | 2006-05-19 | 2007-11-29 | Neoguide Systems, Inc. | Methods and apparatus for displaying three-dimensional orientation of a steerable distal tip of an endoscope |
CA2651784C (en) | 2006-05-19 | 2015-01-27 | Mako Surgical Corp. | Method and apparatus for controlling a haptic device |
US8029516B2 (en) | 2006-06-13 | 2011-10-04 | Intuitive Surgical Operations, Inc. | Bracing of bundled medical devices for single port entry, robotically assisted medical procedures |
US8377045B2 (en) | 2006-06-13 | 2013-02-19 | Intuitive Surgical Operations, Inc. | Extendable suction surface for bracing medial devices during robotically assisted medical procedures |
EP2038712B2 (en) | 2006-06-13 | 2019-08-28 | Intuitive Surgical Operations, Inc. | Control system configured to compensate for non-ideal actuator-to-joint linkage characteristics in a medical robotic system |
US8062211B2 (en) | 2006-06-13 | 2011-11-22 | Intuitive Surgical Operations, Inc. | Retrograde instrument |
US10258425B2 (en) | 2008-06-27 | 2019-04-16 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide |
US10008017B2 (en) | 2006-06-29 | 2018-06-26 | Intuitive Surgical Operations, Inc. | Rendering tool information as graphic overlays on displayed images of tools |
US9718190B2 (en) | 2006-06-29 | 2017-08-01 | Intuitive Surgical Operations, Inc. | Tool position and identification indicator displayed in a boundary area of a computer display screen |
US20090192523A1 (en) | 2006-06-29 | 2009-07-30 | Intuitive Surgical, Inc. | Synthetic representation of a surgical instrument |
DE102006046689A1 (de) | 2006-09-29 | 2008-04-10 | Siemens Ag | Medizintechnisches Behandlungssystem |
US7831096B2 (en) | 2006-11-17 | 2010-11-09 | General Electric Company | Medical navigation system with tool and/or implant integration into fluoroscopic image projections and method of use |
US10354410B2 (en) | 2006-11-28 | 2019-07-16 | Koninklijke Philips N.V. | Apparatus for determining a position of a first object within a second object |
US9456877B2 (en) | 2006-12-01 | 2016-10-04 | Boston Scientific Scimed, Inc. | Direct drive instruments and methods of use |
DE102006061178A1 (de) | 2006-12-22 | 2008-06-26 | Siemens Ag | System zur Durchführung und Überwachung minimal-invasiver Eingriffe |
EP2143038A4 (en) | 2007-02-20 | 2011-01-26 | Philip L Gildenberg | VIDEOSTEREREOTAXY- AND AUDIOSTEREOTAXY-ASSISTED SURGICAL PROCEDURES AND METHODS |
JP4891823B2 (ja) | 2007-03-29 | 2012-03-07 | オリンパスメディカルシステムズ株式会社 | 内視鏡装置 |
JP5030639B2 (ja) | 2007-03-29 | 2012-09-19 | オリンパスメディカルシステムズ株式会社 | 内視鏡装置の処置具位置制御装置 |
EP2148629B1 (en) | 2007-04-16 | 2012-06-06 | NeuroArm Surgical, Ltd. | Frame mapping and force feedback methods, devices and systems |
WO2009044287A2 (en) | 2007-04-16 | 2009-04-09 | The Governors Of The University Of Calgary | Methods, devices, and systems for automated movements involving medical robots |
JP5543331B2 (ja) | 2007-04-16 | 2014-07-09 | ニューロアーム サージカル リミテッド | マニピュレータのツールの一軸に沿った移動を非機械的に制限および/またはプログラミングする方法、装置、およびシステム |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US9084623B2 (en) | 2009-08-15 | 2015-07-21 | Intuitive Surgical Operations, Inc. | Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide |
US9469034B2 (en) | 2007-06-13 | 2016-10-18 | Intuitive Surgical Operations, Inc. | Method and system for switching modes of a robotic system |
US8620473B2 (en) | 2007-06-13 | 2013-12-31 | Intuitive Surgical Operations, Inc. | Medical robotic system with coupled control modes |
US8903546B2 (en) | 2009-08-15 | 2014-12-02 | Intuitive Surgical Operations, Inc. | Smooth control of an articulated instrument across areas with different work space conditions |
US9089256B2 (en) | 2008-06-27 | 2015-07-28 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide |
US9138129B2 (en) | 2007-06-13 | 2015-09-22 | Intuitive Surgical Operations, Inc. | Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide |
JP2009006410A (ja) | 2007-06-26 | 2009-01-15 | Fuji Electric Systems Co Ltd | 遠隔操作支援装置および遠隔操作支援プログラム |
DE102007029884A1 (de) | 2007-06-28 | 2009-01-15 | Siemens Ag | Verfahren und Einrichtung zum Erzeugen eines aus einer Mehrzahl von endoskopischen Einzelbildern zusammengesetztes Gesamtbildes von einer Innenoberfläche eines Körperhohlraums |
JP2009012106A (ja) | 2007-07-03 | 2009-01-22 | Fuji Electric Systems Co Ltd | 遠隔操作支援装置および遠隔操作支援プログラム |
JP2009039814A (ja) | 2007-08-08 | 2009-02-26 | Toyota Motor Corp | パワーアシスト装置及びその制御方法 |
WO2009046234A2 (en) | 2007-10-05 | 2009-04-09 | Ethicon Endo-Surgery, Inc | Ergonomic surgical instruments |
US9037295B2 (en) | 2008-03-07 | 2015-05-19 | Perception Raisonnement Action En Medecine | Dynamic physical constraint for hard surface emulation |
GB0804633D0 (en) | 2008-03-12 | 2008-04-16 | Prosurgics Ltd | a telescopic support |
US8155479B2 (en) | 2008-03-28 | 2012-04-10 | Intuitive Surgical Operations Inc. | Automated panning and digital zooming for robotic surgical systems |
US8808164B2 (en) | 2008-03-28 | 2014-08-19 | Intuitive Surgical Operations, Inc. | Controlling a robotic surgical tool with a display monitor |
US20090259105A1 (en) | 2008-04-10 | 2009-10-15 | Miyano Hiromichi | Medical treatment system and suturing method |
JP5384178B2 (ja) | 2008-04-21 | 2014-01-08 | 株式会社森精機製作所 | 加工シミュレーション方法及び加工シミュレーション装置 |
US8315738B2 (en) | 2008-05-21 | 2012-11-20 | Fanuc Robotics America, Inc. | Multi-arm robot system interference check via three dimensional automatic zones |
US8414469B2 (en) | 2008-06-27 | 2013-04-09 | Intuitive Surgical Operations, Inc. | Medical robotic system having entry guide controller with instrument tip velocity limiting |
US9179832B2 (en) | 2008-06-27 | 2015-11-10 | Intuitive Surgical Operations, Inc. | Medical robotic system with image referenced camera control using partitionable orientational and translational modes |
US8864652B2 (en) | 2008-06-27 | 2014-10-21 | Intuitive Surgical Operations, Inc. | Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip |
WO2010030397A1 (en) | 2008-09-12 | 2010-03-18 | Accuray Incorporated | Controlling x-ray imaging based on target motion |
US8315720B2 (en) | 2008-09-26 | 2012-11-20 | Intuitive Surgical Operations, Inc. | Method for graphically providing continuous change of state directions to a user of a medical robotic system |
US8126642B2 (en) | 2008-10-24 | 2012-02-28 | Gray & Company, Inc. | Control and systems for autonomously driven vehicles |
US20100331856A1 (en) | 2008-12-12 | 2010-12-30 | Hansen Medical Inc. | Multiple flexible and steerable elongate instruments for minimally invasive operations |
WO2010069430A1 (de) | 2008-12-17 | 2010-06-24 | Kuka Roboter Gmbh | Verfahren zum abfahren einer vorgegebenen bahn durch einen manipulator, sowie steuervorrichtung zur durchführung eines solchen verfahrens |
US8335590B2 (en) | 2008-12-23 | 2012-12-18 | Intuitive Surgical Operations, Inc. | System and method for adjusting an image capturing device attribute using an unused degree-of-freedom of a master control device |
US8594841B2 (en) | 2008-12-31 | 2013-11-26 | Intuitive Surgical Operations, Inc. | Visual force feedback in a minimally invasive surgical procedure |
US8306656B1 (en) | 2009-01-12 | 2012-11-06 | Titan Medical Inc. | Method and system for performing medical procedure |
US8120301B2 (en) | 2009-03-09 | 2012-02-21 | Intuitive Surgical Operations, Inc. | Ergonomic surgeon control console in robotic surgical systems |
US8423182B2 (en) | 2009-03-09 | 2013-04-16 | Intuitive Surgical Operations, Inc. | Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems |
US8337397B2 (en) | 2009-03-26 | 2012-12-25 | Intuitive Surgical Operations, Inc. | Method and system for providing visual guidance to an operator for steering a tip of an endoscopic device toward one or more landmarks in a patient |
JP2011013294A (ja) | 2009-06-30 | 2011-01-20 | Toshiba Corp | 情報処理装置および輝度制御方法 |
US8918211B2 (en) | 2010-02-12 | 2014-12-23 | Intuitive Surgical Operations, Inc. | Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument |
US9492927B2 (en) | 2009-08-15 | 2016-11-15 | Intuitive Surgical Operations, Inc. | Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose |
US8244402B2 (en) | 2009-09-22 | 2012-08-14 | GM Global Technology Operations LLC | Visual perception system and method for a humanoid robot |
EP2533678B1 (en) | 2010-02-11 | 2020-03-25 | Intuitive Surgical Operations, Inc. | System for automatically maintaining an operator selected roll orientation at a distal tip of a robotic endoscope |
JP5782515B2 (ja) | 2010-08-02 | 2015-09-24 | ザ・ジョンズ・ホプキンス・ユニバーシティ | ロボットの協働制御および音声フィードバックを用いて力覚センサ情報を提示する方法 |
CN103607971B (zh) | 2011-07-07 | 2016-08-31 | 奥林巴斯株式会社 | 医疗主从操作器 |
US9387048B2 (en) | 2011-10-14 | 2016-07-12 | Intuitive Surgical Operations, Inc. | Catheter sensor systems |
KR20130080909A (ko) | 2012-01-06 | 2013-07-16 | 삼성전자주식회사 | 수술 로봇 및 그 제어 방법 |
US8891924B2 (en) | 2012-04-26 | 2014-11-18 | Bio-Medical Engineering (HK) Limited | Magnetic-anchored robotic system |
KR101800189B1 (ko) | 2012-04-30 | 2017-11-23 | 삼성전자주식회사 | 수술 로봇의 힘 제어 장치 및 방법 |
US10507066B2 (en) | 2013-02-15 | 2019-12-17 | Intuitive Surgical Operations, Inc. | Providing information of tools by filtering image areas adjacent to or on displayed images of the tools |
KR102115447B1 (ko) | 2013-03-27 | 2020-05-27 | 한양대학교 에리카산학협력단 | 내시경 장치 |
US9949798B2 (en) | 2016-01-06 | 2018-04-24 | Ethicon Endo-Surgery, Llc | Methods, systems, and devices for controlling movement of a robotic surgical system |
WO2019126863A1 (en) | 2017-12-28 | 2019-07-04 | Orbsurgical Ltd. | Iviicrosurgery-specific haptic hand controller |
-
2009
- 2009-06-23 US US12/489,566 patent/US9089256B2/en active Active
-
2010
- 2010-06-11 CN CN201610085951.2A patent/CN105748026B/zh active Active
- 2010-06-11 KR KR1020127000713A patent/KR101726188B1/ko active IP Right Grant
- 2010-06-11 WO PCT/US2010/038246 patent/WO2010151438A1/en active Application Filing
- 2010-06-11 EP EP10724228.1A patent/EP2445436B1/en active Active
- 2010-06-11 CN CN201080028525.6A patent/CN102802550B/zh active Active
- 2010-06-11 KR KR1020177009291A patent/KR101762623B1/ko active IP Right Grant
-
2015
- 2015-06-24 US US14/748,602 patent/US9717563B2/en active Active
-
2017
- 2017-07-11 US US15/646,685 patent/US10368952B2/en active Active
-
2019
- 2019-06-19 US US16/446,167 patent/US11382702B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR101726188B1 (ko) | 2017-04-12 |
US20090326318A1 (en) | 2009-12-31 |
US9717563B2 (en) | 2017-08-01 |
US20190298463A1 (en) | 2019-10-03 |
US20150366625A1 (en) | 2015-12-24 |
US11382702B2 (en) | 2022-07-12 |
US9089256B2 (en) | 2015-07-28 |
WO2010151438A1 (en) | 2010-12-29 |
EP2445436B1 (en) | 2016-11-30 |
KR20120107909A (ko) | 2012-10-04 |
KR20170041920A (ko) | 2017-04-17 |
US10368952B2 (en) | 2019-08-06 |
CN102802550A (zh) | 2012-11-28 |
CN105748026B (zh) | 2017-11-10 |
CN105748026A (zh) | 2016-07-13 |
KR101762623B1 (ko) | 2017-07-28 |
EP2445436A1 (en) | 2012-05-02 |
US20170304012A1 (en) | 2017-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102802550B (zh) | 提供包括延伸出进入引导器远端的可联接器械的运动限制范围的辅助视图的医疗机器人系统 | |
US11638622B2 (en) | Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide | |
CN102170835B (zh) | 提供计算机生成的摄像器械的辅助视图以控制医疗机器人系统的末端定位和取向的医疗机器人系统 | |
CN102449666A (zh) | 用于为操纵内窥镜设备的末端朝向一个或更多个界标转向提供视觉引导和在内窥镜导航中辅助操作者的系统 | |
CN114760903A (zh) | 用于在外科手术期间控制图像捕获设备的方法、装置、以及系统 | |
US10772701B2 (en) | Method and apparatus to project light pattern to determine distance in a surgical scene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |