CN102728355A - 脱除燃油中含硫化合物的可见光催化剂及其制备和应用 - Google Patents

脱除燃油中含硫化合物的可见光催化剂及其制备和应用 Download PDF

Info

Publication number
CN102728355A
CN102728355A CN2011100870063A CN201110087006A CN102728355A CN 102728355 A CN102728355 A CN 102728355A CN 2011100870063 A CN2011100870063 A CN 2011100870063A CN 201110087006 A CN201110087006 A CN 201110087006A CN 102728355 A CN102728355 A CN 102728355A
Authority
CN
China
Prior art keywords
catalyst
metal
sulfur
reaction
fuel oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011100870063A
Other languages
English (en)
Inventor
李�灿
蒋宗轩
林峰
王冬娥
张永娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN2011100870063A priority Critical patent/CN102728355A/zh
Priority to PCT/CN2011/082513 priority patent/WO2012136063A1/zh
Priority to US14/009,353 priority patent/US9415376B2/en
Publication of CN102728355A publication Critical patent/CN102728355A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/682Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium, tantalum or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/644Arsenic, antimony or bismuth
    • B01J23/6447Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • B01J23/6482Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/04Metals, or metals deposited on a carrier
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种脱除燃油中噻吩等含硫化合物的可见光催化氧化反应的催化剂及制法和应用。该催化剂由一种金属MI,一种金属MII和BiVO4载体组成,其中金属MI和金属MII质量之和(MI+MII)与BiVO4载体的质量比为1:5000-1:50;金属MI和金属MII的质量比为1:50-50:1。该催化剂用于含有噻吩等含硫化合物的光催化氧化脱硫中。在温和的操作条件(室温,1atm)下,以氧气为氧化剂,使用可见光源(氙灯,波长420nm<λ<700nm),避开了油品对光的吸收(主要集中在紫外光区域),在油品不被激发的同时,对噻吩硫的脱除率可以达到90%以上,其中油品中的硫可以被氧化为SO3并从反应体系中逃逸出来用吸收液吸收,可以免去传统氧化脱硫工艺中萃取步骤,操作费用可大大降低。反应后催化剂可以通过静置或者离心分离回收得到。

Description

脱除燃油中含硫化合物的可见光催化剂及其制备和应用
技术领域
本发明涉及燃油中噻吩及其衍生物等含硫化合物的脱除,具体地说是一种双助剂负载型光催化剂及制法和应用,其为脱除燃油中噻吩、苯并噻吩和二苯并噻吩等含硫化合物的可见光催化氧化反应的催化剂。
背景技术
燃油中的含硫化合物燃烧后产生的SOx不仅对环境造成酸雨等诸多危害,而且是较难脱除的一类含硫化合物。目前在工业上,传统的加氢脱硫方法是降低燃油中硫含量的一个主要途径,但由于操作费用高、设备复杂等问题,急需开发新型高效、低成本的非加氢脱硫技术。氧化脱硫因其操作条件温和(常温、常压)、不耗氢等优点被认为是一种非常有前景的超深度脱硫技术之一;而光催化氧化脱硫使用分子氧为氧化剂(不使用双氧水),操作条件温和,因而是一种潜在的廉价、环境友好的脱硫技术,引起了工业界的关注。
    F. Berthou等(F. Berthou and V. Vignier, Int., J. Environ. Chem., 1986, 27, 81.)尝试用日光直接照射脱硫,将二苯并噻吩溶于经膜过滤的自然海水中,在日光下放置8天,脱除率可达80%。但这一工艺过程反应时间太长,没有实用意义。Yasuhiro Shiraishi等人(Yasuhiro Shiraishi et al., Ind.Eng.Chem.Res. 1996, 35, 586;Yasuhiro Shiraishi et al., Chem.Commun., 1998, 2601;Yasuhiro Shiraishi et al., Ind.Eng.Chem.Res., 1999, 38, 310;Yasuhiro Shiraishi et al., Ind.Eng.Chem.Res. 2000, 391345;Yasuhiro Shiraishi et al., Journal of Chemical Engineering of Japan, 2002, 35, 489.)在二苯并噻吩的光敏转化实验中进行了一系列尝试,使用的光敏剂由最初的苯甲酮到后来高效的二氰蒽(DCA),溶剂也由最初的十四烷转到乙腈这种比较稳定的非质子极性溶剂,2h可将原料液中含硫1800 ppm降至100 ppm。赵进才等(Jincai Zhao et al., J. Phys. Chem. B, 2006, 110, 2942.)用2-(4-methoxyphenyl) -4,6-diphenylpyrylium作光敏剂对二苯并噻吩和二甲基二苯并噻吩的乙腈溶液进行光催化脱硫,可将原料液中含硫190 ppm 在8h内转化接近100%,产物主要是亚砜和砜。但是这些过程需要使用光敏剂,造成分离回收困难,并对油品有一定的污染。
由于单纯的光催化作用效率不高,且氧化能力有限,人们又不断开发出其他辅助光催化过程的手段。Y usufg 等(Y usufg et al., Environ. Sci. Technol., 2005, 39, 8557.)报道了在TiO2作光催化剂,3% H2O2(aq)作氧化剂超声波辅助下,将二苯并噻吩和4,6-二甲基二苯并噻吩氧化成相应的亚砜和砜的过程。Naiqiang Yan 等(Naiqiang Yan et al., Energy & Fuels 2006,  20, 142;Naiqiang Yan et al., Journal of Chemical Industry and Engineering (China), 2003, 54, 1279)还报道了用γ射线照射作辅助手段的氧化过程。
从已有报道工作不难发现,现有的用于光催化氧化含硫有机分子的催化剂存在如下不足的地方:(1)催化剂活性还有待进一步提高;(2)使用光敏剂,使得分离回收困难,对脱硫产品造成一定的污染;(3)需要其它一些辅助手段,操作费用高。因此,非常有必要开发一种具有可见光响应的高活性的、环境友好的、易于回收利用的光催化氧化脱硫催化剂。
发明内容
本发明的目的在于提供一种高活性的、环境友好、易于回收的用于燃油中噻吩及其衍生物等含硫化合物的脱除的光催化氧化催化剂及制法和应用。
为实现上述目的,本发明采用的技术方案为:
一种脱除燃油中含硫化合物的可见光催化剂,该催化剂由一种金属MI,一种金属MII和BiVO4载体组成,其中金属MI和金属MII质量之和(MI+MII)与BiVO4载体的质量比为1:5000-1:50;金属MI和金属MII的质量比为1:50-50:1;
其中所述的金属MI选自Pt、Pd、Au中的一种, 金属MII选自Ru、Ir中的一种。
所述光催化剂的制备方法,包括以下步骤:
a) 首先制备BiVO4载体:将铋盐和钒盐按照Bi / V=1∶0.5 - 1∶2的摩尔配比溶解到2mol· L-1硝酸中制成Bi离子和V离子浓度均为0.05 - 0.5 mol·L-1的溶液;形成均匀的澄清溶液后,用氨水调节溶液pH值到1 - 3,转移到聚四氟乙烯内衬的水热反应釜中100 - 250 ℃水热反应12 h - 48 h;在获得絮状沉淀后,离心、洗涤、干燥,最后在空气环境中对所得的粉体在50 - 200 ℃下焙烧过夜即可;
b) 将上述BiVO4载体浸渍于含金属MII的可溶性盐的水溶液中,通过搅拌蒸发除去水、焙烧得到光催化剂前体,将其溶解于体积比为3:2 - 4:1的水和甲醇组成的混合溶液中形成催化剂前体的浆液;
c) 将所述催化剂前体的浆液与所述含有金属MI的可溶性盐的水溶液混合,在光照下进行光还原沉积反应。
其中步骤c)所述金属MI的可溶性盐的水溶液的浓度为0.1 - 0.5 mg MI/mL,步骤b)所述金属MII的可溶性盐的水溶液浓度为0.5 - 1.5 mg MII/mL。
其中步骤b)中所述搅拌蒸发是在50 - 90 ℃进行3 - 6小时,焙烧是在空气气氛中于100 - 500℃处理0.5 - 4小时。
其中步骤c)中所述光还原沉积反应是在室温下用氙灯(波长420nm < λ < 700 nm) 进行光照1 - 4小时。
所述光催化剂可用于含有含硫化合物的光催化氧化脱硫过程中,其操作步骤为:
含硫化合物为噻吩、苯并噻吩和二苯并噻吩等。
将10 mg - 100 mg催化剂加入50 ml上述一种含硫化合物的溶液中,通入O2,于10℃- 20℃,可见光照射下,搅拌反应30 - 240 min,停止反应,分离回收催化剂。
可见光照射为氙灯,波长420nm < λ < 700 nm。
与公知技术相比,本发明具有以下优点:
1.     本发明设计合成了一种金属担载量超低的双助剂负载型光催化剂,制备出具有可见光响应的较高活性的光催化剂,对环境友好,具有高的稳定性,且可回收利用。
2. 本发明使用廉价的氧气作为氧化剂,无环境污染,同时降低了反应的成本。
3. 该催化剂用于燃油中含硫化合物的可见光催化氧化脱硫之中,表现出很高的脱硫活性,在温和的操作条件(室温,1 atm)下,以氧气为氧化剂,使用可见光源(氙灯,波长420nm < λ < 700 nm),避开了油品对光的吸收(主要集中在紫外光区域),在油品不被激发的同时,对噻吩硫的脱除率可以达到90%以上。
4. 其中油品中的硫可以被氧化为SO3并从反应体系中逃逸出来用吸收液吸收,避免了传统工艺中萃取除去的步骤,降低了操作费用。相对于紫外光催化剂而言,可运用于广泛的油品,反应后催化剂可以通过静置或者离心分离回收得到。
附图说明
图1是本发明实施例1中制备的催化剂的SEM照片。从图1中可以看出催化剂颗粒尺寸在2 μm左右。
图2 a)是实施例1中制备的催化剂的紫外可见漫反射光谱图。从图中可以看出制得的催化剂的吸收边可以达到530 nm; 图2 b)是实际油品的紫外可见漫反射光谱图,从图中可以看出柴油和汽油的吸收边可以达到420 nm。所以在可见光源照射下,保证在油品不被激发的同时,催化剂可以吸收光的能量起到光催化氧化的作用。
图3是实施例14中制备的新鲜催化剂及反应后催化剂的XRD谱图。从图3中可以看出制得的催化剂为单斜相BiVO4,反应过程中结构稳定,反应后依然很好的保持了单斜相结构。
图4是实施例16中得到的白色沉淀的XRD谱图。从图中可以看出白色沉淀的XRD谱图与BaSO4的标准谱图符合得非常好,说明在反应的过程中,硫可以被氧化为SO3并从反应体系中逃逸出来。
具体实施方式
为了进一步说明本发明,列举以下实施实例,但它并不限制各附加权利要求所定义的发明范围。
实施例1 BiVO4的制备:
将铋盐和钒盐按照Bi / V=1∶1的配比溶解到硝酸中制成Bi离子和V离子浓度均为0.1 mol·L-1的溶液。形成均匀的澄清溶液后,用氨水调节溶液pH值到2.2,转移到聚四氟乙烯内衬的水热反应釜中200 ℃水热反应24h。在获得絮状沉淀后,离心、洗涤、干燥,最后在空气环境中对所得的粉体在90 ℃下焙烧过夜即可。
将上述制得的BiVO4催化剂对含噻吩的溶液进行光催化氧化脱硫实验:
(1)取50 ml 含硫600 ppm的噻吩溶液于光反应器中,加入0.050 g催化剂A,再通入氧气,10 ℃,1 MPa下剧烈搅拌光照3 h;
(2) 将上述处理溶液离心分离回收催化剂,在GC-FPD中可以检测硫含量,脱除率为48.8%。
实施例2 
本发明中催化剂的制备。
称取0.05g的氯化铱溶于100 ml水中,搅拌30 min;称取1.0 g实施例1制得的BiVO4,加入5 mL上述混合溶液中,超声1 h,静置24 h;在50 ℃水浴下加热除去水分,300 ℃焙烧1 h,得到催化剂的前体;将所得的催化剂前体分散于体积比为4:1的水和甲醇组成的混合溶液中形成催化剂前体的浆液,加入浓度为0.3578 mg Pt/ mL的氯铂酸水溶液1mL,激烈搅拌混合,通入高纯氮气30 min,光照1 h,最后经过滤,去离子水洗涤,真空干燥得黄色固体催化剂,称为催化剂A。
实施例3 
使用氯化钌(0.42 g)溶于100 mL水中,取0.5 mL该溶液,其余操作步骤同实施例2,称为催化剂B。
实施例4 
使用氯化钌(0.42 g)溶于100 mL水中,取0.05 mL该溶液,其余操作步骤同实施例2,称为催化剂C。
实施例5
对噻吩含硫化合物的模型体系进行光催化氧化脱硫实验:
(1)取50 mL 含硫600 ppm的噻吩溶液于光反应器中,加入0.100 g催化剂A,再通入氧气,10 ℃,1 MPa下剧烈搅拌光照3 h;
(2) 将上述处理溶液离心分离回收催化剂,在GC-FPD中可以检测硫含量,脱除率为92.3%。
实施例6 
选用催化剂B,并且其加入量为0.100 g,反应压力为1 MPa,其余操作条件同实施例5。 应用结果在GC-FPD中检测,脱除率为95.3%。
实施例7 
选用催化剂C,并且其加入量为0.100 g,反应压力为1 MPa,其余操作条件同实施例5。应用结果在GC-FPD中检测硫脱除率为93.8%。
实施例8
本发明中另一种催化剂的制备。
称取0.42 g氯化钌溶于100 mL水中,搅拌30 min;称取1.0 g BiVO4,加入0.05 mL上述混合溶液中,超声1 h,静置24 h;在50 ℃水浴下加热除去水分,300℃焙烧1 h,得到催化剂的前体;将所得的催化剂前体分散于体积比为4:1的水和甲醇组成的混合溶液中形成催化剂前体的浆液,加入浓度为0.37 mg Pd/ mL的氯化钯水溶液1mL,激烈搅拌混合,通入高纯氮气30 min,光照1 h,最后经过滤,去离子水洗涤,真空干燥得黄色固体催化剂,称为催化剂D。
实施例9 
使用氯金酸(1.196 mg Au/mL)水溶液, 取0.17 mL滴入进行光还原沉积实验,其余操作步骤同实施例8,称为催化剂E。
实施例10 
使用氯铂酸(0.3578 mg Pt /mL)水溶液,取0.56 mL滴入进行光还原沉积实验,其余操作步骤同实施例8,称为催化剂F。
实施例11 
使用氯铂酸(0.3578 mg Pt /mL)水溶液,取0.84 mL滴入进行光还原沉积实验,其余操作步骤同实施例8,称为催化剂G。
实施例12 
将上述催化剂对含噻吩硫化物模型体系进行光催化氧化脱硫实验:
(1)取50 mL 含硫600 ppm的噻吩溶液于光反应器中,加入0.100 g催化剂D,再通入氧气,10 ℃,1 MPa下剧烈搅拌光照3 h;
(2) 将上述处理溶液离心分离回收催化剂,在GC-FPD中可以检测硫含量,脱除率90.0%。
实施例13
选用催化剂E,并且其加入量为0.100 g,其余操作条件同实施例12。应用结果在GC-FPD中检测,脱除率为90.1%。
实施例14
选用催化剂F,并且其加入量为0.050 g,其余操作条件同实施例12。应用结果在GC-FPD中检测,脱除率为91.5%。
实施例15
选用催化剂G,并且其加入量为0.050 g,其余操作条件同实施例12。应用结果在GC-FPD中检测,脱除率为99.4%。
实施例16
将实施例15中反应体系所产生的气体用NaOH (0.2 M) 吸收,加入Ba(NO3)2和HNO(aq),得到不溶于硝酸的白色沉淀。
以上所有实施例,所有催化剂可以重复使用。
综上所述,本发明制备了一种具有可见光响应的较高光催化活性的双助剂负载型光催化剂,该催化剂用于含有噻吩等含硫化合物的燃油的光催化氧化脱硫之中。在温和的操作条件(室温,1 atm)下,以氧气为氧化剂,使用可见光源(氙灯,波长420nm < λ < 700 nm),避开了油品对光的吸收(主要集中在紫外光区域),在油品不被激发的同时,对噻吩硫的脱除率可以达到90%以上,其中油品中的硫可以被氧化为SO3并从反应体系中逃逸出来用吸收液吸收,避免了传统工艺中萃取除去的一步。相对于紫外光催化剂而言,可运用广泛的油品,反应后催化剂可以通过静置或者离心分离回收得到。这种双助催化剂极大的提高了载体中电子空穴的分离与传输能力,从而得到高活性的光催化剂,在温和操作条件下通过光催化脱硫反应,对噻吩类含硫化合物有很好的脱除效果,并且使用氧气为氧化剂,降低了反应的成本,同时催化剂易于回收再利用。

Claims (7)

1.一种脱除燃油中含硫化合物的可见光催化剂,其特征在于:该催化剂由一种金属MI,一种金属MII和BiVO4载体组成,其中金属MI和金属MII质量之和(MI+MII)与BiVO4载体的质量比为1:5000-1:50;金属MI和金属MII的质量比为1:50-50:1;
其中所述的金属MI选自Pt、Pd、Au中的一种, 金属MII选自Ru、Ir中的一种。
2.一种权利要求1所述光催化剂的制备方法,包括以下步骤:
a) 首先制备BiVO4载体:将铋盐和钒盐按照Bi / V=1∶0.5 - 1∶2的摩尔配比溶解到2mol· L-1硝酸中制成Bi离子和V离子浓度均为0.05 - 0.5 mol·L-1的溶液;形成均匀的澄清溶液后,用氨水调节溶液pH值到1 - 3,转移到聚四氟乙烯内衬的水热反应釜中100 - 250 ℃水热反应12 h - 48 h;在获得絮状沉淀后,离心、洗涤、干燥,最后在空气环境中对所得的粉体在50 - 200 ℃下焙烧过夜即可;
b) 将上述BiVO4载体浸渍于含金属MII的可溶性盐的水溶液中,通过搅拌蒸发除去水、焙烧得到光催化剂前体,将其溶解于体积比为3:2 - 4:1的水和甲醇组成的混合溶液中形成催化剂前体的浆液;
c) 将所述催化剂前体的浆液与所述含有金属MI的可溶性盐的水溶液混合,在光照下进行光还原沉积反应。
3.根据权利要求2所述的制备方法,其特征在于:其中步骤c)所述金属MI的可溶性盐的水溶液的浓度为0.1 - 0.5 mg MI/mL,步骤b)所述金属MII的可溶性盐的水溶液浓度为0.5 - 1.5 mg MII/mL。
4.根据权利要求2所述的制备方法,其特征在于:其中步骤b)中所述搅拌蒸发是在50 - 90 ℃进行3 - 6小时,焙烧是在空气气氛中于100 - 500℃处理0.5 - 4小时。
5.根据权利要求2所述的制备方法,其特征在于:其中步骤c)中所述光还原沉积反应是在室温下用波长420nm < λ < 700 nm的氙灯进行光照1 - 4小时。
6.一种权利要求1所述光催化剂的应用,其特征在于:权利要求1所述光催化剂可用于含有含硫化合物的光催化氧化脱硫过程中,其操作步骤为:
含硫化合物为噻吩、苯并噻吩和二苯并噻吩等;
将10 mg - 100 mg催化剂加入50 ml上述一种含硫化合物的溶液中,通入O2,于10℃- 20℃,可见光照射下,搅拌反应30 - 240 min,停止反应,分离回收催化剂。
7.一种权利要求1所述光催化剂的应用,其特征在于:可见光照射为氙灯,波长420nm < λ < 700 nm。
CN2011100870063A 2011-04-07 2011-04-07 脱除燃油中含硫化合物的可见光催化剂及其制备和应用 Pending CN102728355A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011100870063A CN102728355A (zh) 2011-04-07 2011-04-07 脱除燃油中含硫化合物的可见光催化剂及其制备和应用
PCT/CN2011/082513 WO2012136063A1 (zh) 2011-04-07 2011-11-21 脱除燃油中含硫化合物的可见光催化剂及其制备和应用
US14/009,353 US9415376B2 (en) 2011-04-07 2011-11-21 Visible light catalyst for removing sulfur-containing compounds in fuel oil, and preparation and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100870063A CN102728355A (zh) 2011-04-07 2011-04-07 脱除燃油中含硫化合物的可见光催化剂及其制备和应用

Publications (1)

Publication Number Publication Date
CN102728355A true CN102728355A (zh) 2012-10-17

Family

ID=46968569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100870063A Pending CN102728355A (zh) 2011-04-07 2011-04-07 脱除燃油中含硫化合物的可见光催化剂及其制备和应用

Country Status (3)

Country Link
US (1) US9415376B2 (zh)
CN (1) CN102728355A (zh)
WO (1) WO2012136063A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103965955A (zh) * 2014-04-16 2014-08-06 华南理工大学 一种两步法柴油氧化脱硫的方法
CN104357080A (zh) * 2014-10-10 2015-02-18 中国海洋大学 一种柴油或汽油光催化氧化脱硫的方法及催化剂
CN106492800A (zh) * 2016-11-24 2017-03-15 武汉理工大学 Pt/Au‑BiVO4Z‑型可见光纳米片光催化剂的制备方法
CN111471481A (zh) * 2020-04-20 2020-07-31 烟台大学 波长200~380nm紫外光催化氧化柴油深度脱硫方法
CN111471480A (zh) * 2020-04-20 2020-07-31 烟台大学 380~780 nm可见光催化氧化柴油深度脱硫方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103433021B (zh) * 2013-08-15 2015-04-22 陕西科技大学 一种四方相Er/BiVO4可见光光催化剂及其制备方法和应用
WO2019050471A1 (en) * 2017-09-08 2019-03-14 National University Of Singapore METHOD FOR PRODUCING BISMUTH VANADATE AND RELATED PRODUCTS
CN113856754B (zh) * 2021-09-25 2023-11-24 吉林化工学院 一种深度脱硫催化剂及其应用
CN115138354B (zh) * 2022-05-23 2024-03-08 深圳万知达科技有限公司 一种核壳结构Cs0.32WO3/BiVO4异质结及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1806915A (zh) * 2006-02-23 2006-07-26 上海交通大学 氧化钴负载的钒酸铋复合光催化剂及其制备方法
CN101811040A (zh) * 2010-04-09 2010-08-25 青岛大学 具有可见光催化降解污染物性能的表面疏水性钒酸铋的合成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3718710B2 (ja) * 2001-07-23 2005-11-24 独立行政法人物質・材料研究機構 可視光応答性光触媒及びそれを用いた水素製造方法と有害化学物質分解方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1806915A (zh) * 2006-02-23 2006-07-26 上海交通大学 氧化钴负载的钒酸铋复合光催化剂及其制备方法
CN101811040A (zh) * 2010-04-09 2010-08-25 青岛大学 具有可见光催化降解污染物性能的表面疏水性钒酸铋的合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GE, LEI: "Novel Visible-light-driven Pt/BiVO4 Photocatalyst for Efficient Degradation of Methyl Orange", 《JOURNAL OF MOLECULAR CATALYSIS》, vol. 282, no. 12, 31 March 2008 (2008-03-31), pages 62 - 66 *
戈磊等: "新型可见光活性氧化钯/钒酸铋复合光催化剂的制备及其光催化性能", 《硅酸盐学报》, vol. 36, no. 3, 31 March 2008 (2008-03-31), pages 320 - 324 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103965955A (zh) * 2014-04-16 2014-08-06 华南理工大学 一种两步法柴油氧化脱硫的方法
CN104357080A (zh) * 2014-10-10 2015-02-18 中国海洋大学 一种柴油或汽油光催化氧化脱硫的方法及催化剂
CN104357080B (zh) * 2014-10-10 2016-05-04 中国海洋大学 一种柴油或汽油光催化氧化脱硫的方法及催化剂
CN106492800A (zh) * 2016-11-24 2017-03-15 武汉理工大学 Pt/Au‑BiVO4Z‑型可见光纳米片光催化剂的制备方法
CN106492800B (zh) * 2016-11-24 2019-04-30 武汉理工大学 Pt/Au-BiVO4Z-型可见光纳米片光催化剂的制备方法
CN111471481A (zh) * 2020-04-20 2020-07-31 烟台大学 波长200~380nm紫外光催化氧化柴油深度脱硫方法
CN111471480A (zh) * 2020-04-20 2020-07-31 烟台大学 380~780 nm可见光催化氧化柴油深度脱硫方法
CN111471481B (zh) * 2020-04-20 2022-02-15 烟台大学 波长200~380nm紫外光催化氧化柴油深度脱硫方法
CN111471480B (zh) * 2020-04-20 2022-02-15 烟台大学 380~780 nm可见光催化氧化柴油深度脱硫方法

Also Published As

Publication number Publication date
US9415376B2 (en) 2016-08-16
WO2012136063A1 (zh) 2012-10-11
US20140021100A1 (en) 2014-01-23

Similar Documents

Publication Publication Date Title
CN102728355A (zh) 脱除燃油中含硫化合物的可见光催化剂及其制备和应用
Lim et al. A current overview of the oxidative desulfurization of fuels utilizing heat and solar light: from materials design to catalysis for clean energy
Chen et al. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation
US7220391B1 (en) UV photochemical option for closed cycle decomposition of hydrogen sulfide
CN101492199B (zh) 铂掺杂二氧化钛光电催化氧化去除砷的方法
US7758745B2 (en) Diesel desulfurization method
US20010025781A1 (en) Closed cycle photocatalytic process for decomposition of hydrogen sulfide to its constituent elements
Zhang et al. Review of electrochemical oxidation desulfurization for fuels and minerals
CN105753133A (zh) 一种臭氧催化氧化塔及应用其处理煤气化废水的方法
CN1853784A (zh) 一种光催化降解有机污染物的方法及其专用固相光催化剂
CN105771968A (zh) 一种用于非均相臭氧氧化的负载型催化剂的制备方法
JPH029850B2 (zh)
Dong et al. Dissolved organic matter promotes photocatalytic degradation of refractory organic pollutants in water by forming hydrogen bonding with photocatalyst
Devi et al. New approach for the transformation of metallic waste into nanostructured Fe3O4 and SnO2-Fe3O4 heterostructure and their application in treatment of organic pollutant
WO2007053585A2 (en) Method and apparatus for producing reactive oxidizing species
Zhou et al. Efficient removal of roxarsone and emerging organic contaminants by a solar light-driven in-situ Fenton system
CN109054034B (zh) 双金属铜/钴金属-有机骨架材料及其制备方法和应用
Ashfaq et al. Review of different CdS/TiO2 and WO3/g-C3N4 composite based photocatalyst for hydrogen production
Wang et al. Deep desulfurization and denitrogenation of diesel fuel over Ir/Pr-N-CQDs-TiO2 under ultraviolet radiation
Ntelane et al. CuFeS2 supported on dendritic mesoporous silica-titania for persulfate-assisted degradation of sulfamethoxazole under visible light
Xu et al. Cu single atoms/O doping g-C3N4 mediated photocatalytic activation of peroxymonosulfate for ultrafast carbamazepine removal via high 1O2 yield
CN110882706B (zh) 具有氧/硫双空位的Z型BiOCl/MoS2催化剂的制备方法及其应用
CN103240092A (zh) 一种用于渣油加工废水脱臭回用的常温空气湿式氧化催化剂
Gamboa-Savoy et al. Enhanced catalytic reduction of emerging contaminant by using magnetic CuFe2O4@ MIL-100 (Fe) in Fenton-based electrochemical processes.
CN107754777B (zh) 一种用于氧化反应的催化剂及其制备和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20121017