CN102671662A - 易回收重复使用的新型高效可见光催化剂的制备及应用 - Google Patents

易回收重复使用的新型高效可见光催化剂的制备及应用 Download PDF

Info

Publication number
CN102671662A
CN102671662A CN2012100912906A CN201210091290A CN102671662A CN 102671662 A CN102671662 A CN 102671662A CN 2012100912906 A CN2012100912906 A CN 2012100912906A CN 201210091290 A CN201210091290 A CN 201210091290A CN 102671662 A CN102671662 A CN 102671662A
Authority
CN
China
Prior art keywords
ethyl alcohol
absolute ethyl
preparation
visible light
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100912906A
Other languages
English (en)
Other versions
CN102671662B (zh
Inventor
牛和林
梁红霞
张胜义
宋吉明
毛昌杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN201210091290.6A priority Critical patent/CN102671662B/zh
Publication of CN102671662A publication Critical patent/CN102671662A/zh
Application granted granted Critical
Publication of CN102671662B publication Critical patent/CN102671662B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

本发明涉及一种易回收重复使用的新型高效可见光催化剂的制备和应用,制备方法包括:将表面修饰的具有多羟基、单分散性的纳米Fe3O4超声分散在乙醇中;钛酸四丁酯稀释在含有聚乙烯砒咯烷酮的乙醇中;两种溶液混合、超声、水浴后滴加含有尿素、乙醇的水溶液,再水浴、静置、磁分离获得固体物。洗涤后将固体物分散在乙醇中,进行溶剂热反应,通过磁分离、洗涤、干燥、研碎等步骤获得磁性纳米TiO2复合光催化剂。将该催化剂置于亚甲基蓝溶液中,可见光照射降解,再利用外加磁场回收该催化剂,重复光降解亚甲基蓝溶液。结果表明该方法制备的光催化剂具有明显的可见光响应,光催化活性高,利用外磁场进行回收可重复使用。

Description

易回收重复使用的新型高效可见光催化剂的制备及应用
技术领域
本发明主要涉及磁性复合纳米材料的制备方法及其应用,具体地说,是涉及具有核壳结构的Fe3O4TiO2纳米晶的制备及在可见光下高效光催化降解亚甲基蓝,且通过外磁场回收,重复使用。
背景技术
近年来,随着环境污染的日益严重,光催化剂材料成为科学研究的热点。在光催化领域,TiO2因具有成本低廉,高的化学稳定性,强氧化性,无毒,无污染等特点而成为使用最多的光催化剂,以TiO2为主的材料在光催化氧化有机污染物方面得到了广泛的研究。TiO2虽然稳定,但是带隙比较宽,光吸收仅限于紫外区和近紫外区,可利用的能量尚达不到照射到地面的太阳光谱的10%。并且,由于半导体固有的光生电子与空穴的复合性,使光催化反应的光量子效率很低,减弱了光催化剂的光催化活性。这些问题在很大程度上限制了TiO2的实际应用。
因此,为了提高光能利用率、光量子效率、反应活性和光稳定性,对TiO2的表面修饰改性,提高反应性能成为科学研究的焦点。目前,对TiO2的表面修饰方法有多种,常见的主要有:①宽带隙半导体(如ZnO、SnO2等)与TiO2的复合,可以更有效的利用已经吸收的光能;②窄带隙半导体(如CdS等)与TiO2的复合,其目的是拓展光催化剂对光的响应范围和抑制电子与空穴的复合;③利用贵金属(如Au、Pd、Pt等)或稀土元素(如Ce等)对TiO2掺杂金属进行改性,利用杂质离子来改变半导体中电子和空穴的浓度;④非金属元素(如C、N等)对TiO2的掺杂改性,可以拓展光催化剂对光的响应范围;⑤利用有机染料对二氧化钛进行改性,根据光活性染料吸附于光催化剂表面的性质在二氧化钛中加入一定量的光敏材料(曙红、叶绿素等),以扩大二氧化钛的激发波长范围,增强光催化反应的反应效率。上述方法改性之后的TiO2或者其光催化反应在高压汞灯或金卤灯下进行,不符合节能的原则,或者不易回收,重复利用。
鉴于以上问题,本发明引入了具有粒径约10nm具有单分散性的Fe3O4纳米微粒,不仅拓展了TiO2的光响应范围,使得光催化反应可在太阳光下进行,提高了太阳光的利用率;同时,采用外加磁场回收光催化剂,操作简易方便,重复使用,成本低廉,节约能源。
发明内容
本发明的目的在于提高TiO2光催化效率的同时,拓展了光响应范围,具有单分散性的小粒径Fe3O4的引入使得催化剂的吸收边发生红移,同时解决了光催化剂回收难的问题。
本发明提供一种易回收使用的新型高效可见光催化剂的制备及应用,包括如下步骤:
1.一种易回收使用的新型高效可见光催化剂的制备方法,该方法包括以下步骤:
步骤(1):纳米Fe3O4分散在无水乙醇中,超声;
步骤(2):酞酸丁酯稀释在溶有PVP的无水乙醇中;
步骤(3):尿素溶解在水/无水乙醇混合介质中;
步骤(4):将步骤(1)得到的悬浊液与步骤(2)得到的溶液混合在三颈烧
瓶中,超声,然后混合液恒温水浴并机械搅拌;
步骤(5):将步骤(3)得到的溶液慢慢的滴加到步骤(4)的溶液中,恒
温水浴,然后静置,得到棕色产物;
步骤(6):将步骤(5)得到的产物磁性分离,用蒸馏水和无水乙醇交替洗涤三次;
步骤(7):将步骤(6)得到的产物转入到聚四氟乙烯高压反应釜中,加入无水乙醇,恒温反应一段时间;
步骤(8):将步骤(7)得到的产物冷却至室温,磁分离固体产物,无水乙醇洗涤三次,60℃干燥,研碎得到棕色产物。
其中步骤(1)所述Fe3O4的制备方法如下:无水FeCl3分散在5ml氨水中,搅拌均匀后加入15ml甘油,搅拌,转入聚四氟乙烯反应釜中,180℃恒温反应10h,冷却至室温,磁分离,蒸馏水洗涤三次,60℃干燥。
其中步骤(1)所述Fe3O4的质量为0.077g,无水乙醇为10ml,超声时间为15min。
其中步骤(2)所述的PVP的质量为0.08g,无水乙醇为20ml。
其中步骤(3)所述的尿素的质量为0.25g,水/无水乙醇混合介质为30ml,其中水与无水乙醇的体积比为1∶2。
其中步骤(4)所述的超声时间为5min,水浴温度为80℃。
其中步骤(5)所述的水浴时间为20h,静置时间为12h。
其中步骤(7)所述的无水乙醇的体积为15ml,反应温度为100-200℃,反应时间为2-8h。
2.其中步骤1所述的Fe3O4复合TiO2纳米光催化剂在光降解亚甲基蓝中的应用。具体步骤如下:
0.02g光催化剂加入到50ml,5mg/L的亚甲基蓝溶液中,在黑暗条件下吸附半小时,然后置于太阳光或氙灯下(400nm<λ<780nm)下,每十分钟取一次样,用紫外分光光度计分析亚甲基蓝溶液的变化趋势。
本发明的优点在于:在具有核壳结构的Fe3O4TiO2纳米晶的制备过程中借助了溶剂热法,克服了在煅烧过程中团聚的现象。反应条件温和,操作简单,产物无毒,产率高。
附图说明
图1是Fe3O4纳米粒子的XRD谱;
图2是Fe3O4纳米粒子的TEM
图3是不同热处理温度下Fe3O4TiO2纳米粒子的XRD谱
图4是不同热处理时间Fe3O4TiO2纳米粒子的XRD谱;
图5是Fe3O4TiO2纳米粒子的TEM;
图6是Fe3O4TiO2纳米粒子的HRTEM和SAED;
图7是Fe3O4和Fe3O4TiO2纳米粒子的磁滞回线;
图8是Fe3O4TiO2固体的紫外可见光谱;
图9是太阳光下亚甲基蓝的降解曲线;
图10是氙灯下亚甲基蓝的降解曲线;
图11是氙灯下Fe3O4TiO2和P25对亚甲基蓝降解率的比较;
图12是Fe3O4TiO2纳米粒子重复使用对亚甲基蓝的降解率。
具体实施方式
步骤1:无水FeCl3分散在氨水中,搅拌均匀后加入甘油,搅拌,转入高压反应釜中,180℃恒温反应10h,冷却至室温,磁分离,蒸馏水洗涤三次,60℃干燥
步骤2:0.077g具有单分散性的小粒径的Fe3O4分散在10ml无水乙醇中,超声15min;
步骤3:1.12g酞酸丁酯稀释在溶有PVP的无水乙醇中;
步骤4:0.25g尿素溶解在30ml水/无水乙醇混合介质中,其中水与无水乙醇的体积比为1∶2;
步骤5:步骤2得到的Fe3O4体系与步骤3得到的溶液混合在三颈烧瓶中,超声5min,然后混合液在80℃恒温水浴下机械搅拌;
步骤6:将步骤4得到的尿素溶液慢慢的滴加到步骤5的溶液中,80℃恒温水浴20h,然后静置12h,得到棕色产物;
步骤7:步骤6得到的产物磁性分离,用蒸馏水和无水乙醇交替洗涤三次;
步骤8:将步骤7得到的产物转入到高压反应釜中,加入无水15ml乙醇,恒温反应一段时间,反应温度为100-200℃,反应时间为2-8h;
步骤9:将步骤8得到的产物冷却至室温,磁分离固体产物,无水乙醇洗涤三次,60℃干燥,研碎得到棕色产物。
步骤10:0.02g光催化剂加入到50ml,5mg/L或10mg/L的亚甲基蓝溶液中,在黑暗条件下吸附半小时,然后置于太阳光或氙灯下(400nm<λ<780nm)下,每十分钟取一次样,用紫外分光光度计分析亚甲基蓝溶液的变化趋势。
实施例1
0.077g具有单分散性的小粒径的Fe3O4分散在10ml无水乙醇中,超声15min;1.12g酞酸丁酯稀释在溶有0.08g PVP的20ml无水乙醇中;0.25g尿素溶解在30ml水/无水乙醇混合介质中,其中水与无水乙醇的体积比为1∶2;将Fe3O4分散体系与酞酸丁酯溶液混合在三颈烧瓶中,超声5min,然后混合液在80℃恒温水浴下机械搅拌;同时将尿素溶液慢慢的滴加到上述溶液中,80℃恒温水浴20h,反应结束后静置12h,得到棕色产物;磁性分离固体产物,用蒸馏水和无水乙醇交替洗涤三次;接着将产物转入到高压反应釜中,加入无水15ml乙醇,100℃恒温反应8h;反应结束后再次磁分离固体产物,无水乙醇洗涤三次,60℃干燥,研碎得到棕色产物。
实施例2
0.077g具有单分散性的小粒径的Fe3O4分散在10ml无水乙醇中,超声15min;1.12g酞酸丁酯稀释在溶有0.08g PVP的20ml无水乙醇中;0.25g尿素溶解在30ml水/无水乙醇混合介质中,其中水与无水乙醇的体积比为1∶2;将Fe3O4分散体系与酞酸丁酯溶液混合在三颈烧瓶中,超声5min,然后混合液在80℃恒温水浴下机械搅拌;同时将尿素溶液慢慢的滴加到上述溶液中,80℃恒温水浴20h,反应结束后静置12h,得到棕色产物;磁性分离固体产物,用蒸馏水和无水乙醇交替洗涤三次;接着将产物转入到高压反应釜中,加入无水15ml乙醇,125℃恒温反应8h;反应结束后再次磁分离固体产物,无水乙醇洗涤三次,60℃干燥,研碎得到棕色产物。
实施例3
0.077g具有单分散性的小粒径的Fe3O4分散在10ml无水乙醇中,超声15min;1.12g酞酸丁酯稀释在溶有0.08g PVP的20ml无水乙醇中;0.25g尿素溶解在30ml水/无水乙醇混合介质中,其中水与无水乙醇的体积比为1∶2;将Fe3O4分散体系与酞酸丁酯溶液混合在三颈烧瓶中,超声5min,然后混合液在80℃恒温水浴下机械搅拌;同时将尿素溶液慢慢的滴加到上述溶液中,80℃恒温水浴20h,反应结束后静置12h,得到棕色产物;磁性分离固体产物,用蒸馏水和无水乙醇交替洗涤三次;接着将产物转入到高压反应釜中,加入无水15ml乙醇,150℃恒温反应8h;反应结束后再次磁分离固体产物,无水乙醇洗涤三次,60℃干燥,研碎得到棕色产物。
实施例4
0.077g具有单分散性的小粒径的Fe3O4分散在10ml无水乙醇中,超声15min;1.12g酞酸丁酯稀释在溶有0.08g PVP的20ml无水乙醇中;0.25g尿素溶解在30ml水/无水乙醇混合介质中,其中水与无水乙醇的体积比为1∶2;将Fe3O4分散体系与酞酸丁酯溶液混合在三颈烧瓶中,超声5min,然后混合液在80℃恒温水浴下机械搅拌;同时将尿素溶液慢慢的滴加到上述溶液中,80℃恒温水浴20h,反应结束后静置12h,得到棕色产物;磁性分离固体产物,用蒸馏水和无水乙醇交替洗涤三次;接着将产物转入到高压反应釜中,加入无水15ml乙醇,175℃恒温反应8h;反应结束后再次磁分离固体产物,无水乙醇洗涤三次,60℃干燥,研碎得到棕色产物。
实施例5
0.077g具有单分散性的小粒径的Fe3O4分散在10ml无水乙醇中,超声15min;1.12g酞酸丁酯稀释在溶有0.08g PVP的20ml无水乙醇中;0.25g尿素溶解在30ml水/无水乙醇混合介质中,其中水与无水乙醇的体积比为1∶2;将Fe3O4分散体系与酞酸丁酯溶液混合在三颈烧瓶中,超声5min,然后混合液在80℃恒温水浴下机械搅拌;同时将尿素溶液慢慢的滴加到上述溶液中,80℃恒温水浴20h,反应结束后静置12h,得到棕色产物;磁性分离固体产物,用蒸馏水和无水乙醇交替洗涤三次;接着将产物转入到高压反应釜中,加入无水15ml乙醇,200℃恒温反应8h;反应结束后再次磁分离固体产物,无水乙醇洗涤三次,60℃干燥,研碎得到棕色产物。
实施例6
0.077g具有单分散性的小粒径的Fe3O4分散在10ml无水乙醇中,超声15min;1.12g酞酸丁酯稀释在溶有0.08g PVP的20ml无水乙醇中;0.25g尿素溶解在30ml水/无水乙醇混合介质中,其中水与无水乙醇的体积比为1∶2;将Fe3O4分散体系与酞酸丁酯溶液混合在三颈烧瓶中,超声5min,然后混合液在80℃恒温水浴下机械搅拌;同时将尿素溶液慢慢的滴加到上述溶液中,80℃恒温水浴20h,反应结束后静置12h,得到棕色产物;磁性分离固体产物,用蒸馏水和无水乙醇交替洗涤三次;接着将产物转入到高压反应釜中,加入无水15ml乙醇,200℃恒温反应2h;反应结束后再次磁分离固体产物,无水乙醇洗涤三次,60℃干燥,研碎得到棕色产物。
实施例7
0.077g具有单分散性的小粒径的Fe3O4分散在10ml无水乙醇中,超声15min;1.12g酞酸丁酯稀释在溶有0.08g PVP的20ml无水乙醇中;0.25g尿素溶解在30ml水/无水乙醇混合介质中,其中水与无水乙醇的体积比为1∶2;将Fe3O4分散体系与酞酸丁酯溶液混合在三颈烧瓶中,超声5min,然后混合液在80℃恒温水浴下机械搅拌;同时将尿素溶液慢慢的滴加到上述溶液中,80℃恒温水浴20h,反应结束后静置12h,得到棕色产物;磁性分离固体产物,用蒸馏水和无水乙醇交替洗涤三次;接着将产物转入到高压反应釜中,加入无水15ml乙醇,200℃恒温反应4h;反应结束后再次磁分离固体产物,无水乙醇洗涤三次,60℃干燥,研碎得到棕色产物。
实施例8
0.077g具有单分散性的小粒径的Fe3O4分散在10ml无水乙醇中,超声15min;1.12g酞酸丁酯稀释在溶有0.08g PVP的20ml无水乙醇中;0.25g尿素溶解在30ml水/无水乙醇混合介质中,其中水与无水乙醇的体积比为1∶2;将Fe3O4分散体系与酞酸丁酯溶液混合在三颈烧瓶中,超声5min,然后混合液在80℃恒温水浴下机械搅拌;同时将尿素溶液慢慢的滴加到上述溶液中,80℃恒温水浴20h,反应结束后静置12h,得到棕色产物;磁性分离固体产物,用蒸馏水和无水乙醇交替洗涤三次;接着将产物转入到高压反应釜中,加入无水15ml乙醇,200℃恒温反应6h;反应结束后再次磁分离固体产物,无水乙醇洗涤三次,60℃干燥,研碎得到棕色产物。
0.02g 200℃恒温反应8h的光催化剂加入到50ml,5mg/L的亚甲基蓝溶液中,在黑暗条件下吸附半小时,然后置于太阳光或氙灯下(400nm<λ<780nm)下,每十分钟取一次样,用紫外分光光度计分析亚甲基蓝溶液的变化趋势。

Claims (9)

1.一种易回收重复使用的新型高效可见光催化剂的制备及应用,该方法包括以下步骤:
(1)Fe3O4分散在无水乙醇中,超声;
(2)1.12g酞酸丁酯稀释在溶有PVP的无水乙醇中;
(3)尿素溶解在水/无水乙醇混合介质中;
(4)将步骤(1)得到的悬浊液与步骤(2)得到的溶液混合在三颈烧瓶中,超声,然后混合液恒温水浴并机械搅拌;
(5)将步骤(3)得到的溶液慢慢的滴加到步骤(4)的溶液中,恒温水浴,然后静置,得到棕色产物;
(6)将步骤(5)得到的产物磁性分离,用蒸馏水和无水乙醇交替洗涤三次;
(7)将步骤(6)得到的产物转入到聚四氟乙烯高压反应釜中,加入无水乙醇,恒温反应一段时间;
(8)将步骤(7)得到的产物冷却至室温,磁分离固体产物,无水乙醇洗涤三次,60℃干燥,研碎得到棕色产物。
2.如权利要求1所述的易回收重复使用的新型高效可见光催化剂的制备方法,其特征在于,步骤(1)所述Fe3O4的制备方法如下:无水FeCl3分散在氨水中,搅拌均匀后加入甘油,搅拌,转入高压反应釜中,180℃恒温反应10h,冷却至室温,磁分离,蒸馏水洗涤三次,60℃干燥。
3.如权利要求1所述的新型高效可重复利用的可见光催化剂的制备方法,其特征在于,步骤(1)所述Fe3O4的质量为0.077g,无水乙醇为10ml,超声时间为15min。
4.如权利要求1所述的新型高效可重复利用的可见光催化剂的制备方法,其特征在于,步骤(2)所述的PVP的质量为0.08g,无水乙醇为20ml。
5.如权利要求1所述的新型高效可重复利用的可见光催化剂的制备方法,其特征在于,步骤(3)所述的尿素的质量为0.25g,水/无水乙醇混合介质为30ml,其中水与无水乙醇的体积比为1∶2。
6.如权利要求1所述的新型高效可重复利用的可见光催化剂的制备方法,其特征在于,步骤(4)所述的超声时间为5min,水浴温度为80℃。
7.如权利要求1所述的新型高效可重复利用的可见光催化剂的制备方法,其特征在于,步骤(5)所述的水浴时间为20h,静置时间为12h。
8.如权利要求1所述的新型高效可重复利用的可见光催化剂的制备方法,其特征在于,步骤(7)所述的无水乙醇的体积为15ml,反应温度为100-200℃,反应时间为2-8h。
9.权利要求1所述的Fe3O4复合TiO2纳米光催化剂在光降解亚甲基蓝中的应用。具体步骤如下:
0.02g光催化剂加入到50ml,5mg/L的亚甲基蓝溶液中,在黑暗条件下吸附半小时,然后置于太阳光或氙灯下(400nm<λ<780nm)下,每十分钟取一次样,用紫外分光光度计分析亚甲基蓝溶液的变化趋势。并与市售P25在同等条件下做比较。
CN201210091290.6A 2012-03-28 2012-03-28 易回收重复使用的高效可见光催化剂的制备及应用 Expired - Fee Related CN102671662B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210091290.6A CN102671662B (zh) 2012-03-28 2012-03-28 易回收重复使用的高效可见光催化剂的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210091290.6A CN102671662B (zh) 2012-03-28 2012-03-28 易回收重复使用的高效可见光催化剂的制备及应用

Publications (2)

Publication Number Publication Date
CN102671662A true CN102671662A (zh) 2012-09-19
CN102671662B CN102671662B (zh) 2014-07-16

Family

ID=46804602

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210091290.6A Expired - Fee Related CN102671662B (zh) 2012-03-28 2012-03-28 易回收重复使用的高效可见光催化剂的制备及应用

Country Status (1)

Country Link
CN (1) CN102671662B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934178A (zh) * 2015-06-09 2015-09-23 天津大学 一种纳米TiO2-Fe3O4磁性复合颗粒及制备方法
CN107261381A (zh) * 2017-06-14 2017-10-20 山东理工大学 一种在太阳光照下利用二氧化钛降解颗粒内包裹的亚甲基蓝的方法
CN108940284A (zh) * 2018-08-14 2018-12-07 江苏仁净环保科技有限公司 一种磁性纳米光催化剂及其制备方法
CN109731591A (zh) * 2019-01-17 2019-05-10 淮北师范大学 一种具有同时去除VOC和EEDs性能的磷酸铋的制备方法及应用
CN111348718A (zh) * 2020-03-16 2020-06-30 辽宁大学 一种水力空化系统协同复合光催化剂光催化降解废水中染料的方法
CN114534751A (zh) * 2022-01-14 2022-05-27 安徽大学 火柴形MoSe2-MoS2修饰的CdS纳米棒光催化剂及制备方法和用途
CN115845828A (zh) * 2022-12-22 2023-03-28 广州市北二环交通科技有限公司 一种Ti-Br复合光催化材料、光催化组件、制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101792495A (zh) * 2010-02-11 2010-08-04 浙江理工大学 从植物秸秆超声催化提取半纤维素、纤维素和木质素的方法
CN102319590A (zh) * 2011-05-27 2012-01-18 湖北富邦科技股份有限公司 四氧化三铁/壳聚糖/TiO2纳米复合光催化材料的制备方法
CN102357363A (zh) * 2011-07-23 2012-02-22 上海海事大学 磁载纳米Fe3O4/SiO2/TiO2可见光催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101792495A (zh) * 2010-02-11 2010-08-04 浙江理工大学 从植物秸秆超声催化提取半纤维素、纤维素和木质素的方法
CN102319590A (zh) * 2011-05-27 2012-01-18 湖北富邦科技股份有限公司 四氧化三铁/壳聚糖/TiO2纳米复合光催化材料的制备方法
CN102357363A (zh) * 2011-07-23 2012-02-22 上海海事大学 磁载纳米Fe3O4/SiO2/TiO2可见光催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Applied Catalysis B: Environmental》 20111231 Xiaoxiao Yu et al "Superparamagnetic r-Fe2O3@SiO2@TiO2 composite microspheres with superior photocatalytic properties" 第12-20页 1-9 第104卷, *
XIAOXIAO YU ET AL: ""Superparamagnetic r-Fe2O3@SiO2@TiO2 composite microspheres with superior photocatalytic properties"", 《APPLIED CATALYSIS B: ENVIRONMENTAL》, vol. 104, 31 December 2011 (2011-12-31), pages 12 - 20 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934178A (zh) * 2015-06-09 2015-09-23 天津大学 一种纳米TiO2-Fe3O4磁性复合颗粒及制备方法
CN104934178B (zh) * 2015-06-09 2017-04-19 天津大学 一种纳米TiO2‑Fe3O4磁性复合颗粒及制备方法
CN107261381A (zh) * 2017-06-14 2017-10-20 山东理工大学 一种在太阳光照下利用二氧化钛降解颗粒内包裹的亚甲基蓝的方法
CN107261381B (zh) * 2017-06-14 2020-08-11 山东理工大学 一种在太阳光照下利用二氧化钛降解颗粒内包裹的亚甲基蓝的方法
CN108940284A (zh) * 2018-08-14 2018-12-07 江苏仁净环保科技有限公司 一种磁性纳米光催化剂及其制备方法
CN109731591A (zh) * 2019-01-17 2019-05-10 淮北师范大学 一种具有同时去除VOC和EEDs性能的磷酸铋的制备方法及应用
CN109731591B (zh) * 2019-01-17 2022-10-18 淮北师范大学 一种具有同时去除VOC和EEDs性能的磷酸铋的制备方法及应用
CN111348718A (zh) * 2020-03-16 2020-06-30 辽宁大学 一种水力空化系统协同复合光催化剂光催化降解废水中染料的方法
CN114534751A (zh) * 2022-01-14 2022-05-27 安徽大学 火柴形MoSe2-MoS2修饰的CdS纳米棒光催化剂及制备方法和用途
CN114534751B (zh) * 2022-01-14 2024-03-29 安徽大学 火柴形MoSe2-MoS2修饰的CdS纳米棒光催化剂及制备方法和用途
CN115845828A (zh) * 2022-12-22 2023-03-28 广州市北二环交通科技有限公司 一种Ti-Br复合光催化材料、光催化组件、制备方法与应用

Also Published As

Publication number Publication date
CN102671662B (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
CN102671662B (zh) 易回收重复使用的高效可见光催化剂的制备及应用
Li et al. Novel Approach To Enhance Photosensitized Degradation of Rhodamine B under Visible Light Irradiation by the Zn x Cd 1-x S/TiO2 Nanocomposites
Shang et al. Facile fabrication and enhanced photocatalytic performance: From BiOCl to element-doped BiOCl
CN101745377B (zh) 一种可见光光催化剂Bi2O3/TiO2的制备方法
CN106492854A (zh) 利用两步法制备具有光催化性能的复合型纳米Ag3PO4/TiO2材料及方法和应用
CN103752332B (zh) 柿饼状可见光催化剂BiOBr及其制备方法
CN105664979B (zh) 一种纳米介孔微球状Ln-Bi5O7I光催化剂及其制备方法
CN102921435A (zh) 一种磁性Fe3O4/SiO2/TiO2/量子点复合纳米光催化剂及其制备方法和应用
CN102319564B (zh) 一种双层空腔结构及海胆状的二氧化钛磁性微球制备方法
CN101411995B (zh) 具有可见光催化活性的AgBr/PANI/TiO2纳米复合材料的制备方法
CN101003020A (zh) 敏化的TiO2和ZnS的可见光响应光催化剂及制备方法
CN105731538B (zh) 一种高压‑水热法制备BiVO4光催化剂的方法
CN109967074A (zh) 一种银负载的二氧化钛光催化剂的制备方法与应用
CN103611577B (zh) 一种高效降解有机染料废水的可见光催化剂及其制备方法
CN103464122B (zh) 一种石墨烯/壳聚糖吸附树脂的制备方法
CN107583654A (zh) 具有吸附光催化协同作用的纳米多孔微球的制备方法
CN103721700B (zh) 一种高活性SnO2-TiO2复合光催化剂的制备方法
CN104128207B (zh) 降解刚果红的核壳型伪模板印迹磁纳米催化剂的制备方法
CN104857995A (zh) 一种纳米结构的聚苯胺修饰的n掺杂二氧化钛复合光催化剂及其制备方法和应用
CN102309974A (zh) 一种半导体量子点/TiO2纳米管复合催化剂材料及其制备方法和应用
CN106693996A (zh) 硫化铋‑铁酸铋复合可见光催化剂的制备方法及其应用
CN105854912A (zh) 一种BiPO4-WO3复合光催化剂及其制备方法
CN106000460B (zh) 碳量子点敏化枝状聚乙烯亚胺修饰的TiO2光催化剂
CN102806078B (zh) 一种制备Bi系复合氧化物一维中空超结构光催化材料的方法
CN104096555A (zh) 一种稀土掺杂二氧化硅-二氧化钛光催化材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140716

Termination date: 20150328

EXPY Termination of patent right or utility model