CN107261381B - 一种在太阳光照下利用二氧化钛降解颗粒内包裹的亚甲基蓝的方法 - Google Patents

一种在太阳光照下利用二氧化钛降解颗粒内包裹的亚甲基蓝的方法 Download PDF

Info

Publication number
CN107261381B
CN107261381B CN201710446993.9A CN201710446993A CN107261381B CN 107261381 B CN107261381 B CN 107261381B CN 201710446993 A CN201710446993 A CN 201710446993A CN 107261381 B CN107261381 B CN 107261381B
Authority
CN
China
Prior art keywords
methylene blue
solution containing
titanium dioxide
per liter
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710446993.9A
Other languages
English (en)
Other versions
CN107261381A (zh
Inventor
李成峰
史如静
王文浩
王维文
李杨
葛筱璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201710446993.9A priority Critical patent/CN107261381B/zh
Publication of CN107261381A publication Critical patent/CN107261381A/zh
Application granted granted Critical
Publication of CN107261381B publication Critical patent/CN107261381B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/17Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to electromagnetic radiation, e.g. emitted by a laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/28Organic substances containing oxygen, sulfur, selenium or tellurium, i.e. chalcogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Cosmetics (AREA)

Abstract

一种在太阳光照下利用二氧化钛降解颗粒内包裹的亚甲基蓝的方法,属于二氧化钛光催化技术领域。先将磷酸溶液滴入到含柠檬酸的氢氧化钙悬浮液中制备得到羟基磷灰石胶体颗粒后,将溶液中的亚甲基蓝吸附到羟基磷灰石胶体颗粒表面后,再加入单宁酸和铁对吸附亚甲基蓝的羟基磷灰石颗粒进行包裹制备含亚甲基蓝的包裹体,随后将含亚甲基蓝的包裹体、二氧化钛和酒石酸经混合、干燥后制备得到包裹亚甲基蓝的颗粒,在太阳光照下经42~121小时颗粒内包裹的亚甲基蓝就被降解。本方法工艺简单、原料无毒性,太阳光的照射作用就可以使固体颗粒内包裹的亚甲基蓝发生降解。

Description

一种在太阳光照下利用二氧化钛降解颗粒内包裹的亚甲基蓝 的方法
技术领域
一种在太阳光照下利用二氧化钛降解颗粒内包裹的亚甲基蓝的方法,属于二氧化钛光催化技术领域。
背景技术
亚甲基蓝作为染料在印刷、染色领域应用非常广泛,印染废水中含有亚甲基蓝时会对水体和土壤环境产生恶劣的影响。亚甲基蓝的常用处理方法为吸附法和光化学氧化降解法。吸附法主要是将亚甲基蓝吸附至吸附质中,如活性炭、膨润土、羟基磷灰石、介孔二氧化硅、离子交换树脂等。中国发明专利201610105663.9公开了将羟基磷灰石颗粒粉碎后吸附腐殖酸制备得到改性的羟基磷灰石并用于吸附亚甲基蓝的技术方案,在亚甲基蓝浓度不超过500毫克每升的水溶液中,改性羟基磷灰石对亚甲基蓝的吸附率达到72.0~100%,吸附容量高达到350毫克每克以上。中国发明专利201610605501.1公开的技术方案是:将金红石型二氧化钛粉末、羟丙基纤维素、环糊精和氢氧化钾溶液加入乳化剂和分散剂制成分散体系,再在引发剂和交联剂作用下制备得到水凝胶吸附剂,对亚甲基蓝的饱和吸附量达到500毫克每克。这种吸附方法没有破坏染料分子,只是从水相转移到固相中,吸附了亚甲基蓝的吸附质的进一步处理也需要进行相关研究。
光化学氧化降解水体中的亚甲基蓝也是一种处理含亚甲基蓝废水的方法,即通过光触媒-二氧化钛在外界光源作用下发生光化学反应,二氧化钛价带中的电子被光激发至导带,该电子被牺牲剂吸收,而亚甲基蓝则被与价带空穴反应后形成的活性氧化物质氧化,变为可降解的物质。二氧化钛的禁带宽度为3.2eV,只能吸收小于380纳米的紫外光,太阳光中只含有3~5%的紫外光,如要提高二氧化钛利用太阳光的效率,必须将二氧化钛的吸收带边红移至可见光区,如将二氧化钛进行掺杂改性:氟和氮元素共掺杂、将部分四价的钛离子(Ti4+)还原为三价的钛离子(Ti3+)、掺入低价态金属离子等方法。而通过混合敏化物质使二氧化钛也能在可见光激发下出现化学反应活性,如中国发明专利CN2012101848899.8公开了利用方酸菁染料敏化二氧化钛使其在可见光区的吸光率大幅度增加的技术方案,提高了二氧化钛对亚甲基蓝在可见光下的降解率。中国发明专利CN201610041984.7公开了溶于有机溶剂的八羧基酞菁铁敏化二氧化钛的技术方案,有效地提高了亚甲基蓝等有机染料的降解率。中国发明专利CN201510702522.0公开了将磺化钴酞菁活化处理转化为溶于水的磺酸钴酞菁、并与二氧化钛复合后制备得到复合光催化剂的技术方案,提高了二氧化钛在可见光照射下催化降解亚甲基蓝的效率。中国专利CN201310539464.5公开了利用氧化铋敏化的二氧化钛用于降解有机污染物的技术方案,大幅度提高了对太阳能的利用率。中国发明专利201610607408.4公开了在二氧化钛表面包覆均苯三甲酸为配体、铁为中心的金属有机物配体结构的技术方案,可以在可见光条件下降解亚甲基蓝。上述降解行为都发生在水溶液中,而对固相状态,如含亚甲蓝的吸附剂固体颗粒,也就是经干燥制备得到的固体颗粒内部包裹的亚甲基蓝的降解行为研究非常少。
发明内容
本发明的目的在于提供一种在太阳光照下利用二氧化钛降解颗粒内包裹的亚甲基蓝的方法,为实现上述目的,所采用的技术方案步骤如下:
(1)配制含柠檬酸和氢氧化钙的水溶液,使柠檬酸和氢氧化钙的浓度分别为0.052~0.156摩尔每升和0.676摩尔每升,搅拌得到均匀的悬浮液后将浓度为0.408摩尔每升的磷酸水溶液逐滴加入,当悬浮液的pH值降至10时停止滴加,静置18小时后离心,并用浓度为0.755摩尔每升的氯化铵水溶液洗涤,其中氯化铵的用量与氢氧化钙用量的摩尔比为1.12:1,将离心分离得到的羟基磷灰石胶体加入到含亚甲基蓝的浓度为0.5毫克每毫升的溶液中,其中依据氢氧化钙的添加量计算得到羟基磷灰石的理论生成量后在配制溶液,使羟基磷灰石的理论浓度为34克每升,搅拌2小时后制得含亚甲基蓝的羟基磷灰石胶体溶液;依次配制含氯化铁和单宁酸的水溶液,使氯化铁和单宁酸的浓度分别为0.0617摩尔每升和0.0235摩尔每升,先将含氯化铁的水溶液加入到含亚甲基蓝的羟基磷灰石胶体溶液中,其中含氯化铁的水溶液与含亚甲基蓝的羟基磷灰石胶体溶液的体积比为3~9:200,再将含单宁酸的水溶液加入,其中含单宁酸的水溶液用量与含氯化铁的水溶液用量的体积比为1:1,搅拌反应1分钟后,加入磷酸盐缓冲液(pH=7.2~7.4),其中含亚甲基蓝的羟基磷灰石胶体溶液与磷酸盐缓冲液的体积比为10:1,继续搅拌5分钟后得到含亚甲基蓝的包裹体溶液;
(2)配制含乙醇和水的混合溶液,其中乙醇和水的体积比为12:1,加入钛酸丁酯,使钛酸丁酯的浓度为0.726摩尔每升,充分混合搅拌5分钟,加入硝酸,使硝酸的浓度为0.161摩尔每升,搅拌20分钟后加入聚乙二醇(平均分子量为6000),使聚乙二醇的浓度为0.004摩尔每升,磁力搅拌30分钟,将得到的溶液置于高压反应釜中,填充率为80%,于160°C下反应24小时后取出冷却至室温,将所得沉淀用水洗涤后用乙醇配制成溶液,依据钛酸丁酯的添加量计算得到二氧化钛的理论生成量后在配制溶液,使二氧化钛的理论浓度为47.4克每升,再加入酒石酸,使酒石酸的浓度为0.1324摩尔每升,搅拌30分钟后得到二氧化钛溶液;
(3)将经步骤(2)制备得到的二氧化钛溶液与经步骤(1)制备得到的含亚甲基蓝的包裹体溶液混合,其中二氧化钛溶液与含亚甲基蓝的包裹体溶液的体积比为3.17:10,搅拌30分钟后离心,将得到的沉降物在60°C下干燥60小时得到包裹亚甲基蓝的颗粒,将包裹亚甲基蓝的颗粒置于太阳光下,经42~121小时照晒后颗粒内包裹的亚甲基蓝就被降解。
其中,步骤(1)中,羟基磷灰石会吸附溶液中的亚甲基蓝,吸附效率可通过添加的柠檬酸数量来调控。步骤(1)中,含氯化铁的水溶液与含亚甲基蓝的羟基磷灰石胶体溶液的体积比为3~9:200,两者最佳的体积比为9:200。步骤(1)中,溶液中的单宁酸离子和铁离子会在含亚甲基蓝的羟基磷灰石颗粒表面生成络合物包裹层,进而制备得到含亚甲基蓝的包裹体颗粒。
本发明的有益效果在于:
(1)本方法工艺简单、原料价格低且易于工业化生产,原料无毒性,生产过程和制得的产品在后期使用过程中对环境的影响都小,可以保障环保和可持续发展的要求;
(2)亚甲基蓝的吸附量可以通过制备羟基磷灰石时柠檬酸的添加量以及包裹含亚甲基蓝颗粒时单宁酸-铁的用量来调控;
(3)太阳光照射就可以使亚甲基蓝降解,无需采用外界光源,可以有效地保障可持续发展、节约能源的目标。
具体实施方式
实施例1
(1)配制含柠檬酸和氢氧化钙的水溶液,使柠檬酸和氢氧化钙的浓度分别为0.052摩尔每升和0.676摩尔每升,搅拌得到均匀的悬浮液后将浓度为0.408摩尔每升的磷酸水溶液逐滴加入,当悬浮液的pH值降至10时停止滴加,静置18小时后离心,并用浓度为0.755摩尔每升的氯化铵水溶液洗涤,其中氯化铵的用量与氢氧化钙用量的摩尔比为1.12:1,将离心分离得到的羟基磷灰石胶体加入到含亚甲基蓝的浓度为0.5毫克每毫升的溶液中,其中依据氢氧化钙的添加量计算得到羟基磷灰石的理论生成量后在配制溶液,使羟基磷灰石的理论浓度为34克每升,搅拌2小时后制得含亚甲基蓝的羟基磷灰石胶体溶液;依次配制含氯化铁和单宁酸的水溶液,使氯化铁和单宁酸的浓度分别为0.0617摩尔每升和0.0235摩尔每升,先将含氯化铁的水溶液加入到含亚甲基蓝的羟基磷灰石胶体溶液中,其中含氯化铁的水溶液与含亚甲基蓝的羟基磷灰石胶体溶液的体积比为9:200,再将含单宁酸的水溶液加入,其中含单宁酸的水溶液用量与含氯化铁的水溶液用量的体积比为1:1,搅拌反应1分钟后,加入磷酸盐缓冲液(pH=7.2~7.4),其中含亚甲基蓝的羟基磷灰石胶体溶液与磷酸盐缓冲液的体积比为10:1,继续搅拌5分钟后得到含亚甲基蓝的包裹体溶液,亚甲基蓝在包裹体颗粒内的包裹量为8.86毫克每克;
(2)配制含乙醇和水的混合溶液,其中乙醇和水的体积比为12:1,加入钛酸丁酯,使钛酸丁酯的浓度为0.726摩尔每升,充分混合搅拌5分钟,加入硝酸,使硝酸的浓度为0.161摩尔每升,搅拌20分钟后加入聚乙二醇(平均分子量为6000),使聚乙二醇的浓度为0.004摩尔每升,磁力搅拌30分钟,将得到的溶液置于高压反应釜中,填充率为80%,于160°C下反应24小时后取出冷却至室温,将所得沉淀用水洗涤后用乙醇配制成溶液,依据钛酸丁酯的添加量计算得到二氧化钛的理论生成量后在配制溶液,使二氧化钛的理论浓度为47.4克每升,再加入酒石酸,使酒石酸的浓度为0.1324摩尔每升,搅拌30分钟后得到二氧化钛溶液;
(3)将经步骤(2)制备得到的二氧化钛溶液与经步骤(1)制备得到的含亚甲基蓝的包裹体溶液混合,其中二氧化钛溶液与含亚甲基蓝的包裹体溶液的体积比为3.17:10,搅拌30分钟后离心,将得到的沉降物在60°C下干燥60小时得到包裹亚甲基蓝的颗粒,将包裹亚甲基蓝的颗粒置于太阳光下,经42小时照晒后包裹体颗粒内包裹的亚甲基蓝就被降解。
实施例2
(1)配制含柠檬酸和氢氧化钙的水溶液,使柠檬酸和氢氧化钙的浓度分别为0.104摩尔每升和0.676摩尔每升,搅拌得到均匀的悬浮液后将浓度为0.408摩尔每升的磷酸水溶液逐滴加入,当悬浮液的pH值降至10时停止滴加,静置18小时后离心,并用浓度为0.755摩尔每升的氯化铵水溶液洗涤,其中氯化铵的用量与氢氧化钙用量的摩尔比为1.12:1,将离心分离得到的羟基磷灰石胶体加入到含亚甲基蓝的浓度为0.5毫克每毫升的溶液中,其中依据氢氧化钙的添加量计算得到羟基磷灰石的理论生成量后在配制溶液,使羟基磷灰石的理论浓度为34克每升,搅拌2小时后制得含亚甲基蓝的羟基磷灰石胶体溶液;依次配制含氯化铁和单宁酸的水溶液,使氯化铁和单宁酸的浓度分别为0.0617摩尔每升和0.0235摩尔每升,先将含氯化铁的水溶液加入到含亚甲基蓝的羟基磷灰石胶体溶液中,其中含氯化铁的水溶液与含亚甲基蓝的羟基磷灰石胶体溶液的体积比为9:200,再将含单宁酸的水溶液加入,其中含单宁酸的水溶液用量与含氯化铁的水溶液用量的体积比为1:1,搅拌反应1分钟后,加入磷酸盐缓冲液(pH=7.2~7.4),其中含亚甲基蓝的羟基磷灰石胶体溶液与磷酸盐缓冲液的体积比为10:1,继续搅拌5分钟后得到含亚甲基蓝的包裹体溶液,亚甲基蓝在包裹体颗粒内的包裹量为8.33毫克每克;
(2)配制含乙醇和水的混合溶液,其中乙醇和水的体积比为12:1,加入钛酸丁酯,使钛酸丁酯的浓度为0.726摩尔每升,充分混合搅拌5分钟,加入硝酸,使硝酸的浓度为0.161摩尔每升,搅拌20分钟后加入聚乙二醇(平均分子量为6000),使聚乙二醇的浓度为0.004摩尔每升,磁力搅拌30分钟,将得到的溶液置于高压反应釜中,填充率为80%,于160°C下反应24小时后取出冷却至室温,将所得沉淀用水洗涤后用乙醇配制成溶液,依据钛酸丁酯的添加量计算得到二氧化钛的理论生成量后在配制溶液,使二氧化钛的理论浓度为47.4克每升,再加入酒石酸,使酒石酸的浓度为0.1324摩尔每升,搅拌30分钟后得到二氧化钛溶液;
(3)将经步骤(2)制备得到的二氧化钛溶液与经步骤(1)制备得到的含亚甲基蓝的包裹体溶液混合,其中二氧化钛溶液与含亚甲基蓝的包裹体溶液的体积比为3.17:10,搅拌30分钟后离心,将得到的沉降物在60°C下干燥60小时得到包裹亚甲基蓝的颗粒,将包裹亚甲基蓝的颗粒置于太阳光下,经107小时照晒后颗粒内包裹的亚甲基蓝就被降解。
实施例3
(1)配制含柠檬酸和氢氧化钙的水溶液,使柠檬酸和氢氧化钙的浓度分别为0.156摩尔每升和0.676摩尔每升,搅拌得到均匀的悬浮液后将浓度为0.408摩尔每升的磷酸水溶液逐滴加入,当悬浮液的pH值降至10时停止滴加,静置18小时后离心,并用浓度为0.755摩尔每升的氯化铵水溶液洗涤,其中氯化铵的用量与氢氧化钙用量的摩尔比为1.12:1,将离心分离得到的羟基磷灰石胶体加入到含亚甲基蓝的浓度为0.5毫克每毫升的溶液中,其中依据氢氧化钙的添加量计算得到羟基磷灰石的理论生成量后在配制溶液,使羟基磷灰石的理论浓度为34克每升,搅拌2小时后制得含亚甲基蓝的羟基磷灰石胶体溶液;依次配制含氯化铁和单宁酸的水溶液,使氯化铁和单宁酸的浓度分别为0.0617摩尔每升和0.0235摩尔每升,先将含氯化铁的水溶液加入到含亚甲基蓝的羟基磷灰石胶体溶液中,其中含氯化铁的水溶液与含亚甲基蓝的羟基磷灰石胶体溶液的体积比为9:200,再将含单宁酸的水溶液加入,其中含单宁酸的水溶液用量与含氯化铁的水溶液用量的体积比为1:1,搅拌反应1分钟后,加入磷酸盐缓冲液(pH=7.2~7.4),其中含亚甲基蓝的羟基磷灰石胶体溶液与磷酸盐缓冲液的体积比为10:1,继续搅拌5分钟后得到含亚甲基蓝的包裹体溶液,亚甲基蓝在包裹体颗粒内的包裹量为9.80毫克每克;
(2)配制含乙醇和水的混合溶液,其中乙醇和水的体积比为12:1,加入钛酸丁酯,使钛酸丁酯的浓度为0.726摩尔每升,充分混合搅拌5分钟,加入硝酸,使硝酸的浓度为0.161摩尔每升,搅拌20分钟后加入聚乙二醇(平均分子量为6000),使聚乙二醇的浓度为0.004摩尔每升,磁力搅拌30分钟,将得到的溶液置于高压反应釜中,填充率为80%,于160°C下反应24小时后取出冷却至室温,将所得沉淀用水洗涤后用乙醇配制成溶液,依据钛酸丁酯的添加量计算得到二氧化钛的理论生成量后在配制溶液,使二氧化钛的理论浓度为47.4克每升,再加入酒石酸,使酒石酸的浓度为0.1324摩尔每升,搅拌30分钟后得到二氧化钛溶液;
(3)将经步骤(2)制备得到的二氧化钛溶液与经步骤(1)制备得到的含亚甲基蓝的包裹体溶液混合,其中二氧化钛溶液与含亚甲基蓝的包裹体溶液的体积比为3.17:10,搅拌30分钟后离心,将得到的沉降物在60°C下干燥60小时得到包裹亚甲基蓝的颗粒,将包裹亚甲基蓝的颗粒置于太阳光下,经121小时照晒后颗粒内包裹的亚甲基蓝就被降解。

Claims (1)

1.一种在太阳光照下利用二氧化钛降解颗粒内包裹的亚甲基蓝的方法,其特征是通过以下步骤实现:
(1)配制含柠檬酸和氢氧化钙的水溶液,使柠檬酸和氢氧化钙的浓度分别为0.052~0.156摩尔每升和0.676摩尔每升,搅拌得到均匀的悬浮液后将浓度为0.408摩尔每升的磷酸水溶液逐滴加入,当悬浮液的pH值降至10时停止滴加,静置18小时后离心,并用浓度为0.755摩尔每升的氯化铵水溶液洗涤,其中氯化铵的用量与氢氧化钙用量的摩尔比为1.12:1,将离心分离得到的羟基磷灰石胶体加入到含亚甲基蓝的浓度为0.5毫克每毫升的溶液中,其中依据氢氧化钙的添加量计算得到羟基磷灰石的理论生成量后再配制溶液,使羟基磷灰石的理论浓度为34克每升,搅拌2小时后制得含亚甲基蓝的羟基磷灰石胶体溶液;依次配制含氯化铁和单宁酸的水溶液,使氯化铁和单宁酸的浓度分别为0.0617摩尔每升和0.0235摩尔每升,先将含氯化铁的水溶液加入到含亚甲基蓝的羟基磷灰石胶体溶液中,其中含氯化铁的水溶液与含亚甲基蓝的羟基磷灰石胶体溶液的体积比为3~9:200,再将含单宁酸的水溶液加入,其中含单宁酸的水溶液用量与含氯化铁的水溶液用量的体积比为1:1,搅拌反应1分钟后,加入pH=7.2~7.4的磷酸盐缓冲液,其中含亚甲基蓝的羟基磷灰石胶体溶液与磷酸盐缓冲液的体积比为10:1,继续搅拌5分钟后得到含亚甲基蓝的包裹体溶液;
(2)配制含乙醇和水的混合溶液,其中乙醇和水的体积比为12:1,加入钛酸丁酯,使钛酸丁酯的浓度为0.726摩尔每升,充分混合搅拌5分钟,加入硝酸,使硝酸的浓度为0.161摩尔每升,搅拌20分钟后加入平均分子量为6000的聚乙二醇,使聚乙二醇的浓度为0.004摩尔每升,磁力搅拌30分钟,将得到的溶液置于高压反应釜中,填充率为80%,于160°C下反应24小时后取出冷却至室温,将所得沉淀用水洗涤后用乙醇配制成溶液,其中,依据钛酸丁酯的加入量计算得到二氧化钛的理论生成量后再配制溶液,使二氧化钛的理论浓度为47.4克每升,再加入酒石酸,使酒石酸的浓度为0.1324摩尔每升,搅拌30分钟后得到二氧化钛溶液;
(3)将经步骤(2)制备得到的二氧化钛溶液与经步骤(1)制备得到的含亚甲基蓝的包裹体溶液混合,其中二氧化钛溶液与含亚甲基蓝的包裹体溶液的体积比为3.17:10,搅拌30分钟后离心,将得到的沉降物在60°C下干燥60小时得到包裹亚甲基蓝的颗粒,将包裹亚甲基蓝的颗粒置于太阳光下,经42~121小时照晒后颗粒内包裹的亚甲基蓝就被降解。
CN201710446993.9A 2017-06-14 2017-06-14 一种在太阳光照下利用二氧化钛降解颗粒内包裹的亚甲基蓝的方法 Expired - Fee Related CN107261381B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710446993.9A CN107261381B (zh) 2017-06-14 2017-06-14 一种在太阳光照下利用二氧化钛降解颗粒内包裹的亚甲基蓝的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710446993.9A CN107261381B (zh) 2017-06-14 2017-06-14 一种在太阳光照下利用二氧化钛降解颗粒内包裹的亚甲基蓝的方法

Publications (2)

Publication Number Publication Date
CN107261381A CN107261381A (zh) 2017-10-20
CN107261381B true CN107261381B (zh) 2020-08-11

Family

ID=60067587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710446993.9A Expired - Fee Related CN107261381B (zh) 2017-06-14 2017-06-14 一种在太阳光照下利用二氧化钛降解颗粒内包裹的亚甲基蓝的方法

Country Status (1)

Country Link
CN (1) CN107261381B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743515A (zh) * 2019-10-24 2020-02-04 南京师范大学 一种改性磁性纳米羟基磷灰石吸附剂及其制备方法与应用
CN111591969B (zh) * 2020-06-03 2021-01-05 连云港东泰食品配料有限公司 一种高悬浮度羟基磷灰石的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008136A (en) * 1974-08-09 1977-02-15 Temple University Process for the treatment of waste water by heterogeneous photosensitized oxidation
RU2093472C1 (ru) * 1994-01-20 1997-10-20 Герасименко Владимир Федорович Способ очистки сточной и загрязненной питьевой воды и устройство для его осуществления
CN102285686A (zh) * 2011-06-07 2011-12-21 西安交通大学 快速溶胶凝胶制备铁-氮共掺杂介孔纳米二氧化钛的方法
CN102671662A (zh) * 2012-03-28 2012-09-19 安徽大学 易回收重复使用的新型高效可见光催化剂的制备及应用
CN104069879A (zh) * 2013-03-25 2014-10-01 中国科学院宁波材料技术与工程研究所 一种二氧化钛/羟基磷灰石复合光催化剂的制备方法
CN106389342A (zh) * 2016-09-20 2017-02-15 山东理工大学 一种可调控亚甲基蓝单体释放速度的羟基磷灰石/单宁酸复合颗粒的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8198389B2 (en) * 2006-05-25 2012-06-12 The University Of Akron Mold release compounds using cycloaliphatic epoxide functionalized polydimethylsiloxane coatings and photo-initiated polymerization

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008136A (en) * 1974-08-09 1977-02-15 Temple University Process for the treatment of waste water by heterogeneous photosensitized oxidation
RU2093472C1 (ru) * 1994-01-20 1997-10-20 Герасименко Владимир Федорович Способ очистки сточной и загрязненной питьевой воды и устройство для его осуществления
CN102285686A (zh) * 2011-06-07 2011-12-21 西安交通大学 快速溶胶凝胶制备铁-氮共掺杂介孔纳米二氧化钛的方法
CN102671662A (zh) * 2012-03-28 2012-09-19 安徽大学 易回收重复使用的新型高效可见光催化剂的制备及应用
CN104069879A (zh) * 2013-03-25 2014-10-01 中国科学院宁波材料技术与工程研究所 一种二氧化钛/羟基磷灰石复合光催化剂的制备方法
CN106389342A (zh) * 2016-09-20 2017-02-15 山东理工大学 一种可调控亚甲基蓝单体释放速度的羟基磷灰石/单宁酸复合颗粒的制备方法

Also Published As

Publication number Publication date
CN107261381A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
Duan et al. Catalytic degradation of Acid Orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation
Liang et al. A review: Application of tourmaline in environmental fields
Li et al. Sm-doped mesoporous g-C3N4 as efficient catalyst for degradation of tylosin: influencing factors and toxicity assessment
CN113244962B (zh) 一种产生单线态氧的锆卟啉基mof-石墨烯复合光催化剂的制备方法及应用
Chen et al. Exploration of double Z-type ternary composite long-afterglow/graphitic carbon nitride@ metal–organic framework for photocatalytic degradation of methylene blue
CN110354887B (zh) 一种用于光催化降解抗生素的可磁分离的催化剂及其制备方法和应用
CN111450871A (zh) 一种Mn掺杂g-C3N4负载多孔ZnCo2O4的光催化材料及其制法
Tang et al. A novel S-scheme heterojunction in spent battery-derived ZnFe2O4/g-C3N4 photocatalyst for enhancing peroxymonosulfate activation and visible light degradation of organic pollutant
CN107261381B (zh) 一种在太阳光照下利用二氧化钛降解颗粒内包裹的亚甲基蓝的方法
CN108079993B (zh) 氧化亚铁/氧化亚铜纳米复合材料的制备方法
CN104258885A (zh) 一种片状羟基磷酸铜纳米材料的制备方法
Zhang et al. A novel alginate/PVA hydrogel-supported Fe3O4 particles for efficient heterogeneous Fenton degradation of organic dyes
CN102600870B (zh) 一种负载型磷酸银/多聚磷酸银/氯化银复合水处理光催化剂及其制备方法
CN107555526B (zh) 一种复合可见光催化剂处理含铬废水的方法
Meng et al. Construction of novel bimetallic Ti/Ce-MOFs for ratiometric fluorescence sensing of trace copper and photocatalytic reduction of chromium (Ⅵ)
CN111617759B (zh) 催化臭氧降解有机废水的二氧化锰纳米催化膜及其制备方法
CN102921438B (zh) 磷酸银纳米球-石墨烯复合材料的制备及光催化应用
CN104826639A (zh) 磷酸银/还原石墨烯/二氧化钛纳米复合材料及制备方法
Zhang et al. Ternary heterojunction of cross-linked benzene Polymer/Bi2MoO6-Graphene oxide catalysts promote efficient adsorption and photocatalytic removal of oxytetracycline
CN107243323B (zh) 一种磁性竹纤维基活性炭材料及其制备方法和应用
CN104971754A (zh) 一种负载型高岭土/Bi2O2CO3-BiPO4复合光催化剂及其制备方法
CN116510700A (zh) 一种磁性海藻酸钠负载金属有机框架复合材料及其制备方法和应用
CN111748101B (zh) 一种羟基吡唑羧酸锰配合物光催化剂及其制备方法和应用
Zhou et al. Efficient adsorption‐photocatalysis activity of ternary ZnO‐Sm2O3‐MgO co‐modified biochar for dye removal
CN110227557B (zh) 磷酸银和聚苯胺协同改性的钒酸铋三元复合光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200811

Termination date: 20210614

CF01 Termination of patent right due to non-payment of annual fee