CN102652690A - 使用温度传感器控制组织消融的系统 - Google Patents

使用温度传感器控制组织消融的系统 Download PDF

Info

Publication number
CN102652690A
CN102652690A CN201110436038XA CN201110436038A CN102652690A CN 102652690 A CN102652690 A CN 102652690A CN 201110436038X A CN201110436038X A CN 201110436038XA CN 201110436038 A CN201110436038 A CN 201110436038A CN 102652690 A CN102652690 A CN 102652690A
Authority
CN
China
Prior art keywords
temperature
power
target
energy
output level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201110436038XA
Other languages
English (en)
Other versions
CN102652690B (zh
Inventor
A·戈瓦里
Y·埃夫拉思
A·C·阿尔特曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biosense Webster Israel Ltd
Original Assignee
Biosense Webster Israel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biosense Webster Israel Ltd filed Critical Biosense Webster Israel Ltd
Publication of CN102652690A publication Critical patent/CN102652690A/zh
Application granted granted Critical
Publication of CN102652690B publication Critical patent/CN102652690B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B18/1233Generators therefor with circuits for assuring patient safety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00084Temperature
    • A61B2017/00088Temperature using thermistors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00084Temperature
    • A61B2017/00092Temperature using thermocouples
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • A61B2018/00648Sensing and controlling the application of energy with feedback, i.e. closed loop control using more than one sensed parameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • A61B2034/2053Tracking an applied voltage gradient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2072Reference field transducer attached to an instrument or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/374NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • A61B2090/3782Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • A61N7/022Localised ultrasound hyperthermia intracavitary

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Otolaryngology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Surgical Instruments (AREA)
  • Laser Surgery Devices (AREA)

Abstract

本发明涉及使用温度传感器控制组织消融的系统。本发明提供了一种身体组织消融方法,所述身体组织消融通过下列步骤实施:将探针插入活体受试者的体内,推入所述探针以接触所述体内的组织,在功率输出电平下生成能量,以及通过所述探针将所述生成的能量传送到所述组织内。在传送所述生成的能量的同时,所述消融还通过下列步骤实施:确定所述组织的实测温度和所述传送能量的实测功率电平,以及根据所述实测温度和所述实测功率电平的函数来控制所述功率输出电平。本发明还描述了用于实施所述消融的相关设备。

Description

使用温度传感器控制组织消融的系统
发明背景
1.技术领域
本发明涉及侵入式医疗器械。更具体地讲,本发明涉及使用此类器械来消融组织。
2.背景技术
本领域已知的是使用电能来消融身体组织。通常用以下方法进行消融:以足以破坏靶组织的功率向电极施加交变电流,例如射频能量。通常,将电极安装在插入受试者体内的导管远端头上。可以使用本领域已知的多种不同方式来跟踪远端头,例如,通过测量远端头处由受试者体外的线圈生成的磁场来跟踪远端头。
使用射频能量消融心脏组织的已知困难在于控制组织的局部加热。
已有人提出使用自调节组织消融仪实现所需控制。例如,PCT国际公布WO9600036描述了身体组织的消融,其中将消融能量以功率脉冲序列的方式单独传输到多个发射器。定期地感测每个发射器的温度,并将该温度与针对所有发射器建立的所需温度进行比较,进而基于比较结果生成单独针对每个发射器的信号。传输到每个发射器的功率脉冲会根据该发射器的信号而单独变化,以在组织消融期间使所有发射器的温度基本保持在所需温度。
美国专利申请公布No.2008/0300588提议通过监测系统参数来自动进行消融。消融完成(由处理器基于其系统参数读数来确定)时,射频能量输送即被停止。这个决定,优选地在不需要使用者交互作用的情况下,基于系统参数和一套确定完成的规则作出。可被监测的参数包括功率输出。
发明内容
一方面想要形成足够大的消融灶以有效消融异常的组织病灶或阻止异常传导模式,另一方面又不期望过量的局部加热效应,两者之间面临权衡取舍。如果射频装置形成的消融灶太小,则医疗手术可能不太有效,或可能需要太多时间。另一方面,如果组织过量加热,则可能会由于过热而出现局部炭化效应。此类过热区域可形成高阻抗,并可形成热量通道的功能性障碍。使用较慢的加热可更好地控制消融,但是会不适当地延长手术时间。
消融仪功率电平(P)和组织温度(T)是实现对通过导管电极输送射频能量进行精确控制的重要因素。此类控制对于在实现一致的治疗结果的同时避免对周围组织产生过度损伤很重要。
在本发明的实施例中,通过基于组织温度和输送功率的反馈来控制消融仪施加的射频(RF)电流。虽然也可使用其他温度测量装置,但是通常利用位于导管顶端的传感器(例如热电偶)对温度进行测量。
根据本发明实施例,提供了身体组织消融方法,所述方法通过以下方式实施:将探针插入活体受试者的体内,推入探针以接触体内的组织,在功率输出电平下生成能量,以及通过探针将所生成能量传送到组织内。在传送所生成能量的同时,所述方法还通过以下方式实施:确定组织的实测温度和所传送能量的实测功率电平,以及根据实测温度和实测功率电平的函数来控制功率输出电平。
根据所述方法的一些方面,所生成能量可以是射频能量、超声能量或激光产生的光能。
根据所述方法的另外一些方面,使用磁共振成像分析或超声成像分析对实测温度进行确定。
根据所述方法的另外一个方面,实测温度为电极温度。
根据所述方法的一个方面,所述函数包括功率因子和温度因子的乘积。
根据所述方法的一个方面,功率因子包括实测功率电平和目标功率电平之间的差值,并且其中温度因子包括实测温度和目标温度之间的差值。
控制功率输出电平的所述方法的一个方面包括将实测温度和实测功率电平分别与预定温度目标值和功率目标值进行迭代比较,并根据比较来改变所述功率输出电平而建立新的功率输出电平,以接近预定的目标功率值。
比较并改变所述功率输出电平的所述方法的又一方面是每秒迭代10次。
比较并改变所述功率输出电平的所述方法的另一方面是每秒迭代5-50次。
在所述方法的又一方面中,通过改变所生成能量的电流分量来对功率输出电平进行改变。
在所述方法的另一方面中,通过限制其增量或减量从而不超出预定的限制条件来对功率输出电平进行改变,其中限制条件选自最大电流、最小电极温度、最大电极温度、组织的最高温度以及最大功率需量。
根据本发明实施例,提供了消融设备,其包括:导管,该导管具有插入活体受试者体腔内的远侧部分,并构造成使远侧部分与体腔内的组织接触;功率发生器,用于在功率输出电平下生成能量;设置在远侧部分上的消融电极,该电极适于经由导管接收来自功率发生器的能量并将能量传导至其要消融的组织;设置在远侧部分上的温度传感器,用于确定消融电极的温度。该消融设备还包括处理器,该处理器用来确定组织的实测温度和通过消融电极传导的能量的实测功率电平,以便根据实测温度和实测功率电平的函数来控制功率输出电平。
附图说明
为更好地理解本发明,以举例的方式提供本发明的详细说明。要结合以下附图来阅读详细说明,附图中相同的元件用相同的附图标号来表示,并且其中:
图1为用于进行消融手术的系统的图示,该系统根据本发明的公开实施例构造和操作;
图2为消融功率发生器的控制器的示意图,该控制器根据本发明的公开实施例构造和操作;
图3为基于磁共振成像(MRI)分析的温度传感器所控制的消融功率的控制器的示意图,该控制器根据本发明的替代实施例构造和操作;以及
图4为基于超声分析的温度传感器所控制的消融功率的控制器的示意图,该控制器根据本发明的替代实施例构造和操作。
具体实施方式
为了能够全面了解本发明的各种原理,在以下说明中阐述了许多具体细节。然而对于本领域的技术人员将显而易见的是,并非所有这些细节始终都是实施本发明所必需的。在这种情况下,为了不使主要概念不必要地模糊,未详细示出熟知的电路、控制逻辑、以及用于常规算法和进程的计算机程序指令细节。
现在转到附图,首先参见图1,其为用于在活体受试者或患者的心脏12上进行消融手术的系统10的图示,该系统10根据本发明的公开实施例构造和操作。该系统包括导管14,由操作者16将该导管经由皮肤穿过患者的血管系统插入到心脏12的心室或血管结构中。操作者16(通常为医师)将导管的远端头18在消融靶点与心壁接触。接着按照美国专利No.6,226,542和6,301,496以及共同转让的美国专利No.6,892,091中所公开的方法制备电激活图,这些专利的公开内容均以引用方式并入本文中。虽然参照图1描述的实施例主要与心脏消融相关,但是本发明的原理经过适当变动可应用于除心脏之外的身体组织。一种包括系统10的元件的商品可以商品名CARTO 3系统得自Biosense Webster,Inc.,3333Diamond CanyonRoad,Diamond Bar,CA91765。
可以通过施加热能使例如通过电激活图评价确定为异常的区域消融,例如通过将射频电流通过导管中的电线传导至远端头18处的一个或多个电极,这些电极将射频能量施加到心肌。能量被吸收在组织中,从而将组织加热到一定温度(通常约50℃),在该温度下组织会永久性失去其电兴奋性。此手术成功后在心脏组织中形成非传导性的消融灶,这些消融灶可中断导致心律失常的异常电通路。可将本发明的原理应用到不同的心室,应用于窦性心律标测,以及应用在治疗多种不同的心律失常时。
导管14通常包括柄部20,柄部上具有合适的控制件,以使操作者16能够按消融手术所需对导管的远端进行操纵、定位和定向。为了辅助操作者16,导管14的远侧部分包含位置传感器(未示出),其为位于控制台24的定位处理器22提供信号。
可以使电信号经由电线34穿过位于远端头18处或附近的一个或多个电极32,在心脏12和控制台24之间来回传送。可以通过电线34和电极32将起搏信号和其他控制器信号从控制台24传送至心脏12。附加的接线35将控制台24与身体表面电极30和定位子系统的其他部件连接在一起。电极32和身体表面电极30可以用来自消融点测量组织阻抗,如授予Govari等人的美国专利No.7,536,218中所提出的那样,该专利以引用方式并入本文。在每个电极32上或附近安装温度传感器37,通常为热电偶或热敏电阻器。
控制台24通常包含一个或多个消融功率发生器25。导管14可适合利用任何已知的消融技术将消融能量(如,射频能量、超声能量和激光产生的光能)传导到心脏。共同转让的美国专利No.6,814,733、6,997,924和7,156,816中公开了此类方法,这些专利以引用方式并入本文。
定位处理器22是系统10的定位子系统的部件,其测量导管14的位置和取向坐标。
在一个实施例中,定位子系统包括磁定位跟踪装置,该装置使用生成磁场的线圈28,以预定的工作体积在其周围生成磁场并感测导管处的这些磁场,从而确定导管14的位置和取向。
如上所述,导管14连接到控制台24,该控制台使操作者16能够观察并调控导管14的功能。控制台24包括处理器,优选为具有适当信号处理电路的计算机。所述处理器被连接以驱动监护仪29。信号处理电路通常接收、放大、过滤并数字化来自导管14的信号,这些信号包括位于导管14内远侧的上述传感器和多个感测电极(未示出)所产生的信号。控制台24和定位子系统接收并使用数字化的信号,以计算导管14的定位和取向,并分析来自电极的电信号。
通常,系统10包括其他部件,但为了简洁起见未在图中示出这些部件。例如,系统10可包括心电图(ECG)监护仪,其被连接以接收来自一个或多个身体表面电极的信号,从而为控制台24提供ECG同步信号。如上所述,系统10通常还包括基准位置传感器,其或者位于附着在受试者体外的外部施用基准贴片上,或者位于插入到心脏12内并相对于心脏12保持在固定位置的内置导管上。设置了用于通过导管14循环液体用以冷却消融点的常规泵和管路。
现在参见图2,其为消融功率发生器25(图1)的控制器39的示意图,该控制器根据本发明的公开实施例构造和操作。控制器39包括处理单元41、用于储存处理单元41的数据和命令的存储器43、以及消融模块45。在一些实施例中,控制器39的实例可以控制多电极导管中的各个电极32。在此类实施例中,可以全局或独立设定在控制器39的实例中采用的功率控制计算法的操作参数和限制。
消融模块45经由相应的端口47接收来自每个温度传感器37的温度信号T实测,并经由相应的端口49测量来自每个消融功率发生器25的瞬时功率电平信号P实测。为了简洁起见,图2中仅示出了电极32、温度传感器37以及端口47、49的两个实例。
控制器39的功能是进行消融,同时尽可能接近地保持消融功率发生器25的给定功率输出。
处理单元41确定实测功率电平P实测和预定的目标功率值之间的偏差;以及实测温度T实测和预定的目标温度之间的偏差。更具体地讲,处理单元41将温度信号和功率电平信号与预设的功率目标值P目标和温度目标值T目标进行比较,并通过线51将控制信号传送至消融模块45,其会控制消融功率发生器25,以产生新的电流值I,其为增加(或减少)现有电流值I现有的结果:
I的值通常可如下计算:
Figure BSA00000642245900061
等式(1)
其中k为阻尼常数。该式可采用以下形式:
Figure BSA00000642245900071
等式(2)
其中如果P实测和T实测均分别大于P目标和T目标,则C的值为-1,否则C为+1。
该函数可为最小函数。
Figure BSA00000642245900072
等式(3)
可例如使用提交于2010年11月8日的共同转让的专利申请No.12/941,165的教导内容测量功率,该专利申请以引用方式并入本文。
控制器39从而逐渐增加电流,直到消融仪达到目标功率和目标温度量级。如果功率或温度(或两者)超出目标量级,则控制器39会指令消融功率发生器25降低消融电流,以避免损伤。
通常在端口47、49处每秒读取10次输入参数。读取下列参数:电压(V);电流(I);温度(T);环境温度(N)。通过以下通式计算P实测和T实测以及阻抗Z实测的值:
P=V*I;
Z=V/I。
阻抗值给操作者显示并用来确认系统中的连续性。
在实施过程中,电流需量(dD)的变化受以下因素影响:
每个电极的最高温度(Tt)
每个电极的最大电流
最大总功率(Pt)/(或最大电流)
贴片接线。可以使用名称为“Detection of Skin Impedance”(皮肤阻抗检测)的美国专利申请公布No.2007/0060832中所公开的方法跟踪贴片接线的阻抗,该专利申请公布以引用方式并入本文。在单极模式下操作时,阻抗的上升可能指示贴片与身体表面的连接断开。
最高温度(32-60℃,通常为47℃)。
最低温度(通常为27℃)。
最大阻抗(针对每个电极测定);通常为250Ω。
最小阻抗(通常为50Ω)。
在预设时间间隔(通常3秒)内发生的最大电极阻抗变化(通常为100Ω)超出该限制会引起组织损伤和后续的血栓形成的风险。
最小流速(通常为6ml/min)。
实耗消融时间。这要根据具体情况而定,通常由操作者在手术之前设定。典型值为60秒。
最初,通常使用数模转换器将功率需量设定在250个单位(对应于约1W),但是可将其增加至最多2048个单位。在后续的迭代中,可如下计算功率需量的变化:
ΔD=D0*Min((Pt-P实测)/Pt,(Tt-T实测)/(Tt))  等式(4)
其中D0为需量或功率的常数预定变化(250个单位的需量,折合约1W功率)。在每次迭代中,对应功率
Di+1=Di+ΔD  等式(5)
的电流值(I)输出到电极上。
然而,如果Min((Pt-P实测)/Pt,(Tt-T实测)/(Tt))>1,则使用等式
ΔD=D0  等式(6)
以限制功率电平的增加。如果
Min((Pt-P实测)/Pt,(Tt-T实测)/(Tt))<-1.1,
则将功率输出设定为0,以让组织冷却。
该计算法的迭代速率通常为10次/秒,但是可在5-50次/秒的范围内。
如果当前功率大于所需,即Pt<P实测或Tt<T实测,则值ΔD为负,功率输出会降低。仅在当前功率低于所需并且不超出上述限制中的任何一项时才会增加功率。
在一些情况下,当违反上面提到的限制中的一项或多项时,消融可继续,但是处于受限操作模式下。下面的实例是示例性的:
1.如果要求的功率(需量)超出可用功率(最大需量)或电极温度超出其最大值,则消融可在次优功率下以受限模式继续。
在其他情况下消融被终止,如以下实例所示:
2.超出极限值的阻抗的突变表示潜在的危险状况,例如表面皮肤贴片可能断开连接。
3.超出最高温度极限,其可能由冷却泵故障导致。
4.未能超出最低温度。这是一种保护措施,旨在阻止对除靶组织之外的组织进行无意消融。违反此阈值会导致消融终止。
5.超出Pt的功率输出可能指示发生了短路。
6.实耗消融时间超出了最大极限。虽然在这种情况下消融终止,但是这样做是出于操作原因,而不是因为硬件故障。
7.违反最小流速。这可能指示泵故障。流速通常在手术开始时消融功率发生器25通电前就其功能进行测试(图2)。给泵通电时预期电极温度会降低1-3℃。
替代实施例1。
现在参见图3,其为消融功率发生器25(图1)的控制器39的示意图,该控制器根据本发明的替代实施例构造和操作。在本实施例中,可省略温度传感器37(图2),这样可降低制造成本。可以通过针对靶组织同时执行磁共振成像(MRI)来获得组织温度的指示。T1、T2和质子密度对温度的依赖性被用来使信号强度的变化与温度关联。
通过重建处理器55获取来自场磁体53的MRI信号,重建处理器通过连接至温度分析仪59的峰值计算模块57得到增强。温度分析仪59向消融模块45的端口47提供测温信号。这样,MRI系统作为用于消融控制的温度传感器运行。在例如互联网上的“wiki.medpedia.com/Clinical:Focused_ultrasound_ablation_offerprostate_cancer_option”中展示的测温技术经过适当变动可用于本实施例中。
替代实施例2。
现在参见图4,其为消融功率发生器25(图1)的控制器39的示意图,该控制器根据本发明的又一个替代实施例构造和操作。在本实施例中,可省略温度传感器37(图2)。使用名称为“Lesion Assessment byPacing”(通过起搏的损伤评估)的共同转让的美国专利申请No.11/357,512中所述的教导内容,通过评估被消融的组织的厚度来测量组织温度,该专利申请以引用方式并入本文。
通常将超声换能器61排列在导管14(图1)的远端头18附近,并通过超声驱动器63为超声换能器通电。可以用于此目的的合适超声驱动器的一个实例为Analogic Corporation,8Centennial Drive,Peabody,Mass制造的AN2300TM超声系统。超声驱动器63可以支持本领域中已知的不同成像模式,例如B模式、M模式、连续波多普勒以及彩色血流多普勒。
在超声处理器65中接收来自换能器61的信号,并在温度分析仪67中对信号进一步分析。温度分析仪67向消融模块45的端口47提供测温信号。包括本实施例中所述的超声元件的子系统起到用于消融控制的温度传感器的作用。
替代实施例3。
前述实施例中的能量源产生射频能量。然而,可以使用其他能量类型来实施本发明。例如,在图4的实施例中,电极32(图2)可以省略,并且换能器61被构造成发出更高的超声能量,如共同转让的美国专利No.7,156,816中所提出的,该专利以引用的方式并入本文。
作为另外一种选择,消融能量源可以是激光,如共同转让的美国专利No.6,997,924中所公开的,该专利以引用的方式并入本文。
这两种情况,均可以使用上文所公开实施例中的任何一个来测量温度。
本领域的技术人员会认识到,本发明并不限于在上文中具体示出和描述的内容。更确切地说,本发明的范围包括上文所述各种特征的组合与子组合,以及这些特征的不在现有技术范围内的变化和修改形式,这些变化和修改形式是本领域技术人员在阅读上述说明后可想到的。

Claims (32)

1.一种身体组织消融的方法,其包括下列步骤:
将探针插入活体受试者体内;
推入所述探针以接触所述体内的组织;
在功率输出电平下生成能量;
通过所述探针将所述生成能量传送到组织内;
在传送所述生成能量时,确定所述组织的实测温度和所述传送能量的实测功率电平;以及
根据所述实测温度和所述实测功率电平的函数来控制所述功率输出电平。
2.根据权利要求1所述的方法,其中所述生成能量为射频能量。
3.根据权利要求1所述的方法,其中所述生成能量为超声能量。
4.根据权利要求1所述的方法,其中所述生成能量为激光产生的光能。
5.根据权利要求1所述的方法,其中确定实测温度是用磁共振成像分析完成的。
6.根据权利要求1所述的方法,其中所述实测温度为电极温度。
7.根据权利要求1所述的方法,其中确定实测温度是用超声成像分析完成的。
8.根据权利要求1所述的方法,其中所述函数包括功率因子和温度因子的乘积。
9.根据权利要求8所述的方法,其中所述功率因子包括所述实测功率电平和目标功率电平之间的差值,并且其中所述温度因子包括所述实测温度和目标温度之间的差值。
10.根据权利要求1所述的方法,其中所述函数为
其中:
I当前为先前迭代中的电流值;
P实测为实测功率;
P目标为目标功率电平;
T实测为实测温度
T目标为目标温度;以及
k为阻尼常数。
11.根据权利要求1所述的方法,其中所述函数为
Figure FSA00000642245800021
其中:
I当前为先前迭代中的电流值;
P实测为实测功率;
P目标为目标功率电平;
T实测为实测温度
T目标为目标温度;
C为常数,如果P实测和T实测均分别大于P目标和T目标,则C值为-1,否则C为+1;以及
k为阻尼常数。
12.根据权利要求1所述的方法,其中控制所述功率输出电平包括下列步骤:
将所述实测温度和所述实测功率电平分别与预定的温度目标值和功率目标值进行比较;以及
根据所述比较步骤改变所述功率输出电平而建立新的功率输出电平,以接近预定的目标功率值。
13.根据权利要求12所述的方法,其中所述比较步骤和所述改变所述功率输出电平的步骤是迭代执行的。
14.根据权利要求13所述的方法,其中所述比较步骤和所述改变所述功率输出电平的步骤每秒迭代10次。
15.根据权利要求13所述的方法,其中所述比较步骤和所述改变所述功率输出电平的步骤每秒迭代5-50次。
16.根据权利要求12所述的方法,其中所述改变所述功率输出电平的步骤是通过改变所述生成能量的电流分量执行的。
17.根据权利要求12所述的方法,其中所述改变所述功率输出电平的步骤是通过限制其增量或减量以不超出预定的限制条件来执行的,其中所述限制条件选自最大电流、最小电极温度、最大电极温度、所述组织的最大温度、以及最大功率需量。
18.一种消融设备,包括:
导管,所述导管具有插入活体受试者体腔内的远侧部分,并构造成使所述远侧部分与所述体腔内的组织接触;
功率发生器,所述功率发生器用于在功率输出电平下生成能量;
设置在所述远侧部分的消融电极,所述消融电极适于经由所述导管接收来自所述功率发生器的所述能量并将所述能量传导至所述组织以将其消融;
设置在所述远侧部分的温度传感器,用于确定所述消融电极的温度;以及
处理器,所述处理器用来确定所述组织的实测温度和通过所述消融电极传导的能量的实测功率电平,以根据所述实测温度和所述实测功率电平的函数来控制所述功率输出电平。
19.根据权利要求18所述的消融设备,其中所述生成能量为射频能量。
20.根据权利要求18所述的消融设备,其中所述生成能量为超声能量。
21.根据权利要求18所述的消融设备,其中所述实测温度为电极温度。
22.根据权利要求18所述的消融设备,其中所述生成能量为激光产生的光能。
23.根据权利要求18所述的消融设备,其中所述函数包括功率因子和温度因子的乘积。
24.根据权利要求23所述的消融设备,其中所述功率因子包括所述实测功率电平和目标功率电平之间的差值,并且其中所述温度因子包括所述实测温度和目标温度之间的差值。
25.根据权利要求18所述的消融设备,其中所述函数为
Figure FSA00000642245800041
其中:
I当前为先前迭代中的电流值;
P实测为实测功率;
P目标为目标功率电平;
T实测为实测温度
T目标为目标温度;以及
k为阻尼常数。
26.根据权利要求18所述的消融设备,其中所述函数为
Figure FSA00000642245800042
其中:
I当前为先前迭代中的电流值;
P实测为实测功率;
P目标为目标功率电平;
T实测为实测温度
T目标为目标温度;
C为常数,如果P实测和T实测均分别大于P目标和T目标,则C值为-1,否则C为+1;以及
k为阻尼常数。
27.根据权利要求18所述的消融设备,其中所述处理器用来通过执行下列步骤控制所述功率输出电平:
将所述实测温度和所述实测功率电平分别与预定的温度目标值和功率目标值进行比较;以及
根据所述比较步骤,改变所述功率输出电平而建立新的功率输出电平,以接近预定的目标功率值。
28.根据权利要求27所述的消融设备,其中所述比较步骤和所述改变所述功率输出电平的步骤是迭代执行的。
29.根据权利要求28所述的消融设备,其中所述比较步骤和所述改变所述功率输出电平的步骤每秒迭代10次。
30.根据权利要求28所述的消融设备,其中所述比较步骤和所述改变所述功率输出电平的步骤每秒迭代5-50次。
31.根据权利要求27所述的消融设备,其中改变所述功率输出电平的步骤是通过改变所述生成能量的电流分量来执行的。
32.根据权利要求27所述的消融设备,其中所述改变所述功率输出电平的步骤是通过限制其增量或减量从而不超出预定的限制条件来执行的,其中所述限制条件选自最大电流、最小电极温度、最大电极温度、所述组织的最高温度、以及最大功率需量。
CN201110436038.XA 2010-12-16 2011-12-16 使用温度传感器控制组织消融的系统 Active CN102652690B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/969,684 2010-12-16
US12/969684 2010-12-16
US12/969,684 US9737353B2 (en) 2010-12-16 2010-12-16 System for controlling tissue ablation using temperature sensors

Publications (2)

Publication Number Publication Date
CN102652690A true CN102652690A (zh) 2012-09-05
CN102652690B CN102652690B (zh) 2016-05-11

Family

ID=45218555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110436038.XA Active CN102652690B (zh) 2010-12-16 2011-12-16 使用温度传感器控制组织消融的系统

Country Status (9)

Country Link
US (5) US9737353B2 (zh)
EP (2) EP2486884B1 (zh)
JP (1) JP6095886B2 (zh)
CN (1) CN102652690B (zh)
AU (1) AU2011254026B2 (zh)
CA (1) CA2762196C (zh)
DK (1) DK2486884T3 (zh)
ES (1) ES2571988T3 (zh)
IL (1) IL216764A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105079956A (zh) * 2015-08-14 2015-11-25 重庆德马光电技术有限公司 射频能量输出的主机和治疗手柄、及其控制方法和系统
CN107334525A (zh) * 2012-11-05 2017-11-10 毕达哥拉斯医疗有限公司 受控组织消融
CN107822707A (zh) * 2017-11-30 2018-03-23 中国科学技术大学 一种射频消融方法及系统
CN108201467A (zh) * 2016-12-20 2018-06-26 韦伯斯特生物官能(以色列)有限公司 估计消融期间的温度
CN108430365A (zh) * 2015-12-20 2018-08-21 波士顿科学医学有限公司 微型电感式位置传感器
CN110522507A (zh) * 2018-05-23 2019-12-03 韦伯斯特生物官能(以色列)有限公司 使用预定的消融电流分布
CN111093516A (zh) * 2017-11-21 2020-05-01 深圳迈瑞生物医疗电子股份有限公司 用于规划消融的超声系统及方法
CN111278507A (zh) * 2017-08-29 2020-06-12 皇家飞利浦有限公司 磁共振引导的高强度聚焦超声中的功率调节
CN111565660A (zh) * 2017-11-13 2020-08-21 生物相容英国有限公司 带有磁共振成像检测的冷冻消融系统
US11369431B2 (en) 2016-06-11 2022-06-28 Boston Scientific Scimed Inc. Inductive double flat coil displacement sensor

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8954161B2 (en) 2012-06-01 2015-02-10 Advanced Cardiac Therapeutics, Inc. Systems and methods for radiometrically measuring temperature and detecting tissue contact prior to and during tissue ablation
US8926605B2 (en) 2012-02-07 2015-01-06 Advanced Cardiac Therapeutics, Inc. Systems and methods for radiometrically measuring temperature during tissue ablation
US9277961B2 (en) 2009-06-12 2016-03-08 Advanced Cardiac Therapeutics, Inc. Systems and methods of radiometrically determining a hot-spot temperature of tissue being treated
US9226791B2 (en) 2012-03-12 2016-01-05 Advanced Cardiac Therapeutics, Inc. Systems for temperature-controlled ablation using radiometric feedback
US9737353B2 (en) 2010-12-16 2017-08-22 Biosense Webster (Israel) Ltd. System for controlling tissue ablation using temperature sensors
US9743975B2 (en) 2012-10-02 2017-08-29 Covidien Lp Thermal ablation probe for a medical device
US9173667B2 (en) 2012-10-16 2015-11-03 Med-Sonics Corporation Apparatus and methods for transferring ultrasonic energy to a bodily tissue
IL238516B (en) 2012-11-05 2022-08-01 Relievant Medsystems Inc System and methods for creating curved pathways through bone and regulating the nerves within the bone
US9339284B2 (en) 2012-11-06 2016-05-17 Med-Sonics Corporation Systems and methods for controlling delivery of ultrasonic energy to a bodily tissue
US20140160004A1 (en) 2012-12-11 2014-06-12 Biosense Webster (Israel), Ltd. Use of physician eye tracking during a procedure
AU2014229253B2 (en) 2013-03-15 2018-10-04 Medtronic Holding Company Sàrl Electrosurgical mapping tools and methods
WO2015148938A2 (en) * 2014-03-27 2015-10-01 Ari Partanen Method and system for mri-based targeting, monitoring, and quantification of thermal and mechanical bioeffects in tissue induced by high intensity focused ultrasound
US9956035B2 (en) 2014-03-27 2018-05-01 Biosense Webster (Israel) Ltd. Temperature measurement in catheter
CN106415225B (zh) * 2014-04-15 2019-06-04 皇家飞利浦有限公司 用于温度测量的低成本磁共振安全探头
AU2015350007A1 (en) 2014-11-19 2017-06-29 Epix Therapeutics, Inc. Systems and methods for high-resolution mapping of tissue
JP6673598B2 (ja) 2014-11-19 2020-03-25 エピックス セラピューティクス,インコーポレイテッド ペーシングを伴う組織の高分解能マッピング
KR20170107428A (ko) 2014-11-19 2017-09-25 어드밴스드 카디악 테라퓨틱스, 인크. 고분해능 전극 어셈블리를 이용한 절제 장치, 시스템 및 방법
US9636164B2 (en) 2015-03-25 2017-05-02 Advanced Cardiac Therapeutics, Inc. Contact sensing systems and methods
US9763684B2 (en) 2015-04-02 2017-09-19 Med-Sonics Corporation Devices and methods for removing occlusions from a bodily cavity
US20170119461A1 (en) * 2015-10-29 2017-05-04 Kyphon Sárl Electrosurgical Apparatus with Temperature Sensing and Methods of use thereof
US10307206B2 (en) * 2016-01-25 2019-06-04 Biosense Webster (Israel) Ltd. Temperature controlled short duration ablation
US10555776B2 (en) * 2016-03-08 2020-02-11 Biosense Webster (Israel) Ltd. Magnetic resonance thermometry during ablation
WO2017160808A1 (en) 2016-03-15 2017-09-21 Advanced Cardiac Therapeutics, Inc. Improved devices, systems and methods for irrigated ablation
EP3797719A1 (en) 2016-05-02 2021-03-31 Affera, Inc. Catheter with ablation electrode
GB2552165B (en) 2016-07-11 2019-11-06 Gyrus Medical Ltd System for monitoring a microwave tissue ablation process
US11020174B2 (en) 2016-10-17 2021-06-01 Biosense Webster (Israel) Ltd. Catheter with angled irrigation holes
CN110809448B (zh) 2017-04-27 2022-11-25 Epix疗法公司 确定导管尖端与组织之间接触的性质
US10456056B2 (en) * 2017-06-21 2019-10-29 Biosense Webster (Israel) Ltd. Combination torso vest to map cardiac electrophysiology
US11432872B2 (en) 2019-02-28 2022-09-06 Biosense Webster (Israel) Ltd. Energy-guided radiofrequency (RF) ablation
US11172984B2 (en) 2019-05-03 2021-11-16 Biosense Webster (Israel) Ltd. Device, system and method to ablate cardiac tissue
KR20220007884A (ko) 2019-05-09 2022-01-19 자이러스 에이씨엠아이, 인코포레이티드 디.비.에이. 올림푸스 써지컬 테크놀러지스 아메리카 전기수술 시스템 및 방법
WO2021140616A1 (ja) * 2020-01-09 2021-07-15 オリンパス株式会社 処置システム、制御装置、及び制御方法
IL282631A (en) 2020-05-04 2021-12-01 Biosense Webster Israel Ltd Device, system and method for performing cardiac tissue ablation
CN114145838B (zh) * 2021-05-28 2024-03-15 南京邮电大学 一种心脏射频消融导管系统
USD1014762S1 (en) 2021-06-16 2024-02-13 Affera, Inc. Catheter tip with electrode panel(s)
US20240189545A1 (en) 2022-12-13 2024-06-13 Biosense Webster (Israel) Ltd. Grooved catheter with recessed irrigation holes
CN118058805A (zh) * 2024-04-18 2024-05-24 湖南半陀医疗科技有限公司 一种高频超声手术的双输出管理系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540681A (en) * 1992-04-10 1996-07-30 Medtronic Cardiorhythm Method and system for radiofrequency ablation of tissue
US5743903A (en) * 1991-11-08 1998-04-28 Ep Technologies, Inc. Cardiac ablation systems and methods using tissue temperature monitoring and control
US20070198007A1 (en) * 2006-02-17 2007-08-23 Assaf Govari Lesion assessment by pacing
US20080287944A1 (en) * 2001-09-28 2008-11-20 Angiodynamics, Inc. Tissue ablation apparatus and method
CN101902978A (zh) * 2007-03-13 2010-12-01 海尔特医疗公司 用于使返回电极温度适中的设备和方法

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5005147A (en) * 1988-12-30 1991-04-02 The United States Of America As Represented By The Administrator, The National Aeronautics And Space Administration Method and apparatus for sensor fusion
US5122137A (en) * 1990-04-27 1992-06-16 Boston Scientific Corporation Temperature controlled rf coagulation
US5180896A (en) * 1990-10-11 1993-01-19 University Of Florida System and method for in-line heating of medical fluid
US5906614A (en) * 1991-11-08 1999-05-25 Ep Technologies, Inc. Tissue heating and ablation systems and methods using predicted temperature for monitoring and control
US5573533A (en) * 1992-04-10 1996-11-12 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
US5542916A (en) * 1992-08-12 1996-08-06 Vidamed, Inc. Dual-channel RF power delivery system
EP0767628B1 (en) * 1994-06-27 2004-01-14 Boston Scientific Limited Non-linear control systems for heating and ablating body tissue
US5735846A (en) * 1994-06-27 1998-04-07 Ep Technologies, Inc. Systems and methods for ablating body tissue using predicted maximum tissue temperature
ATE255369T1 (de) * 1994-06-27 2003-12-15 Boston Scient Ltd System zur steuerung von gewebeablation mit temperatursensoren
US6409722B1 (en) * 1998-07-07 2002-06-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US5800432A (en) * 1995-05-01 1998-09-01 Ep Technologies, Inc. Systems and methods for actively cooling ablation electrodes using diodes
US6053912A (en) * 1995-05-01 2000-04-25 Ep Techonologies, Inc. Systems and methods for sensing sub-surface temperatures in body tissue during ablation with actively cooled electrodes
US6030379A (en) * 1995-05-01 2000-02-29 Ep Technologies, Inc. Systems and methods for seeking sub-surface temperature conditions during tissue ablation
US5688267A (en) * 1995-05-01 1997-11-18 Ep Technologies, Inc. Systems and methods for sensing multiple temperature conditions during tissue ablation
WO1996034570A1 (en) * 1995-05-01 1996-11-07 Ep Technologies, Inc. Systems and methods for obtaining desired lesion characteristics while ablating body tissue
US6575969B1 (en) * 1995-05-04 2003-06-10 Sherwood Services Ag Cool-tip radiofrequency thermosurgery electrode system for tumor ablation
US6293943B1 (en) * 1995-06-07 2001-09-25 Ep Technologies, Inc. Tissue heating and ablation systems and methods which predict maximum tissue temperature
US6022346A (en) * 1995-06-07 2000-02-08 Ep Technologies, Inc. Tissue heating and ablation systems and methods using self-heated electrodes
JPH0994252A (ja) 1995-09-28 1997-04-08 Nagano Keiki Seisakusho Ltd 腹腔排煙装置
US5626140A (en) * 1995-11-01 1997-05-06 Spacelabs Medical, Inc. System and method of multi-sensor fusion of physiological measurements
US5738114A (en) 1996-02-23 1998-04-14 Somnus Medical Technologies, Inc. Method and apparatus for treatment of air way obstructions
US5755760A (en) 1996-03-11 1998-05-26 Medtronic, Inc. Deflectable catheter
US5956464A (en) * 1996-04-18 1999-09-21 Bei Sensors & Systems Company, Inc. Fuzzy logic controlled endometrium ablator
US6092033A (en) * 1997-04-16 2000-07-18 Uhlmann; Jeffrey K. Method and apparatus for fusing mean and covariance estimates
WO1998051235A1 (en) * 1997-05-15 1998-11-19 Palomar Medical Technologies, Inc. Method and apparatus for dermatology treatment
US6293941B1 (en) * 1997-10-06 2001-09-25 Somnus Medical Technologies, Inc. Method and apparatus for impedance measurement in a multi-channel electro-surgical generator
JP4339421B2 (ja) 1997-11-28 2009-10-07 オリンパス株式会社 送気吸引制御装置
US6045550A (en) * 1998-05-05 2000-04-04 Cardiac Peacemakers, Inc. Electrode having non-joined thermocouple for providing multiple temperature-sensitive junctions
US6558378B2 (en) * 1998-05-05 2003-05-06 Cardiac Pacemakers, Inc. RF ablation system and method having automatic temperature control
US6537272B2 (en) * 1998-07-07 2003-03-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US6301496B1 (en) 1998-07-24 2001-10-09 Biosense, Inc. Vector mapping of three-dimensionally reconstructed intrabody organs and method of display
US6226542B1 (en) 1998-07-24 2001-05-01 Biosense, Inc. Three-dimensional reconstruction of intrabody organs
US7594913B2 (en) * 1998-12-14 2009-09-29 Medwaves, Inc. Radio-frequency based catheter system and method for ablating biological tissues
US6892091B1 (en) 2000-02-18 2005-05-10 Biosense, Inc. Catheter, method and apparatus for generating an electrical map of a chamber of the heart
NZ522128A (en) * 2000-03-31 2003-08-29 Rita Medical Systems Inc Tissue biopsy and treatment apparatus and method
US7520877B2 (en) * 2000-06-07 2009-04-21 Wisconsin Alumni Research Foundation Radiofrequency ablation system using multiple prong probes
US7104987B2 (en) * 2000-10-17 2006-09-12 Asthmatx, Inc. Control system and process for application of energy to airway walls and other mediums
US6752804B2 (en) * 2000-12-28 2004-06-22 Cardiac Pacemakers, Inc. Ablation system and method having multiple-sensor electrodes to assist in assessment of electrode and sensor position and adjustment of energy levels
US20020165529A1 (en) * 2001-04-05 2002-11-07 Danek Christopher James Method and apparatus for non-invasive energy delivery
US6691042B2 (en) * 2001-07-02 2004-02-10 Rosetta Inpharmatics Llc Methods for generating differential profiles by combining data obtained in separate measurements
US6814733B2 (en) 2002-01-31 2004-11-09 Biosense, Inc. Radio frequency pulmonary vein isolation
US7418351B2 (en) * 2002-01-31 2008-08-26 Rosetta Inpharmatics Llc Methods for analysis of measurement errors in measured signals
US6897446B2 (en) * 2002-03-26 2005-05-24 Lockheed Martin Corporation Method and system for target detection using an infra-red sensor
US6829568B2 (en) * 2002-04-26 2004-12-07 Simon Justin Julier Method and apparatus for fusing signals with partially known independent error components
US8986297B2 (en) * 2002-08-21 2015-03-24 Resect Medical, Inc. Thermal hemostasis and/or coagulation of tissue
US6997924B2 (en) 2002-09-17 2006-02-14 Biosense Inc. Laser pulmonary vein isolation
US7156816B2 (en) 2002-11-26 2007-01-02 Biosense, Inc. Ultrasound pulmonary vein isolation
WO2005022090A2 (en) * 2003-03-21 2005-03-10 Lockheed Martin Corporation Target detection improvements using temporal integrations and spatial fusion
US20050251062A1 (en) * 2004-05-10 2005-11-10 Myoung Choi Iterative approach for applying multiple currents to a body using voltage sources in electrical impedance tomography
US7226447B2 (en) * 2004-06-23 2007-06-05 Smith & Nephew, Inc. Electrosurgical generator
US7293400B2 (en) * 2004-09-30 2007-11-13 General Electric Company System and method for sensor validation and fusion
JP4590569B2 (ja) * 2004-12-08 2010-12-01 国立大学法人岩手大学 温度制御方法、及び温度制御装置
US7266477B2 (en) * 2005-06-22 2007-09-04 Deere & Company Method and system for sensor signal fusion
US7536218B2 (en) 2005-07-15 2009-05-19 Biosense Webster, Inc. Hybrid magnetic-based and impedance-based position sensing
US7756576B2 (en) 2005-08-26 2010-07-13 Biosense Webster, Inc. Position sensing and detection of skin impedance
US20110137147A1 (en) * 2005-10-14 2011-06-09 University Of Utah Research Foundation Minimum time feedback control of efficacy and safety of thermal therapies
EP1956992B1 (en) 2005-12-02 2013-03-06 Koninklijke Philips Electronics N.V. Automating the ablation procedure to minimize the need for manual intervention
US7637907B2 (en) * 2006-09-19 2009-12-29 Covidien Ag System and method for return electrode monitoring
EP2142127B1 (en) * 2007-04-19 2013-06-12 S.D.M.H.PTY. Ltd. Tissue ablation device with electrodes deployable to form a planar array of elliptical electrodes
US8641704B2 (en) * 2007-05-11 2014-02-04 Medtronic Ablation Frontiers Llc Ablation therapy system and method for treating continuous atrial fibrillation
US8257349B2 (en) * 2008-03-28 2012-09-04 Tyco Healthcare Group Lp Electrosurgical apparatus with predictive RF source control
US8162932B2 (en) * 2009-01-12 2012-04-24 Tyco Healthcare Group Lp Energy delivery algorithm impedance trend adaptation
US20120022510A1 (en) * 2009-03-05 2012-01-26 Cynosure, Inc. Thermal surgery safety apparatus and method
US20100262135A1 (en) * 2009-04-14 2010-10-14 Primaeva Medical, Inc. Controlled delivery of therapeutic energy to tissue
CN104605928B (zh) * 2009-05-08 2018-01-05 圣犹达医疗用品国际控股有限公司 用于在基于导管的消融治疗中控制损伤尺寸的系统
US9226791B2 (en) * 2012-03-12 2016-01-05 Advanced Cardiac Therapeutics, Inc. Systems for temperature-controlled ablation using radiometric feedback
GB2485924B (en) * 2009-09-15 2015-11-04 Boston Scient Scimed Inc System for predicting lesion size shortly after onset of RF energy delivery
US20170049513A1 (en) * 2009-11-06 2017-02-23 Cosman Medical, Inc. Multiple electrode generator
US20110152857A1 (en) * 2009-12-19 2011-06-23 Frank Ingle Apparatus and Methods For Electrophysiology Procedures
US9005192B2 (en) 2010-11-08 2015-04-14 Biosense Webster (Israel) Ltd. Simultaneous ablation by multiple electrodes
US10292763B2 (en) 2016-01-25 2019-05-21 Biosense Webster (Israel) Ltd. Temperature controlled short duration ablation
US9737353B2 (en) 2010-12-16 2017-08-22 Biosense Webster (Israel) Ltd. System for controlling tissue ablation using temperature sensors
US10405920B2 (en) * 2016-01-25 2019-09-10 Biosense Webster (Israel) Ltd. Temperature controlled short duration ablation
US8968293B2 (en) * 2011-04-12 2015-03-03 Covidien Lp Systems and methods for calibrating power measurements in an electrosurgical generator
US20140058375A1 (en) 2012-08-22 2014-02-27 Boston Scientific Scimed, Inc. High resolution map and ablate catheter
JP6306322B2 (ja) 2013-11-11 2018-04-04 豊興工業株式会社 内接歯車ポンプ
US10307206B2 (en) * 2016-01-25 2019-06-04 Biosense Webster (Israel) Ltd. Temperature controlled short duration ablation
US11172984B2 (en) 2019-05-03 2021-11-16 Biosense Webster (Israel) Ltd. Device, system and method to ablate cardiac tissue

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5743903A (en) * 1991-11-08 1998-04-28 Ep Technologies, Inc. Cardiac ablation systems and methods using tissue temperature monitoring and control
US5540681A (en) * 1992-04-10 1996-07-30 Medtronic Cardiorhythm Method and system for radiofrequency ablation of tissue
US20080287944A1 (en) * 2001-09-28 2008-11-20 Angiodynamics, Inc. Tissue ablation apparatus and method
US20070198007A1 (en) * 2006-02-17 2007-08-23 Assaf Govari Lesion assessment by pacing
CN101902978A (zh) * 2007-03-13 2010-12-01 海尔特医疗公司 用于使返回电极温度适中的设备和方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107334525A (zh) * 2012-11-05 2017-11-10 毕达哥拉斯医疗有限公司 受控组织消融
CN107334525B (zh) * 2012-11-05 2019-10-08 毕达哥拉斯医疗有限公司 受控组织消融
CN105079956A (zh) * 2015-08-14 2015-11-25 重庆德马光电技术有限公司 射频能量输出的主机和治疗手柄、及其控制方法和系统
CN108430365A (zh) * 2015-12-20 2018-08-21 波士顿科学医学有限公司 微型电感式位置传感器
CN108430365B (zh) * 2015-12-20 2021-07-02 波士顿科学医学有限公司 微型电感式位置传感器
US11369431B2 (en) 2016-06-11 2022-06-28 Boston Scientific Scimed Inc. Inductive double flat coil displacement sensor
CN108201467B (zh) * 2016-12-20 2023-08-18 韦伯斯特生物官能(以色列)有限公司 估计消融期间的温度
CN108201467A (zh) * 2016-12-20 2018-06-26 韦伯斯特生物官能(以色列)有限公司 估计消融期间的温度
CN111278507A (zh) * 2017-08-29 2020-06-12 皇家飞利浦有限公司 磁共振引导的高强度聚焦超声中的功率调节
CN111565660A (zh) * 2017-11-13 2020-08-21 生物相容英国有限公司 带有磁共振成像检测的冷冻消融系统
CN111565660B (zh) * 2017-11-13 2023-08-15 生物相容英国有限公司 带有磁共振成像检测的冷冻消融系统
CN111093516A (zh) * 2017-11-21 2020-05-01 深圳迈瑞生物医疗电子股份有限公司 用于规划消融的超声系统及方法
CN111093516B (zh) * 2017-11-21 2023-01-10 深圳迈瑞生物医疗电子股份有限公司 用于规划消融的超声系统及方法
CN107822707A (zh) * 2017-11-30 2018-03-23 中国科学技术大学 一种射频消融方法及系统
CN107822707B (zh) * 2017-11-30 2024-02-23 中国科学技术大学 一种射频消融方法及系统
CN110522507A (zh) * 2018-05-23 2019-12-03 韦伯斯特生物官能(以色列)有限公司 使用预定的消融电流分布
CN110522507B (zh) * 2018-05-23 2024-02-20 韦伯斯特生物官能(以色列)有限公司 使用预定的消融电流分布

Also Published As

Publication number Publication date
JP6095886B2 (ja) 2017-03-15
US20190175247A1 (en) 2019-06-13
JP2012125584A (ja) 2012-07-05
EP3034024B1 (en) 2017-11-22
ES2571988T3 (es) 2016-05-27
EP2486884A1 (en) 2012-08-15
AU2011254026B2 (en) 2015-07-09
US9737353B2 (en) 2017-08-22
US20200360073A1 (en) 2020-11-19
US20180289414A1 (en) 2018-10-11
US20170348040A1 (en) 2017-12-07
AU2011254026A1 (en) 2012-07-05
EP2486884B1 (en) 2016-02-17
CA2762196C (en) 2019-02-12
US10206733B2 (en) 2019-02-19
IL216764A (en) 2016-08-31
IL216764A0 (en) 2012-01-31
US11382680B2 (en) 2022-07-12
US9993285B2 (en) 2018-06-12
EP3034024A1 (en) 2016-06-22
DK2486884T3 (en) 2016-03-29
CN102652690B (zh) 2016-05-11
US10729485B2 (en) 2020-08-04
US20120157890A1 (en) 2012-06-21
CA2762196A1 (en) 2012-06-16

Similar Documents

Publication Publication Date Title
CN102652690A (zh) 使用温度传感器控制组织消融的系统
JP6571217B2 (ja) 医療装置
JP6843579B2 (ja) 腎臓アブレーション応答に基づいてカテーテル電力を制御するシステム及び方法
CN104939916A (zh) 导管中的温度测量
CN105030326B (zh) 消融期间防止蒸汽爆裂
AU2016277712A1 (en) Temperature controlled short duration ablation
AU2016277713A1 (en) Temperature controlled short duration ablation
AU2016277710A1 (en) Temperature controlled short duration ablation
JP2024045716A (ja) 温度制御されたパルスrfアブレーション
AU2018204091A1 (en) Tissue thickness using pulsed power
US9375269B2 (en) Catheter with integrated flow sensor
CN103156683B (zh) 监测和跟踪双极消融
CN103156683A (zh) 监测和跟踪双极消融

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant