CN102623709B - 电池 - Google Patents

电池 Download PDF

Info

Publication number
CN102623709B
CN102623709B CN201210110945.XA CN201210110945A CN102623709B CN 102623709 B CN102623709 B CN 102623709B CN 201210110945 A CN201210110945 A CN 201210110945A CN 102623709 B CN102623709 B CN 102623709B
Authority
CN
China
Prior art keywords
barrier film
active material
exposed region
polymer dielectric
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210110945.XA
Other languages
English (en)
Other versions
CN102623709A (zh
Inventor
中村智之
远藤贵弘
明石宽之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Northeast China
Murata Manufacturing Co Ltd
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority claimed from CNA2006101515513A external-priority patent/CN1929187A/zh
Publication of CN102623709A publication Critical patent/CN102623709A/zh
Application granted granted Critical
Publication of CN102623709B publication Critical patent/CN102623709B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

提供一种电池,其中正极、负极和隔膜的相对位置得到高精度保持。通过在中间的包括聚合物的聚合物电解质和隔膜,正极和负极彼此相对。在每个正极和负极中,活性材料层布置在集电体上。通过在中间的聚合物电解质,在集电体上未布置活性材料层的暴露区域和隔膜彼此粘附。由此,即使在高温环境下,也可防止隔膜的热收缩,且可防止由产生短路电流引起的生热。

Description

电池
此案是国际申请日为2006年9月11日、中国申请号为200610151551.3、发明名称为“电池”的发明申请的分案申请。
相关申请的交叉引用
本发明包含与2005年9月9日向日本专利局提交的日本专利申请JP2005-262494和2006年5月30日向日本专利局提交的日本专利申请JP2006-149242相关的主题,其全部内容在此引入作为参考。
技术领域
本发明涉及使用包括聚合物的聚合物电解质的电池。
背景技术
近年来,已出现了大量便携式电子设备如可携式摄像机、蜂窝式电话和便携式电脑,且已尝试减小它们的尺寸和重量。因此,已积极促进了作为电子设备的便携式电源的电池,特别是二次电池的开发。其中,作为能够获得高能量密度的电池,锂离子二次电池受到了注意。
在这种锂离子二次电池中,由金属如铝(Al)或铁(Fe)制成的电池壳用作包装部件。近来,使用层压膜代替由金属制成的电池壳作为包装部件,使得电池的尺寸、重量和外形进一步减小(例如,参见日本未审专利申请公开No.2003-217674和H6-150900)。
发明内容
但是,层压膜具有比由金属如铝或铁制成的包装部件低的刚性,因此层压膜具有小的压在电池中电池元件上的力。电池元件是包括在中间具有隔膜的正极和负极的层叠物。因此,在其中包装部件为层压膜的电池中,施加外力可导致在电池元件中的正极、负极和隔膜之间的相对位移,由此正极和负极可短路。当隔膜的面积充分大于电极的面积时,即使发生相对位移,也可防止正极和负极之间的接触;但是,在这种情况下,由于包括额外的隔膜,因此可填充在电池中的活性材料的量减少,由此能量密度降低。
考虑到以上所述,期望提供其中正极、负极和隔膜的相对位置得到高精度保持的电池。
根据本发明的实施方式,提供一种电池,包括:在膜状包装部件中的正极和负极,该正极和负极通过在其中间的聚合物电解质和隔膜而彼此相对,该聚合物电解质包括聚合物,其中活性材料层布置在该正极和负极的至少一个中的集电体上,且在集电体上未布置活性材料层的暴露区域和隔膜通过在其中间的聚合物电解质至少部分地彼此粘附。
在根据本发明该实施方式的电池中,通过聚合物电解质,部分隔膜粘附到在正极和负极的至少一个中的集电体的暴露区域上,由此隔膜与正极和负极的至少一个的相对位置固定。
在根据本发明该实施方式的电池中,通过在其中间的包括聚合物的聚合物电解质,集电体的暴露区域和隔膜彼此粘附,由此正极、负极和隔膜的相对位置可以高精度保持。从而,可防止正极和负极之间的接触,且可防止由于产生短路电流引起的生热。
特别地,当暴露区域和隔膜彼此剥离时的剥离强度为5mN/mm或更大时,粘附力变得更高,因此可获得更高的效果。
而且,当聚合物包括含偏二氟乙烯作为组分的聚合物时,可获得更高的效果。
此外,当聚合物电解质的厚度为1μm或更大时,可获得更高的效果。
本发明的其他和进一步的目的、特征和优点将从以下描述中更充分地体现。
本发明涉及:
1.一种电池,包括:
在膜状包装部件中的正极和负极,通过在中间的聚合物电解质和隔膜,该正极和负极彼此相对,该聚合物电解质包括聚合物,
其中活性材料层布置在该正极和负极的至少一个中的集电体上,和
通过在中间的该聚合物电解质,在该集电体上未布置该活性材料层的暴露区域和该隔膜至少部分地彼此粘附。
2.根据(1)的电池,其中
当该暴露区域和该隔膜彼此剥离时的剥离强度为5mN/mm或更大。
3.根据(1)的电池,其中
该聚合物包括包含偏二氟乙烯作为组分的聚合物。
4.根据(1)的电池,其中
该聚合物电解质的厚度为1μm或更大。
5.根据(1)的电池,其中
该正极和负极与该隔膜螺旋卷绕以形成螺旋卷绕体,和
在该螺旋卷绕体中,该集电体和该隔膜之间的粘附区域位于在中心侧上的端部和在外侧上的端部。
6.根据(1)的电池,其中
通过在中间的隔膜,该正极和负极交替层叠以形成层叠物,和
该集电体和隔膜之间的粘附区域位于连接到引线的连接部分,该引线将在该层叠物中产生的电动势引导到外部。
7.根据(6)的电池,其中
该隔膜比其中形成正极的活性材料层和负极的活性材料层的区域大,且通过在中间的该聚合物电解质,在顶部和底部的边缘部分至少部分地彼此粘附。
附图说明
图1为根据本发明第一实施方式的二次电池的结构的分解透视图;
图2为沿图1的线I-I的电池元件的截面图;
图3为描述在实施例中测量剥离强度的方法的图解;
图4为根据本发明第二实施方式的二次电池的结构的分解透视图;
图5为图4中所示电池元件的顶视图;
图6为沿图5的线VI-VI的电池元件的截面图;
图7为图4中所示电池元件中包括的正极的平面图;
图8为图4中所示电池元件中包括的负极的平面图;和
图9A、9B和9C为显示在制造图5所示二次电池的方法中的步骤的图解。
具体实施方式
下面将参照附图详细描述优选实施方式。
[第一实施方式]
图1显示了根据本发明第一实施方式的二次电池1的结构。二次电池1特别地是所谓的层压膜型的卷绕型,且在二次电池1中,正极端子11和负极端子12附着其上的卷绕型电池元件20包含在膜状包装部件30中。
正极端子11和负极端子12从包装部件30的内部引到外部,例如,以同一方向。正极端子11和负极端子12由例如片形或网状的金属材料如铝、铜(Cu)、镍(Ni)或不锈钢制成。
包装部件30由例如矩形铝层压膜制成,该层压膜包括尼龙膜、铝箔和聚乙烯膜,以此顺序结合。布置包装部件30,使得每个包装部件30的聚乙烯膜面对电池元件20,且包装部件30的边缘部分通过熔焊或粘合剂彼此粘附。粘附膜31插入在包装部件30和正极端子11与负极端子12之间,以防止外部空气进入。粘附膜31由例如对正极端子11和负极端子12具有粘附力的材料制成,例如,聚烯烃树脂如聚乙烯、聚丙烯、改性聚乙烯或改性聚丙烯。
另外,包装部件30可由具有任何其他结构的层压膜、高分子量膜如聚丙烯或金属膜来代替上述铝层压膜制成。
图2显示了沿图1的线I-I的电池元件20的截面图。电池元件20为螺旋卷绕元件,其中正极21和负极22通过在其中间的聚合物电解质23和隔膜24彼此面对,且电池元件20的最外面部分用保护带25保护。
正极21具有其中活性材料层21B布置在具有一对相对面的集电体21A的一面或两面上的结构。集电体21A具有暴露区域21C,其中活性材料层21B未布置在纵向的端部(endportion)。正极端子11附着到暴露区域21C。集电体21A由例如金属箔如铝箔、镍箔或不锈钢箔制成。
活性材料层21B包括例如一种或两种或多种能够嵌入和脱出作为电极反应物的锂(Li)的正极材料作为正极活性材料,且如果必要,活性材料层21B包括电导体和粘合剂。
作为能够嵌入和脱出锂的正极材料,例如,使用不包括锂的硫属化物如硫化钛(TiS2)、硫化钼(MoS2)、硒化铌(NbSe2)或氧化钒(V2O5),或含锂化合物,或聚合物如聚乙炔或聚吡咯。
其中,优选含锂化合物,因为含锂化合物可获得高电压和高能量密度。作为这种含锂化合物,例如,列举包含锂和过渡金属元素的复合氧化物、或包含锂和过渡金属元素的磷酸盐化合物,且特别地,优选包含选自钴(Co)、镍、锰(Mn)和铁的至少一种的含锂化合物,因为可获得较高电压。含锂化合物的化学式由例如LixMIO2或LiyMIIPO4表示。在式中,MI和MII表示一种或多种过渡金属元素。在式中,x和y的值取决于电池的充电-放电状态,且通常分别在0.05≤x≤1.10和0.05≤y≤1.10的范围内。
包含锂和过渡金属元素的复合氧化物的具体实例包括锂-钴复合氧化物(LixCoO2)、锂-镍复合氧化物(LixNiO2)、锂-镍-钴复合氧化物(LixNizCo1-zO2(0<z<1))、具有尖晶石结构的锂-锰复合氧化物(LiMn2O4)等。包含锂和过渡金属元素的磷酸盐化合物的具体实例包括锂-铁磷酸盐化合物(LiFePO4)和锂-铁-锰磷酸盐化合物(LiFe1-vMnvPO4(V<1))。
如正极21的情况一样,负极22具有其中活性材料层22B布置在具有一对相对面的集电体22A的一面或两面上的结构。集电体22A具有暴露区域22C,其中活性材料层22B未布置在纵向的端部,且负极端子12附着到暴露区域22C。集电体22A由例如金属箔如铜箔、镍箔或不锈钢箔制成。
活性材料层22B包括例如一种或两种或多种能够嵌入和脱出作为电极反应物的锂的负极材料作为负极活性材料,且如果必要,活性材料层22B包括电导体和粘合剂。
作为能够嵌入和脱出锂的负极材料,例如,列举碳材料、金属氧化物和聚合物。作为碳材料,列举非-可石墨化碳材料、石墨材料等,且更具体地说,使用热解碳类、焦炭类、石墨类、玻璃状碳类、焙烧的高分子量有机化合物体、碳纤维、活性炭等。其中,焦炭类包括沥青焦、针状焦、石油焦等,且焙烧的高分子量有机化合物体为通过在适当温度下焙烧而碳化的聚合物如酚醛树脂和呋喃树脂。而且,金属氧化物包括氧化铁、氧化钌、氧化钼等,且聚合物包括聚乙炔、聚吡咯等。
作为能够嵌入和脱出锂的负极材料,列举包括选自能够与锂形成合金的金属元素和准金属元素的至少一种的材料。该负极材料可为金属元素或准金属元素的单质、合金或化合物,或包括包含它们的一种或两种或多种的相的至少部分的材料。在本发明中,合金是指包括两种或多种金属元素的合金以及包括一种或多种金属元素和一种或多种准金属元素的合金。而且,合金可包括非金属元素。作为合金的构造(texture),列举固溶体、共晶体(低共熔混合物)、金属间化合物或选自它们的两种或多种的共存物(coexistence)。
这种金属元素和准金属元素包括例如锡(Sn)、铅(Pb)、铝、铟(In)、硅(Si)、锌(Zn)、锑(Sb)、铋(Bi)、镓(Ga)、锗(Ge)、砷(As)、银(Ag)、铪(Hf)、锆(Zr)和钇(Y)。其中,优选在长周期元素周期表中的14族金属元素或14族准金属元素,且特别地,优选硅或锡,因为硅和锡具有高的嵌入和脱出锂的能力,且可获得高能量密度。
作为锡合金,例如,列举包含选自硅、镍、铜、铁、钴、锰、锌、铟、银、钛(Ti)、锗、铋、锑和铬(Cr)的至少一种作为除锡外的第二构成元素的锡合金。作为硅合金,例如,列举包含选自锡、镍、铜、铁、钴、锰、锌、铟、银、钛、锗、铋、锑和铬的至少一种作为除硅外的第二构成元素的硅合金。
作为锡或硅的化合物,例如,列举包括氧(O)或碳(C)的化合物,且除锡或硅外,化合物可包括上述第二构成元素。
聚合物电解质23包括电解质溶液和保持该电解质溶液的聚合物,且为所谓的凝胶电解质。电解质溶液包括例如溶剂和溶于溶剂的电解质盐。聚合物电解质23可不保持全部电解质溶液。例如,正极21、负极22和隔膜24可用一些电解质溶液浸渍。
溶剂的实例包括基于内酯的溶剂如γ-丁内酯、γ-戊内酯、δ-戊内酯或ε-己内酯,基于碳酸酯的溶剂如碳酸亚乙酯、碳酸亚丙酯、碳酸亚丁酯、碳酸二甲酯、碳酸甲乙酯或碳酸二乙酯,基于醚的溶剂如1,2-二甲氧基乙烷、1-乙氧基-2-甲氧基乙烷、1,2-二乙氧基乙烷、四氢呋喃或2-甲基四氢呋喃,基于腈的溶剂如乙腈,基于环丁砜的溶剂,磷酸,磷酸酯溶剂,和非水溶剂如吡咯烷酮。作为溶剂,可使用选自它们的一种或两种或多种的混合物。
作为电解质盐,可使用在溶剂中溶解并产生离子的任何盐,且可使用选自这些盐的一种或两种或多种的混合物。锂盐的实例包括六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、六氟砷酸锂(LiAsF6)、高氯酸锂(LiClO4)、三氟甲烷磺酸锂(LiCF3SO3)、双(三氟甲烷磺酰)酰亚胺锂(LiN(SO2CF3)2)、三(三氟甲烷磺酰)甲基锂(LiC(SO2CF3)3)、四氯铝酸锂(LiAlCl4)、六氟硅酸锂(LiSiF6)等。其中,根据氧化稳定性,优选六氟磷酸锂或四氟硼酸锂。
电解质溶液中电解质盐的浓度优选在每升(1)溶剂0.1摩尔-3.0摩尔的范围内,且更优选在0.5摩尔-2.0摩尔的范围内,因为在该范围内,可获得良好的离子传导率。
作为聚合物,例如,列举包括偏二氟乙烯作为组分的聚合物。更具体地说,列举包括聚偏二氟乙烯或偏二氟乙烯作为组分的共聚物。共聚物的具体实例包括偏二氟乙烯-六氟丙烯共聚物、偏二氟乙烯-四氟乙烯共聚物、偏二氟乙烯-三氟氯乙烯共聚物、偏二氟乙烯-六氟丙烯-四氟乙烯共聚物、偏二氟乙烯-六氟丙烯-三氟氯乙烯共聚物、或与其他烯属(ethylenically)不饱和单体共聚的任意上述共聚物。
作为聚合物,列举聚丙烯腈、聚环氧乙烷、聚甲基丙烯酸甲酯、聚氯乙烯或其衍生物。作为聚合物,可使用选自它们的一种或两种或多种的混合物。
隔膜24由例如具有高的离子透过率和预定机械强度的绝缘薄膜如基于聚烯烃材料(如聚丙烯或聚乙烯)的多孔膜、或无机材料(如陶瓷无纺物)的多孔膜制成,且隔膜24可具有其中两种或多种多孔膜层叠的结构。
通过在其中间的聚合物电解质23,隔膜24粘附到活性材料层21B和22B。而且,通过在其中间的聚合物电解质23,至少部分隔膜24粘附到集电体21A的暴露区域21C和集电体22A的暴露区域22C。由此,即使在从包装部件31的外部施加一些外力的情况下,也可保持正极21、负极22和隔膜24的相对位置。而且,即使在高温环境下,也可防止隔膜24的热收缩。因此,可防止由集电体21A和集电体22A的接触产生的短路电流引起的生热。特别地,在其中通过在中间的隔膜24,正极21和负极22彼此面对的区域中,正极21和负极22的整个表面优选通过聚合物电解质23粘附到隔膜24,因为可获得较高的效果。而且,作为聚合物电解质23的聚合物,优选使用包括偏二氟乙烯作为组分的共聚物,因为可获得较高的效果。此外,聚合物电解质23的厚度优选为1μm或更大,因为当厚度太小时,粘附力下降。
当将通过在中间的聚合物电解质23粘附在一起的暴露区域21C和22C与隔膜24彼此剥离时的剥离强度优选为5mN/mm或更大,因为它们之间的粘附力较高,且可进一步防止由于产生短路电流而引起的生热。而且,当将正极活性材料层21B或负极活性材料层22B和隔膜24彼此剥离时的剥离强度优选在同样的范围内,因为可防止根据充电和放电的在界面中阻抗的增加。
例如,可通过如下步骤制造二次电池1。
首先,在集电体21A上形成活性材料层21B,从而形成正极21。通过如下步骤形成活性材料层21B。将正极活性材料的粉末、电导体和粘合剂混合以形成正极混合物,然后将该正极混合物分散在溶剂如N-甲基-2-吡咯烷酮中以形成糊状正极混合物浆。将该正极混合物浆涂覆在集电体21A上,并将该正极混合物浆干燥和压缩模塑,由此形成活性材料层21B。而且,如正极21的情况一样,通过在集电体22A上形成活性材料层22B来形成负极22。
接着,将正极端子11附着到集电体21A的暴露区域21C,并将负极端子12附着到集电体22A的暴露区域22C。将正极21和负极22与在其中间的隔膜24层叠以形成层叠物,并将该层叠物在纵向上螺旋卷绕,且将保护带25粘附到层叠物的最外部分,从而形成螺旋卷绕电极体。此时,将通过在溶剂如N-甲基-2-吡咯烷酮中溶解聚合物形成的高分子量溶液涂覆在隔膜24上,并干燥该高分子量溶液以除去溶剂,从而在隔膜24上形成聚合物电解质23的前体层。该高分子量溶液可涂覆到正极21或负极22上,而不涂覆在隔膜24上。接着,将螺旋卷绕电极体夹在包装部件30之间,并将除一侧外的包装部件30的边缘部分通过热熔焊粘附,将电解质溶液注入到包装部件30中,然后将在剩余侧上的边缘部分通过热熔焊粘附以在包装部件30中密封电解质溶液。之后,如果必要,通过施加热使电解质溶液被聚合物保持,以形成聚合物电解质23,由此完成图1和2所示的二次电池1。此时,可通过适当地改变加热条件等或施加压力来控制暴露区域21C或暴露区域22C和隔膜24之间的粘附强度。
当对二次电池1充电时,锂离子从正极21脱出,并通过电解质溶液嵌入负极22中。另一方面,当二次电池1放电时,例如,锂离子从负极22脱出,并通过电解质溶液嵌入正极21中。在这种情况下,集电体21A的暴露区域21C或集电体22A的暴露区域22C和隔膜24通过在其中间的聚合物电解质23稳固地粘附在一起,因此即使在施加一些外力的情况下,也难以使正极21、负极22和隔膜24的相对位置移动,且即使在高温环境下,也可防止隔膜24的热收缩。
因此,在本实施方式中,通过在中间的包括聚合物的聚合物电解质23,集电体21A的暴露区域21C或集电体22A的暴露区域22C和隔膜24粘附在一起,从而可降低隔膜24上的外力或热负荷的影响,且可防止由于产生短路电流引起的生热。此时,占据电池内部的隔膜24的尺寸可最小化,从而不必减少活性材料的总量,且有利于确保高能量密度。
特别地,当暴露区域21C和22C与隔膜24彼此剥离时的剥离强度为5mN/mm或更大时,粘附力变得更大,因此可获得更高的效果。
而且,当聚合物包括包含偏二氟乙烯作为组分的聚合物时,粘附力变得更大,因此可获得更高的效果。
此外,当聚合物电解质23的厚度为1μm或更大时,粘附力变得更大,因此可获得更高的效果。
[第二实施方式]
图4显示了根据本发明第二实施方式的二次电池2的结构。二次电池2特别地是所谓的层压膜型的层叠型,且在二次电池2中,正极端子41和负极端子42附着其上的层叠型电池元件50包含在膜状包装部件61中。
正极端子41和负极端子42将在层叠型电池元件50中产生的电动势带出到外部,且正极端子41和负极端子42均具有带形。它们从包装部件61的内部引到外部,例如,以相同的方向。正极端子41和负极端子42分别具有与图1所示的二次电池1中的正极端子11和负极端子12相同的结构。粘附膜62插入包装部件61和正极端子41与负极端子42之间,以防止外部空气进入。包装部件61和粘附膜62分别具有与二次电池1中的包装部件30和粘附膜31相同的结构。
图5显示了图4显示的电池元件50的外观的顶视图,且图6显示了沿图5的线VI-VI的截面图。通过在其中间有隔膜54,将正极51和负极52交替层叠,形成层叠型电池元件50。
图7显示了从层叠方向观察的一个正极51的结构。正极51具有矩形的涂覆区域51D,其中活性材料层51B布置在集电体51A的两面上。暴露区域51C(其将为带形端子附着部分)从涂覆区域51D的一个角突出。在暴露区域51C中,未布置活性材料层51B,集电体51A被暴露,且正极端子41(参考图4)结合到暴露区域51C上。在图5和6中,显示了在结合正极端子41之前的状态。
图8显示了从层叠方向观察的一个负极52的结构。如正极51的情况一样,负极52具有其中暴露区域52C(其将为带形端子附着部分)从矩形涂覆区域52D(其中活性材料层52B布置在集电体52A两面上)的一个角突出的结构。在暴露区域52C中,未布置活性材料层52B,集电体52A被暴露,且负极端子42(参考图4)结合到暴露区域52C上。在图5和6中,显示了在结合负极端子42之前的状态。
如图4和5所示,布置暴露区域51C和暴露区域52C,以在电池元件50的层叠方向A(垂直于图5的纸面的方向)上不彼此重合。而且,形成负极52,以大于正极51,且调整正极51和负极52的相对位置,使得当从层叠方向A观察时,涂覆区域51D配合(fitinto)在涂覆区域52D内部。在其中涂覆区域51D未配合在涂覆区域52D的内部的情况下,在涂覆区域52D的端部形成不面对涂覆区域51D的部分(从涂覆区域51D突出的部分)。因此,在充电时,被认为用于接收从正极51脱出的锂离子的负极52的面积不足够大(即,负极52的端部的电流密度增加),由此金属锂枝晶可沉积。这种金属锂枝晶的沉积可导致容量损失,或由于隔膜54的破坏引起的内部短路,因此为了防止金属锂枝晶的沉积,在本实施方式中使用上述结构。设定每单位面积的活性材料层52B的嵌入锂的容量,使得不超过每单位面积活性材料层51B的脱出锂的容量。
通过在中间的聚合物电解质53,隔膜54粘附到占据涂覆区域51D和52D的活性材料层51B和52B(参考图6)。在暴露区域51C的重叠部分51E和暴露区域52C的重叠部分52E中,通过在中间的聚合物电解质53,隔膜54进一步粘附到集电体51A和52A(参考图5和6)。换句话说,重叠部分51E和52E是粘附区域。由此,即使在从包装部件61的外侧施加一些外力的情况下,也可保持正极51、负极52和隔膜54的相对位置。
而且,隔膜54具有比其中在正极51和负极52中形成活性材料层52A和52B的区域(即涂覆区域51D和52D)大的面积,且隔膜54的边缘部分54B通过在中间的聚合物电解质53粘附在一起以包围涂覆区域51D和52D。因此,隔膜54形成袋状,以包裹每个正极51和负极52。由此,即使在高温环境的情况下,也可防止隔膜54的热收缩,且可防止由集电体51A和集电体52A之间的接触产生的短路电流引起的生热。
例如,可通过以下步骤制造二次电池2。
首先,例如,将正极活性材料、电导体和粘合剂混合以形成正极混合物,并将该正极混合物分散在溶剂如N-甲基-2-吡咯烷酮中以形成正极混合物浆。接着,如图9A所示,将正极混合物浆涂覆在由例如铝箔等制成的带形金属箔51AZ的两面上,并将该正极混合物浆干燥和压缩模塑以形成活性材料膜51BZ。此时,活性材料膜51BZ仅形成在金属箔51AZ中的将成为涂覆区域51D的涂覆部分51DZ上,且活性材料膜51BZ未形成在将成为暴露区域51C的暴露部分51CZ上。而且,涂覆部分51DZ的位置在金属箔51AZ的两面上基本相同。
接着,如图9A所示,将其上形成活性材料膜51BZ的金属箔51AZ沿虚线X1和X2以及虚线Y1至Y3切割,以形成四个矩形电极板51Z。一次形成的电极板51Z的数量不限于4,且可适当的选择。
此外,如图9B所示,将电极板51Z沿虚线51L切割,以形成如图9C所示的具有预定形状的四个正极51。
如正极21的情况一样,形成负极52。更具体地说,首先,将负极活性材料和粘合剂混合以形成负极混合物,并将该负极混合物分散在溶剂如N-甲基-2-吡咯烷酮中以形成负极混合物浆。然后,将负极混合物浆涂覆在由铜箔等制成的带形金属箔52AZ的两面上,并将该负极混合物浆干燥和压缩模塑以形成活性材料膜52BZ。此时,如正极51的情况一样,活性材料膜52BZ仅形成在金属箔52AZ中的将成为涂覆区域52D的涂覆部分52DZ上,且活性材料膜52BZ未形成在将成为暴露区域52C的暴露部分52CZ上。而且,形成涂覆部分52DZ的位置在金属箔52AZ的两面上基本相同。换句话说,涂覆区域52DZ的涂覆端定位在两面上基本相同的线上。
接着,如图9A所示,将其上形成活性材料膜52BZ的金属箔52AZ沿虚线X1和X2以及虚线Y1至Y3切割,且如图9B所示,将金属箔52AZ沿虚线52L进一步切割。由此,如图9C所示,完成具有预定形状的四个负极52。
当活性材料层51B和活性材料层52B形成时,预先测量每重量负极混合物嵌入锂的容量和每重量正极混合物脱出锂的容量,并设定每单位面积活性材料层52B嵌入锂的容量,使得不超过每单位面积负极材料层51B脱出锂的容量。
在形成正极51和负极52后,制备隔膜54,其被切成矩形形状,使得具有比在正极51和负极52中的涂覆区域51D和52D大的面积。之后,使用三个正极51、四个负极52和六个隔膜54以形成层叠型电池元件50,其中负极52、隔膜54、正极51、隔膜54、负极52、隔膜54、正极51、隔膜54、负极52、隔膜54、正极51、隔膜54和负极52按次序,如图6所示。此时,调整正极51和负极52的相对位置,使得当从层叠方向A观察时,在涂覆区域51D配合在涂覆区域52D内部的同时,暴露区域51C和暴露区域52C不彼此重合。可通过将通过聚合物溶解在溶剂如N-甲基-2-吡咯烷酮中形成的高分子量溶液涂覆到隔膜54并干燥该高分子量溶液以除去溶剂,预先形成聚合物电解质53的前体层。或者,可预先将上述高分子量溶液涂覆在正极51或负极52上,而不涂覆在隔膜54上。
因此,形成使用活性材料层51B、隔膜54和活性材料层52B作为标准层叠单元的层叠型电池元件50,且将活性材料层52B布置在层叠方向A上的层叠型电池元件50的两端上。
在形成电池元件50后,将三个正极51的暴露区域51C一次附着到正极端子41上(参考图4)。同样地,将四个负极52的暴露区域52C一次附着到负极端子42上。它们通过例如超声波焊接附着。
在附着正极端子41和负极端子42后,用电解质溶液浸渍层叠型电池元件50,并将层叠型电池元件50夹在包装部件61之间,然后将包装部件61的边缘部分通过热熔焊等粘附,以密封电池元件50。此时,将粘附膜62插入在正极端子41和负极端子42与包装部件61之间。之后,如果必要,施加热以使聚合物保持电解质溶液,由此形成聚合物电解质53。此时,可通过必要时改变加热条件或施加压力来控制聚合物电解质53的粘附强度。由此,完成图4所示的二次电池2。
在二次电池2中,通过在中间的聚合物电解质53,集电体51A的暴露区域51C或集电体52A的暴露区域52C和隔膜54彼此稳固地粘附,因此即使在施加一些外力的情况下,也难以使正极51、负极52和隔膜54的相对位置移动。而且,隔膜54的面积大于涂覆区域51D和52D的面积,且边缘部分54B彼此粘附,因此即使在高温环境下,也可防止隔膜54的热收缩。从而,在二次电池2中,外力对隔膜54的影响或热负荷的影响可减小,且可防止由产生短路电流引起的生热。
[实施例]
下面将详细描述本发明的具体实施例
(实施例1-1至1-3)
形成图1和2所示的二次电池1。
首先,将0.5摩尔碳酸锂和1摩尔碳酸钴混合以形成混合物,并将该混合物在空气中在900℃下焙烧5小时以合成锂-钴复合氧化物(LiCoO2)作为正极活性材料。接着,将85重量份锂-钴复合氧化物粉末、5重量份作为电导体的石墨粉末和10重量份作为粘合剂的聚偏二氟乙烯混合以形成正极混合物,然后将该正极混合物分散在作为溶剂的N-甲基-2-吡咯烷酮中以形成正极混合物浆。
接着,将正极混合物浆均匀涂覆在由20μm厚的铝箔制成的集电体21A的两面上,使得集电体21A的两个端部均暴露,将正极混合物浆干燥,并通过辊压机压缩模塑以形成活性材料层21B和暴露区域21C,由此形成带形正极21。之后,将正极端子11附着到暴露区域21C上。
此外,使用粉化的石墨粉末作为负极活性材料,并将90重量份石墨粉末、10重量份作为粘合剂的聚偏二氟乙烯混合以形成负极混合物,然后将该负极混合物分散在作为溶剂的N-甲基-2-吡咯烷酮中以形成负极混合物浆。
接着,将负极混合物浆均匀涂覆在由15μm厚的铜箔制成的集电体22A的两面上,使得集电体22A的两个端部均暴露,将负极混合物浆干燥,并压缩模塑以形成活性材料层22B和暴露区域22C,由此形成带形负极22。之后,将负极端子12附着到暴露区域22C上。
接着,制备聚偏二氟乙烯作为聚合物,并将聚偏二氟乙烯溶解在作为溶剂的N-甲基-2-吡咯烷酮中以形成高分子量溶液。在高分子量溶液中聚偏二氟乙烯的含量为15重量%。接着,在通过使用涂覆装置,将高分子量溶液涂覆到由20μm厚的多微孔聚乙烯膜制成的隔膜24后,将涂覆有高分子量溶液的隔膜24以去离子水进行浸渍,然后干燥隔膜24。由此,形成聚合物电解质23的前体层。在实施例1-1和1-2中将高分子量溶液完全涂覆到隔膜24的仅一面上,且在实施例1-3中将高分子量溶液完全涂覆到隔膜24的两面上。
之后,通过在中间的其上形成前体层的隔膜24,形成的正极21和形成的负极22彼此粘附,并在纵向上将它们螺旋卷绕以形成螺旋卷绕电极体。此时,在实施例1-1中,前体层和负极22粘附以彼此相对,且在实施例1-2中,前体层和正极21粘附以彼此相对,且在实施例1-3中,前体层粘附到正极21和负极22以面对正极21和负极22。接着,将螺旋卷绕电极体夹在由防湿的铝层压膜制成的包装部件30之间,然后通过热熔焊将除一侧外的包装部件30的边缘部分粘附,并将电解质溶液注入到包装部件30中。作为铝层压膜,使用其中25μm厚的尼龙膜、40μm厚的铝箔和30μm厚的聚丙烯膜结合在一起的层压膜,且铝层压膜的聚丙烯膜与螺旋卷绕电极体相对。作为电解质溶液,使用通过将1mol/l的作为电解质盐的LiPF6溶解在混合溶剂中形成的电解质溶液,该混合溶剂通过将碳酸亚乙酯和碳酸二乙酯以重量比3∶7混合而形成。之后,使在剩余侧上的包装部件30的边缘部分结合,并将包装部件30夹在铁板之间,且在70℃下加热3分钟,从而使聚合物保持电解质溶液,以形成聚合物电解质23,并且通过在中间的聚合物电解质23,暴露区域22C或/和暴露区域21C与隔膜24彼此粘附,以形成图1和2所示的二次电池1。聚合物电解质23的厚度为5μm。
作为相对于实施例1-1至1-3的比较例1-1,如实施例1-1至1-3一样形成二次电池,除了不在隔膜24上形成前体层以外。
对实施例1-1至1-3和比较例1-1的二次电池进行以下加热试验。首先,在23℃下以500mA的恒定电流和恒定电压对二次电池充电2小时,直到达到4.2V的上限电压,然后以500mA的恒定电流对二次电池放电直到达到2.5V的终止电压。接着,在23℃下以500mA的恒定电流和恒定电压对二次电池充电,直到达到4.2V的上限电压,然后将二次电池置于23℃的恒温浴中,且温度以5℃/分钟的速率上升直到达到150℃或155℃,然后保持该温度1小时。此时,检测包装部件30是否由于产生气体而破裂。结果示于表1中。
此外,在与上述相同的条件下以恒定电流和恒定电压对实施例1-1至1-3和比较例1-1的二次电池进行充电并然后放电。将二次电池拆开,并以下列方式将暴露区域21C和22C与隔膜24彼此剥离以检测剥离强度。首先,将其中剥离区域22C(或暴露区域21C)与隔膜24彼此相对的部分切成宽25mm和长50mm的片作为样品。将获得的样品置于支撑台上,使得集电体22A(或集电体21A)位于顶上,且如图3所示,将集电体22A(或集电体21A)拉到180°方向,以将集电体22A(或集电体21A)从隔膜24上剥离。拉集电体22A(或集电体21A)的速度为10cm/分钟。剥离强度为在开始拉集电体22A(或集电体21A)后在6秒至25秒之间剥离集电体22A(或集电体21A)所必需的力的平均值。结果示于表1中。
[表1]
从表1显而易见的是,在其中暴露区域21C或暴露区域22C和隔膜24通过聚合物电解质23粘附在一起的实施例1-1至1-3中,未观察到在高温下包装部件30的破裂;但是,在其中它们未通过聚合物电解质粘附的比较例1-1中,观察到在高温下包装部件30的破裂。
换句话说,发现当通过在中间的包括聚合物的聚合物电解质23,集电体21A的暴露区域21C和集电体22A的暴露区域22C中的至少一个与隔膜24彼此粘附时,即使在高温环境下,也可防止生热。
(实施例2-1至2-3)
如实施例1-1一样形成二次电池,除了改变暴露区域22C和隔膜24通过在中间的聚合物电解质23彼此粘附时的加热温度以外。加热温度在实施例2-1中为75℃,在实施例2-2中为65℃,且在实施例2-3中为60℃。
与实施例1-1至1-3一样对实施例2-1至2-3的二次电池进行加热试验,并测量当暴露区域22C和隔膜24彼此剥离时实施例2-1至2-3的剥离强度。结果与实施例1-1和比较例1-1的结果一起示于表2中。
[表2]
从表2显而易见的是,在其中剥离强度为5mN/mm或更大的实施例1-1、2-1和2-2中,在150℃和155℃下的加热试验中未观察到包装部件30的破裂;但是,在其中剥离强度小于5mN/mm的实施例2-3中,在155℃下的加热试验中观察到包装部件30的破裂。
换句话说,发现当暴露区域21C和暴露区域22C的至少一个与隔膜24剥离时的剥离强度优选为5mN/mm或更大。
(实施例3-1、3-2)
如实施例1-1一样形成二次电池,除了作为聚合物,使用通过91重量份偏二氟乙烯、4重量份六氟丙烯和5重量份三氟氯乙烯共聚形成的共聚物,或使用聚甲基丙烯酸甲酯以外。
与实施例1-1至1-3一样对实施例3-1和3-2的二次电池进行加热试验,并通过将暴露区域22C和隔膜24彼此剥离测量实施例3-1和3-2的剥离强度。结果与实施例1-1和比较例1-1的结果一起示于表3中。
[表3]
从表3显而易见的是,与实施例1-1一样,在其中使用偏二氟乙烯的共聚物或聚甲基丙烯酸甲酯的实施例3-1和3-2中,在150℃下未观察到包装部件30的破裂。另一方面,在155℃下的加热试验中,在其中使用偏二氟乙烯的共聚物的实施例3-1中,未观察到包装部件30的破裂;但是,在其中使用聚甲基丙烯酸甲酯的实施例3-2中,观察到包装部件30的破裂。
换句话说,发现即使使用其他聚合物,当通过在中间的包括聚合物的聚合物电解质23,集电体21A的暴露区域21C或集电体22A的暴露区域22C与隔膜24彼此粘附时,即使在高温环境下,也可防止生热。而且,发现优选使用包括偏二氟乙烯作为组分的共聚物作为聚合物。
(实施例4-1至4-3)
如实施例1-1一样形成二次电池,除了调整涂覆的高分子量溶液的量以改变聚合物电解质23的厚度以外。聚合物电解质23的厚度为10μm、1μm或0.5μm。
与实施例1-1至1-3一样对实施例4-1至4-3的二次电池进行加热试验,并通过将暴露区域22C和隔膜24彼此剥离测量实施例4-1至4-3的剥离强度。结果与实施例1-1和比较例1-1的结果一起示于表4中。
[表4]
从表4显而易见的是,在其中聚合物电解质23的厚度为1μm或更大的实施例1-1、4-1和4-2中,在150℃和155℃下的加热试验中,未观察到包装部件30的破裂;但是,在其中聚合物电解质23的厚度小于1μm的实施例4-3中,在155℃下的加热试验中,观察到包装部件30的破裂。
换句话说,发现聚合物电解质23的厚度优选为1μm或更大。
(实施例5-1至5-3)
接着,通过在第二实施方式中描述的步骤形成图5所示的二次电池2。
使用与实施例1-1至1-3相同的正极混合物浆和相同的负极混合物浆。此外,作为集电体51A,使用20μm厚的铝箔,且作为集电体52A,使用15μm厚的铜箔。
作为涂覆到隔膜54上的高分子量溶液,使用与实施例1-1至1-3相同的高分子量溶液。在这种情况下,在通过使用涂覆装置,将高分子量溶液涂覆到由20μm厚的多微孔聚乙烯膜制成的隔膜54后,将涂覆有高分子量溶液的隔膜54以去离子水进行浸渍,然后干燥隔膜54。由此,形成聚合物电解质53的前体层。此时,在实施例5-1中,前体层仅完全形成在隔膜54的面对负极52的一面上,且在实施例5-2中,前体层仅完全形成在隔膜54的面对正极51的一面上,且在实施例5-3中,前体层形成在面对正极51的面和面对负极52的面这两者上。
使用与实施例1-1至1-3相同的电解质溶液。将电池元件50以电解质溶液进行浸渍,并夹在由防湿的铝层压膜制成的包装部件61之间,然后在减压下通过热熔焊开口部分来密封电池元件。此时,正极端子和负极端子通过热熔焊的部分引到外面。作为包装部件61的铝层压膜,使用通过对25μm厚的尼龙膜、40μm厚的铝箔和30μm厚的聚丙烯膜以此顺序层压并结合而形成的层压膜,且铝层压膜的聚丙烯膜与电池元件50相对。之后,将包装部件61夹在铁板之间,且在70℃下加热3分钟,从而使聚合物保持电解质溶液,以形成聚合物电解质53,并且通过在中间的聚合物电解质53,暴露区域52C与隔膜54(实施例5-1),暴露区域51C与隔膜54(实施例5-2),或暴露区域51C、暴露区域52C与隔膜54(实施例5-3)彼此粘附,以形成图4所示的二次电池2。聚合物电解质53的厚度为5μm。
作为相对于实施例5-1至5-3的比较例5-1,如实施例5-1至5-3一样形成二次电池2,除了不在隔膜54上形成前体层以外。
与实施例1-1至1-3一样对实施例5-1至5-3的二次电池2进行加热试验,并通过将暴露区域51C和隔膜54或暴露区域52C和隔膜54彼此剥离来测量实施例5-1至5-3的剥离强度。结果示于表5中。
[表5]
从表5显而易见的是,在其中暴露区域51C或暴露区域52C和隔膜54通过聚合物电解质53粘附的实施例5-1至5-3中,在高温下未观察到包装部件61的破裂;但是,在其中它们未通过聚合物电解质53粘附的比较例5-1中,在高温下观察到包装部件61的破裂。据认为是通过由伴随有隔膜54的热收缩的正极51和负极52之间的短路引起的生热,由此在电池中产生气体而导致包装部件61的破裂。
从这些结果发现,当暴露区域51C和暴露区域52C的至少一个与隔膜54通过聚合物电解质53粘附,且隔膜54的边缘部分54B通过聚合物电解质53粘附时,即使在高温环境下,也可防止隔膜54的热收缩,且结果,可防止由正极和负极之间的短路引起的生热。
尽管参照实施方式和实施例描述了本发明,但是本发明不限于这些实施方式和实施例,且可进行各种改进。例如,在上述实施方式和实施例中,描述了使用锂作为电极反应物的电池,但是,本发明可应用于其中使用任意其他碱金属如钠(Na)或钾(K)、碱土金属如镁或钙(Ca)或其他轻金属如铝的情况。
此外,在这些实施方式和实施例中,描述了使用电解质溶液作为电解质的情况和使用其中聚合物保持电解质溶液的凝胶电解质作为电解质的情况;但是,可使用电解质溶液或凝胶电解质和任意其他电解质的混合物。其他电解质的实例包括通过将电解质盐溶解或分散在具有离子传导性的聚合物中形成的有机固体电解质、包括离子导电无机化合物如离子导电陶瓷、离子导电玻璃或离子晶体的无机固体电解质。
此外,在这些实施方式和实施例中,描述了其中正极21和负极22螺旋卷绕的情况和其中多个正极51和多个负极52层叠的情况;但是,正极和负极可折叠。本发明不仅可应用于二次电池,还可以相似的方式应用于任意其他电池如一次电池。
本领域技术人员应当理解,在所附权利要求或其等价物的范围内,根据设计要求和其他因素,可进行各种改进、组合、再组合和替换。

Claims (5)

1.一种电池,包括:
正极和负极,通过在中间的聚合物电解质和隔膜,该正极和负极彼此相对,该聚合物电解质包括聚合物,
其中所述正极包括正极集电体和布置在该正极集电体的至少部分上的活性材料层,
所述负极包括负极集电体和布置在该负极集电体的至少部分上的活性材料层,
正极集电体和负极集电体均包括未布置活性材料层的暴露区域,
通过所述聚合物电解质将所述暴露区域中的至少一个和所述隔膜至少部分地彼此粘附,
当该暴露区域中的至少一个和该隔膜彼此剥离时的剥离强度为5-19.1mN/mm,
该正极和负极与该隔膜螺旋卷绕以形成螺旋卷绕体,和
该聚合物电解质中的至少一个的厚度为1-10μm。
2.一种电池,包括:
正极和负极,通过在中间的聚合物电解质和隔膜,该正极和负极彼此相对,该聚合物电解质包括聚合物,
其中所述正极包括正极集电体和布置在该正极集电体的至少部分上的活性材料层,
所述负极包括负极集电体和布置在该负极集电体的至少部分上的活性材料层,
正极集电体和负极集电体均包括未布置活性材料层的暴露区域
通过该聚合物电解质将所述暴露区域和所述隔膜至少部分地彼此粘附,
当该暴露区域中的至少一个和该隔膜彼此剥离时的剥离强度为5-19.1mN/mm,
通过在中间的隔膜,该正极和负极交替层叠以形成层叠体,和
该聚合物电解质中的至少一个的厚度为1-10μm。
3.一种电池,包括:
正极和负极,通过在中间的聚合物电解质和隔膜,该正极和负极彼此相对,该聚合物电解质包括聚合物,
其中所述正极包括正极集电体和布置在该正极集电体的至少部分上的活性材料层,
所述负极包括负极集电体和布置在该负极集电体的至少部分上的活性材料层,
正极集电体和负极集电体均包括未布置活性材料层的暴露区域,
通过该聚合物电解质将所述暴露区域中的至少一个和所述隔膜至少部分地彼此粘附,
当该暴露区域中的至少一个和该隔膜彼此剥离时的剥离强度为5-19.1mN/mm,和
该聚合物电解质中的至少一个的厚度为1-10μm。
4.根据权利要求1至3中任一项的电池,其中
该聚合物包括包含偏二氟乙烯作为组分的聚合物。
5.根据权利要求2的电池,其中
该隔膜比其中形成正极的活性材料层和负极的活性材料层的区域大,且通过在中间的该聚合物电解质,在顶部和底部的边缘部分至少部分地彼此粘附。
CN201210110945.XA 2005-09-09 2006-09-11 电池 Active CN102623709B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005-262494 2005-09-09
JP2005262494 2005-09-09
JP2006-149242 2006-05-30
JP2006149242A JP4293205B2 (ja) 2005-09-09 2006-05-30 電池
CNA2006101515513A CN1929187A (zh) 2005-09-09 2006-09-11 电池

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2006101515513A Division CN1929187A (zh) 2005-09-09 2006-09-11 电池

Publications (2)

Publication Number Publication Date
CN102623709A CN102623709A (zh) 2012-08-01
CN102623709B true CN102623709B (zh) 2016-02-24

Family

ID=37855572

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201210110945.XA Active CN102623709B (zh) 2005-09-09 2006-09-11 电池
CN201510673202.7A Active CN105355822B (zh) 2005-09-09 2006-09-11 电池

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201510673202.7A Active CN105355822B (zh) 2005-09-09 2006-09-11 电池

Country Status (3)

Country Link
US (1) US7682752B2 (zh)
JP (1) JP4293205B2 (zh)
CN (2) CN102623709B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586820B2 (ja) * 2007-05-07 2010-11-24 ソニー株式会社 巻回型非水電解質二次電池
KR101407772B1 (ko) 2007-05-25 2014-06-18 삼성에스디아이 주식회사 전극조립체 및 그를 이용한 이차전지
JP2011048987A (ja) * 2009-08-26 2011-03-10 Sony Corp 負極、非水電解質二次電池及びその製造方法
KR101103499B1 (ko) 2009-10-07 2012-01-06 에스케이이노베이션 주식회사 전지용 전극조립체 및 그 제조방법
KR101107075B1 (ko) * 2009-10-28 2012-01-20 삼성에스디아이 주식회사 이차 전지
CN102598388B (zh) * 2009-10-30 2016-01-20 第一工业制药株式会社 锂二次电池
JP2011171108A (ja) * 2010-02-18 2011-09-01 Sanyo Electric Co Ltd 非水電解質二次電池
JP5701688B2 (ja) * 2011-01-31 2015-04-15 三洋電機株式会社 積層式電池およびその製造方法
JP5811034B2 (ja) * 2012-05-28 2015-11-11 株式会社豊田自動織機 非水系蓄電装置及びリチウムイオン二次電池
CN103199305A (zh) * 2013-03-18 2013-07-10 东莞新能源科技有限公司 锂离子电芯及其制备方法
JP6219113B2 (ja) * 2013-09-30 2017-10-25 株式会社東芝 二次電池
US10147926B1 (en) * 2014-04-15 2018-12-04 Amazon Technologies, Inc. Battery package including electrode having recessed region of electrode material layer exposing a portion of a conductive layer and method of making the same
KR101870801B1 (ko) * 2016-01-21 2018-06-28 주식회사 루트제이드 박막형 전지
CN109449478A (zh) * 2018-11-05 2019-03-08 宁德新能源科技有限公司 电化学装置
KR20210037929A (ko) * 2019-09-30 2021-04-07 현대자동차주식회사 전기자동차용 배터리 셀 및 이의 제조방법
CN113394375B (zh) * 2021-06-15 2023-02-17 宁德新能源科技有限公司 电化学装置和电子装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1507102A (zh) * 2002-12-13 2004-06-23 ������������ʽ���� 聚合物电池及其制造方法
CN1516299A (zh) * 2002-11-19 2004-07-28 索尼公司 阳极和使用该阳极的电池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150900A (ja) 1992-11-10 1994-05-31 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造法
JP3225867B2 (ja) * 1996-12-18 2001-11-05 三菱電機株式会社 リチウムイオン二次電池及びその製造方法
JP3474853B2 (ja) * 1997-12-18 2003-12-08 三菱電機株式会社 リチウムイオン二次電池の製造方法
JP3428448B2 (ja) * 1998-08-21 2003-07-22 三菱電機株式会社 電極構造体およびそれを用いた電池
JP3428452B2 (ja) * 1998-08-27 2003-07-22 三菱電機株式会社 渦巻状電極体を備えた電池及びその製造方法
JP4568928B2 (ja) * 1999-07-26 2010-10-27 株式会社Gsユアサ 非水電解質電池
JP4565713B2 (ja) * 2000-08-04 2010-10-20 トータル ワイヤレス ソリューショオンズ リミテッド シート状リチウム電池構造及びシート状リチウム電池の製造方法
JP2002324571A (ja) * 2001-04-26 2002-11-08 Matsushita Electric Ind Co Ltd 電池の極板群
JP2003086233A (ja) * 2001-09-07 2003-03-20 Mitsubishi Electric Corp 平板型電池およびその製法
JP2003217673A (ja) * 2002-01-23 2003-07-31 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
JP2003217674A (ja) 2002-01-25 2003-07-31 Sony Corp 非水電解質電池
JP4120262B2 (ja) * 2002-02-26 2008-07-16 ソニー株式会社 非水電解質電池
JP3975923B2 (ja) * 2003-01-20 2007-09-12 ソニー株式会社 非水電解質電池
JP4565812B2 (ja) * 2003-04-28 2010-10-20 三洋電機株式会社 非水電解質二次電池
JP2005044663A (ja) * 2003-07-23 2005-02-17 Sony Corp 固体電解質、リチウムイオン電池及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1516299A (zh) * 2002-11-19 2004-07-28 索尼公司 阳极和使用该阳极的电池
CN1507102A (zh) * 2002-12-13 2004-06-23 ������������ʽ���� 聚合物电池及其制造方法

Also Published As

Publication number Publication date
JP2007103342A (ja) 2007-04-19
CN102623709A (zh) 2012-08-01
US7682752B2 (en) 2010-03-23
CN105355822A (zh) 2016-02-24
CN105355822B (zh) 2018-07-17
JP4293205B2 (ja) 2009-07-08
US20070059605A1 (en) 2007-03-15

Similar Documents

Publication Publication Date Title
CN102623709B (zh) 电池
JP4984022B2 (ja) 二次電池
CN100533841C (zh) 电解液和电池
JP4793378B2 (ja) 非水電解質電池
JP5109359B2 (ja) 非水電解質二次電池
JP2007207617A (ja) 非水溶媒、非水電解質組成物及び非水電解質二次電池
JP2006134770A (ja) 正極および電池
JP4296427B2 (ja) 負極および電池
JP2016192394A (ja) 非水電解液電池、およびその製造方法
JP2007257961A (ja) 電解液および電池
JP2017195028A (ja) 非水電解液電池およびその製造方法
JP2007042387A (ja) 電解液,電極および電池
KR20060106895A (ko) 전지
JP2007273396A (ja) 電解液および電池
JP5044967B2 (ja) 二次電池用電解質および二次電池
JP2007012559A (ja) 電池
JP6646370B2 (ja) リチウム二次電池の充放電方法
JP2006253091A (ja) 電池
JP2003100278A (ja) 非水電解質二次電池
JP2003059538A (ja) 電池の製造方法
JP2007335175A (ja) 非水電解質電池の電極合剤層用塗料組成物の製造方法、非水電解質電池用電極及び非水電解質電池
JP2007157399A (ja) 電解液および電池
JP2000285902A (ja) 電 池
JP2012033502A (ja) 電解液および二次電池
JP2010021043A (ja) セパレータ、セパレータの製造方法および電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180411

Address after: Kyoto Japan

Patentee after: Murata Manufacturing Co.,Ltd.

Address before: Fukushima

Patentee before: Murata, Northeast China

Effective date of registration: 20180411

Address after: Fukushima

Patentee after: Murata, Northeast China

Address before: Tokyo, Japan

Patentee before: Sony Corp.