CN102481563A - 用于低聚烯烃的方法 - Google Patents

用于低聚烯烃的方法 Download PDF

Info

Publication number
CN102481563A
CN102481563A CN2010800399933A CN201080039993A CN102481563A CN 102481563 A CN102481563 A CN 102481563A CN 2010800399933 A CN2010800399933 A CN 2010800399933A CN 201080039993 A CN201080039993 A CN 201080039993A CN 102481563 A CN102481563 A CN 102481563A
Authority
CN
China
Prior art keywords
alkyl
catalyst system
substituted aryl
carrier material
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800399933A
Other languages
English (en)
Other versions
CN102481563B (zh
Inventor
C.伯英
D.马施迈耶
M.温特贝格
S.布希霍尔茨
B.梅尔歇尔
M.豪曼
P.瓦泽沙伊德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Oxeno Olefinchemie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oxeno Olefinchemie GmbH filed Critical Oxeno Olefinchemie GmbH
Publication of CN102481563A publication Critical patent/CN102481563A/zh
Application granted granted Critical
Publication of CN102481563B publication Critical patent/CN102481563B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0274Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0279Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the cationic portion being acyclic or nitrogen being a substituent on a ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J31/0284Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aromatic ring, e.g. pyridinium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0287Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing atoms other than nitrogen as cationic centre
    • B01J31/0288Phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0292Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2234Beta-dicarbonyl ligands, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/36Catalytic processes with hydrides or organic compounds as phosphines, arsines, stilbines or bismuthines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/323Hydrometalation, e.g. bor-, alumin-, silyl-, zirconation or analoguous reactions like carbometalation, hydrocarbation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1088Olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/22Higher olefins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明提供一种催化剂体系,其由下列组分组成:a)载体材料,其选自下面材料中的至少一种:二氧化硅,氧化铝,氧化镁,氧化锆及它们的混合氧化物,碳纳米管;b)离子液体;c)包含镍的催化活性组合物;d)活化剂,其选自具有烷基化性能的路易斯酸。另外提供了本发明的催化剂体系在不饱和烃混合物的低聚中的用途。

Description

用于低聚烯烃的方法
本发明涉及由多组分构成的催化剂体系和涉及它在由包含烯烃的烃混合物来低聚C3-C5烯烃的方法中的用途。
烯烃的低分子量低聚物,特别是C3-C5烯烃的二聚体,是例如用于生产醛,羧酸和醇的中间体。通过低聚直链丁烯所形成的C8烯烃可以通过加氢甲酰基化和随后氢化来转化成相应的壬醇,其进而主要用于生产增塑剂。
能够用于生产低聚物的原料包括在α位置上具有双键的纯烯烃,具有内双键的纯烯烃,以及这些烯烃的混合物。制备低聚物的特别经济的方法是这样的方法,其使用α-烯烃和具有内双键的烯烃和任选的链烷烃的混合物。
对于通过低聚制备的产物的用途来说,它们的支化度经常是一个判断标准。支化度的一种量度是Iso指数。它定义为每个分子的支化数。例如,直链的辛烯(正辛烯)的Iso指数为0,甲基庚烯的Iso指数是1,和二甲基己烯的Iso指数是2。混合物的Iso指数的计算要考虑各化合物组的质量份额。混合物的Iso指数越低,其中存在的化合物的平均线性度越大。
烯烃混合物的Iso指数定义为衍生产物的最低可能支化度,并因此共同确定它们的应用技术曲线。
对于通过加氢甲酰基化C8烯烃混合物和随后氢化来制备壬醇来说,混合物的高线性度是有利的,因为直链烯烃比支化烯烃反应得更快和更有选择性,因此获得了更高的产率。使用低Iso指数的C8烯烃混合物产生了比使用更大支化的C8烯烃混合物更大线性的壬醇混合物。壬醇混合物的低Iso指数提高了由它们所制备的增塑剂的应用技术性能,特别是粘度。因此,例如在邻苯二甲酸壬基酯混合物的情况中,低Iso指数有益于使用增塑剂所生产的柔性的PVC的低挥发性和更好的低温破裂温度。
烯烃特别是丙烯和丁烯的低聚在工业上是在分子催化剂上均相进行的,或者是在固体催化剂上多相进行的。
均相催化的操作方式由例如A. Chauvel和G. Lefebvre描述在Petrochemical Proceses,第1卷,Editions Technip 1989,第183-187页中。使用均相催化的全球普遍使用的方法是用可溶性分子镍络合物低聚,称作DIMERSOL方法(参见Yves Chauvin,Helene Olivier,“Applied Homogeneous Catalysis with Organometallic Compounds”,编辑Boy Cornils,Wolfgang A. Herrmann,Verlag Chemie,1996,第258-268卷)。
使用均相催化方法的缺点是催化剂与反应产物以及未反应的原料一起离开反应器,并且必须与它们分离。这是必需的后处理步骤,并且产生了废物流。催化剂可能的降解产物不能原位再生来形成活性催化剂,并且产生另外的催化剂成本。
使用多相催化的烯烃低聚方法不具有这些缺点。在酸性触媒上的低聚(工业上例如使用在载体上的沸石或者磷酸)是长久以来便已知的。这产生了支化的低聚物的异构体混合物。甚至在优化的条件下,在直链丁烯低聚的情况中,高度支化的二甲基己烯保留在主要产物中。酸催化的烯烃低聚的一个例子见诸WO92/13818。
对于烯烃的非酸性的、多相催化的低聚来说,工业上通常使用在载体材料上的镍化合物。这个种类的一种催化剂是镍固定床催化剂,其用于申请人的OCTOL方法中(Hydrocarbon Process.,Int. Ed. 1986,第65卷第31-33页)。
具有这些性能的另外的镍固定床催化剂描述在例如DE4339713,WO95/14647和WO99/25668中。
烯烃的非酸性的、多相催化的低聚在优化的条件下导致了比酸性多相触媒更高线性度的产物。不过,所述的产物的线性度仍受局限。因此,例如在申请人的Octol方法中,Iso指数大于1,产生大约15%-30%的不想要的二甲基己烯。均相分子催化剂,作为改变配位体的可能性的结果,和作为它们的更强界定结构的结果,具有更大的优化潜力,并因此经常导致这样的低聚催化剂,它对于线性产物的选择性更高,并且使用其时,生产了更少的二甲基己烯作为反应产物。
在使用均相和多相催化剂时都发生的一个缺点是在高转化率时,对于二聚反应产物的选择性急剧降低。随着转化率的升高,三聚的、四聚的和更高级的低聚物的份额特别地急剧升高。这导致产物分离的开支增加,和导致产率损失,或者,如果可以另外使用所述更高级的低聚物(其仅仅在大的低聚设备的情况中是经济的),则导致了在后勤和存储方面更高的开支。所以,特别是使用相对小的原料料流时,如果在所述反应根本不或者仅仅生产了较小程度的三聚体、四聚体或者更高级的低聚物,则这是有利的。
对于二聚的低聚产物特别高的选择性经常是通过使用2相反应方式来实现的。在这种情况中,催化剂位于极性相中,而产物位于非极性相中或者它们本身形成了非极性相。因此,在催化剂相中,作为反应产物合意的二聚体仅能以较小程度供反应成更高级的低聚物的继续反应使用。使用2相反应方式(使用离子液体作为极性催化剂相)的一个例子是所谓的DIFASOL方法(Gilbert等人,Oil & Gas Science and Technology–Rev. IFP 2007,第62卷第745-759页)。
但是,该2相反应方式的缺点是在催化剂相中原料烯烃有限的浓度(特别是在原料具有大于4个碳原子的情况中),慢的物质交换,所述方法的反应部分和后处理部分之间所需的相分离,和经常需要大量的溶剂。
所以,目标是将多相催化反应的优点(例如反应混合物简单的进一步处理和容易的产物分离)与均相催化反应的优点(例如高转化率和更简单的优化来例如产生更高选择性的能力)相结合。
现在已经发现在C3-C5烯烃的低聚中可以使用经负载的离子液体相催化剂(简称SILP催化剂)。
SILP催化剂是块状的催化剂,其由用离子液体包封的固体载体材料组成,在其中活性催化组合物经溶解。在固体载体上的离子液体膜中固定分子催化剂的原理首次描述在WO2002098560中。
本发明提供一种催化剂体系,其由下列组分组成:
a)载体材料,其选自下面材料中的至少一种:二氧化硅,氧化铝,氧化镁,氧化锆及它们的混合氧化物,碳纳米管;
b)离子液体;
c)包含镍的催化活性组合物;
d)活化剂,其选自具有烷基化性能的路易斯酸。
本发明进一步提供用于低聚具有3-5个碳原子的烯烃的方法,其使用本发明的催化剂。
本发明特别提供由1-丁烯,顺式-和反式-2-丁烯和未反应性组分正丁烷的混合物来制备C8烯烃混合物的方法。
相对于常规方法,本发明具有下面的优点:
a)作为块状形式的催化剂,SILP催化剂具有多相催化剂的典型优点,如Jens Hagen,Industrial Catalysis:A Practical Approach,2006,第2版,Wiley-VCH,第12页中所述。
b)与2相系统相反,在反应部分和后处理部分以及溶剂之间不需要相分离。
c)因为实际的催化剂是分子络合物,SILP催化剂具有均相催化剂的典型优点,如Jens Hagen,Industrial Catalysis:A Practical Approach,2006,第2版,Wiley-VCH,第12页中所述。
d)使用本发明方法的另外的特别优点是产物高的线性度,特别是以低的程度形成二甲基-己烯。
e)因为催化活性组分存在于极性相中,因此对于二聚的反应产物的选择性是非常高的。但是,该极性相仅仅是薄膜,并因此质量传输通常不具有限定作用。
下面更详细的描述本发明的方法。
a)载体材料
用于本发明催化剂的合适的载体材料包括碳纳米管,活性炭,氧化镁,氧化铝,氧化锆和二氧化硅以及它们的混合氧化物。为了调整酸度,该载体材料可以包含至多1.5质量%的碱金属氧化物。此外,载体材料表面上的羟基可以用有机硅基团进行保护和/或进行脱羟基化。
优选的是使用二氧化硅和活性炭作为载体材料。特别优选给出的是使用这样的二氧化硅,其粒度是0.05mm-4mm和BET表面积是250-1000m2/g,根据DIN 66131和66132测量,以及使用这样的活性炭,其的BET表面积是1000-4000m2/g。非常特别优选的是使用粒度为0.063mm-0.2mm和BET表面积为300-800m2/g的硅胶。
b)离子液体
作为用于本发明催化剂的离子液体,使用这样的化合物,在其中阴离子选自四氟硼酸根([BF4]-),六氟磷酸根([PF6]-),二氰胺基([N(CN)2]-),双三氟甲基-磺酰胺基([NTf2]-),三氰甲基化物([C(CN)3]-),四氰基硼酸根([B(CN)4]-),卤离子(Cl-,Br-,F-,I-),六氟锑酸根([SbF6]-),六氟砷酸根([AsF6]-),硫酸根([SO4]2-),甲苯磺酸根([C7H7SO3]-),全氟丁基磺酸根([C4F9SO3 -),三-(五氟乙基)三氟磷酸根([PF3(C2F5)3]-),硫氰酸根([SCN]-),碳酸根([CO3]2-),[R′-COO]-,[R’-SO3]-,[R’PO4R‘‘]-或者[(R’-SO2)2N]-,和R’和R‘‘相同或者不同,每个是直链的或者支化的,包含1-12个碳原子的脂族或者脂环族烷基,或者C5-C18取代的芳基,C5-C18取代的芳基-C1-C6-烷基或者C1-C6-烷基-C5-C18取代的芳基,其能用卤素原子取代。该阴离子还可以如下来引入:将卤离子(Cl-,Br-,F-,I-)与路易斯酸化合物,例如与经验通式Al2XnR6-n的铝化合物(n=0-6,并且X=Cl-或者Br-和R=C1-C6烷基或者C5-C12环烷基)混合,或者与这些化合物的混合物进行混合,卤化铝的摩尔份额必须大于或者等于卤离子的份额。
阳离子选自:
-通式[NR1R2R3R4]+的季铵阳离子,
-通式[PR1R2R3R4]+的                                                阳离子,
-下面通式的咪唑
Figure 510215DEST_PATH_IMAGE002
阳离子
Figure 289953DEST_PATH_IMAGE003
这里该咪唑核能用选自下面的至少一个基团取代:C1-C6烷基,C1-C6烷氧基,C1-C6取代的氨基烷基,C5-C12取代的芳基或者C5-C12取代的芳基-C1-C6烷基,
下面通式的吡啶
Figure 747479DEST_PATH_IMAGE002
阳离子 
Figure 561851DEST_PATH_IMAGE004
这里该吡啶核能用选自下面的至少一个基团取代:C1-C6烷基,C1-C6烷氧基,C1-C6取代的氨基烷基,C5-C12取代的芳基或者C5-C12取代的芳基-C1-C6烷基,
下面通式的吡唑
Figure 384313DEST_PATH_IMAGE002
阳离子 
Figure 464396DEST_PATH_IMAGE005
这里该吡唑核可以通过选自下面的至少一个基团取代:C1-C6烷基,C1-C6烷氧基,C1-C6取代的氨基烷基,C5-C12取代的芳基或者C5-C12取代的芳基-C1-C6烷基;和下面通式的三唑
Figure 663296DEST_PATH_IMAGE002
阳离子
Figure 332175DEST_PATH_IMAGE006
这里该三唑核能用选自下面的至少一个基团取代:C1-C6烷基,C1-C6烷氧基,C1-C6取代的氨基烷基,C5-C12取代的芳基或者C5-C12取代的芳基-C1-C6烷基,
和残基R1,R2,R3彼此独立地选自下面的基团:
-氢;
-具有1-20个碳原子的直链或者支化的,饱和的或者不饱和的,脂族或者脂环族烷基;
-杂芳基,杂芳基-C1-C6烷基,其中具有在该杂芳基残基中的3-8个碳原子,和选自N,O和S的至少一个杂原子,其能用选自下面的至少一个基团取代:C1-C6烷基和/或卤素原子;
-芳基,芳基-C1-C6烷基,其在芳基残基中具有5-12个碳原子,其任选的能用至少一个C1-C6烷基和/或卤素原子取代;
和残基R选自
-具有1-20个碳原子的直链或者支化的,饱和的或者不饱和的,脂族或者脂环族烷基;
-杂芳基-C1-C6烷基,具有在芳基残基中的4-8个碳原子,和至少一个选自 N,O和S的杂原子,其能用至少一个C1-C6烷基和/或卤素原子取代;
-芳基-C1-C6烷基,在芳基残基中具有5-12个碳原子,其能任选地用至少一个C1-C6烷基和/或卤素原子取代。
在本发明的方法中,优选的是使用具有下面的阴离子的离子液体:
卤离子(Cl-,Br-,F-,I-)与卤化铝(AlX3,并且X=Cl,Br,F,I)的混合物,卤化铝的摩尔份额必须大于或者等于卤离子的份额,四氟硼酸根([BF4]-),六氟磷酸根([PF6]-),双三氟甲基磺酰胺基([NTf2]-),六氟锑酸根([SbF6]-),六氟砷酸根([AsF6]-),三(五氟乙基)三氟磷酸根([PF3(C2F5)3]-)。
特别优选的是使用卤离子(Cl-,Br-,F-,I-)与路易斯酸化合物,例如与经验通式Al2XnR6-n的铝化合物(n=0-6,并且X=Cl-或者Br-和R=C1-C6烷基或者C5-C12环烷基)的混合物,或者这些化合物的混合物,其中卤化铝的摩尔份额必须大于或者等于卤离子的份额。
非常特别优选的是使用氯阴离子与三氯化铝的混合物(三氯化铝的摩尔份额是55%),或者阴离子三(五氟乙基)三氟磷酸根([PF3(C2F5)3]-)(FAP)。
本发明的方法优选使用具有下面的阳离子的离子液体:
Figure 387856DEST_PATH_IMAGE007
这里该咪唑核能用选自下面的至少一个基团取代:C1-C6烷基,C1-C6烷氧基,C1-C6取代的氨基烷基,C5-C12取代的芳基或者C5-C12取代的芳基-C1-C6烷基。
特别优选给出的是使用C1-C4烷基取代的咪唑阳离子。
c)催化活性组合物
在块状催化剂的离子液体中溶解有催化活性组合物,其由镍络合物,它的前体和任选的活化剂组成。在本发明的方法,该催化活性组合物是由一种或多种前体和任选的活化剂在工艺条件下产生的,或者在已经为活性催化剂形式时供给到所述方法。
d)前体
作为该催化活性镍络合物的前体,可以使用全部这样的镍化合物,其可溶于离子液体中,并且具有0或者+2的形式氧化价。优选给出的是使用NiX2(X=Cl,Br),Ni(乙酰丙酮酸)2,Ni(六氟乙酰丙酮酸)2,Ni(环辛二烯基)2,Ni(环戊二烯基)2,Ni23-烯丙基)(μ-Cl2),Ni23-烯丙基)(μ-Br2),Ni23-甲基烯丙基)(μ-Cl2),Ni23-甲基烯丙基)(μ-Br2),Ni(η3-烯丙基)2,Ni(η3-甲基烯丙基)2,NiX2(PR1R2R3)2(X= Cl,Br和R1,R2,R3 = C1-C8烷基,C5-C12芳基,并且R1,R2和R3不必相同)。特别优选给出的是使用NiCl2(PPh3)2
作为另外的前体,任选地,可以使用形式氧化价为+3的磷化合物。优选给出的是使用通式PR1R2R3的化合物,并且R1,R2,R3=C1-C8烷基,C5-C12取代的芳基,通式P(XR1)(XR2)(XR3)的化合物,并且R1,R2,R3=C1-C8烷基,C5-C12取代的芳基残基,和X=N,O。特别优选给出的是使用通式PR1R2R3的化合物,并且R1,R2,R3=C5-C12取代的芳基。
作为另外的前体,任选地,可以使用1.3-二酮。优选给出的是使用1,1,1,5,5,5-六氟乙酰丙酮,2,2,2-三氟-N-(2,2,2-三氟乙酰基)乙酰胺和乙酰丙酮。
d)活化剂
作为活化剂,在本发明的方法中可以使用具有烷基化性能的路易斯酸。优选给出的是使用具有经验通式Al2XnR6-n的化合物,并且n=1-5,R=C1-C6烷基或者C5-C12取代的环烷基和X=Cl-或者Br-。非常特别优选给出的是使用乙基二氯化铝。
组分的相对比例
一般而言,离子液体与载体材料可实现的质量比取决于物质性能。对于离子液体来说特别关键的是密度,和对于载体材料来说是孔体积。更具体地,载体的孔半径分布,和离子液体在载体表面上的润湿特性,具有一定的影响。
取决于载体材料和取决于离子液体的类型,该离子液体可以以相对于载体宽的质量比来使用。对于二氧化硅载体来说(该载体材料表面上它的羟基已经用有机硅基团进行了保护或者进行了脱羟基化),优选使用的离子液体(1-丁基-3-甲基氯化咪唑
Figure 142185DEST_PATH_IMAGE002
/氯化铝)与载体可以使用的质量比是0.007-0.674。优选给出的质量比是0.034-0.334。特别优选的是0.067-0.169。对于活性炭载体来说,优选的是使用比率0.022-2.171。特别优选的是质量比0.217-0.543。对于特别优选的二氧化硅载体来说,优选使用的离子液体与载体材料的质量比是0.012-1.255。特别优选的比率是0.063-0.628。非常特别优选的比率是0.126-0.314。
镍与离子液体可实现的质量比通常取决于离子液体的类型和取决于载体材料的类型。
对于特别优选的二氧化硅载体来说,离子液体与载体材料特别优选的质量比是0.126-0.314。所使用的镍与离子液体的质量比是0.003-0.027。优选的比率是0.010-0.020。特别优选的比率是0.010-0.011。
催化剂制备
本发明的催化剂可以如下来制备:用包含其他催化剂组分和任选的溶剂的均相溶液处理固体载体材料。
一种途径是用这种溶液浸渍该固体载体材料。在此情况下,将在过量的溶液加入到该载体材料。在载体材料和溶液之间的物质交换(其可以通过摇动或者搅拌来加速)之后,例如通过过滤或者离心分离来将过量的液体从块状形式的催化剂中机械除去。任选地继之以干燥步骤。
另外一种方法是用这种溶液来喷涂所述的载体材料。任选地,在喷涂操作过程中或者之后除去任何所加入的溶剂。
该催化剂优选是如下来制备的:向该载体材料中加入由其他催化剂组分和溶剂组成的溶液,并且蒸发该溶剂。用于这种目的溶剂优选是低沸点物质,其与其他催化剂组分形成均相溶液,并且其不与这些组分的任何一种进行反应。合适的溶剂的例子有二氯甲烷,己烷和甲苯。非常特别优选的溶剂是二氯甲烷。
溶剂是在105-2*102 Pa的压力分离掉的,并且该压力从大气压开始连续降低。为了防止催化剂制备过程中该催化剂的分解,该制备是在不存在氧和水的情况下发生的。
本发明的载体催化剂优选以如下形式制备:其在低聚过程中提供了低的流动阻力。典型的形式是片状,柱状,条状挤出物或者环。在这种情况中在施用离子液体和溶解在其中的催化剂组分之前,通常在载体材料上进行成形。还可以使用粒状载体来制备本发明的催化剂。通过筛分,在该情况中可以分离出具有期望粒度的催化剂载体。载体材料经常可以作为成形体市售获得的。
原料
在本发明的催化剂上,可以低聚具有3-5个碳原子的烯烃,来形成具有6-10个碳原子的烯烃。原则上可以使用具有3-5个碳原子的全部烯烃或者烯烃混合物,不管双键的位置如何。该原料可以由具有相同的,类似的(±2)或者明显不同的(>2)C数的烯烃组成。
应当注意的是不仅可以使用前述的烯烃,而且还可以使用其与饱和烃的混合物。
在本发明方法中,优选的是使用2-丁烯和1-丁烯。更特别的是使用在除去多不饱和的化合物和异丁烯之后,在来自蒸气裂解器的C4馏分的后处理中所生产的种类的2-丁烯,1-丁烯和直链的和支化的丁烷的混合物。这些技术描述在专业文献中(K. Weissermel,H. J. Arpe,Industrielle Organische Chemie,Wiley-VCH,第5版,1998)。
方法进程
实施例。
下面的实施例意在说明本发明。
实施例1,本发明:使用离子液体(IL)1-丁基-3-甲基氯化咪唑 ([BMIM]Cl)/氯化铝和催化剂前体 NiCl 2 (PPh 3 ) 2 制备SILP催化剂
全部的操作步骤是在惰性气体盒中进行的,或者是使用Schlenk技术来进行的。为了制备用于批次试验的催化剂批料,将147.1mg的NiCl2(PPh3)2(市售可得)和471.6mg的三苯基膦(市售可得)称重到100ml Schlenk烧瓶中。加入20ml干燥的二氯甲烷(含水量<20ppm),并且将该混合物在磁搅拌器上搅拌15分钟。然后加入4.0g硅胶(粒度0.063-0.200mm,BET表面积315m2/g,孔体积0.996ml/g),将该悬浮液继续搅拌15分钟。然后称出1.26g的[BMIM]Cl/AlCl3(AlCl3的摩尔份额:55%)。在磁搅拌器上搅拌另外15分钟之后,将在室温水浴中的该烧瓶连接到真空泵上,从105 Pa缓慢减压到2*102 Pa。大约45分钟之后,存在着青绿色粉末。
低聚设备的说明
用于该不连续二聚的搅拌釜反应器的流程图表示在图1中。哈斯特洛伊镍合金高压釜具有发动机驱动的搅拌单元(气体引入搅拌器,Heidolph RZR 2020发动机)以及压力指示器(PI)和温度指示器(TI 1)。过压阀V-5(其在80 bar打开)防止了反应器中过高的、不想要的压力增加。经由阀门V-1,V-2和V-3,可以将反应物以及惰性气体送入到搅拌釜中。在催化剂试验过程中可以经由阀门V-4来取样。
试验进程的说明
为了进行不连续二聚试验,所采用的方法如下:使用Schlenk技术,将所制备的SILP粉末在惰性气体条件下加入到反应釜中,并且将该反应器拧紧。穿过盖子的开口,引入80ml的环己烷(含水量<20ppm)。加入大约1ml的正辛烷(作为GC内标物)和6ml的乙基二氯化铝(0.1摩尔己烷溶液,市售可得),并且关闭盖子的开口。
在V-3上连接具有22g原料的钢筒,并且在试验开始前的短时间中将该原料引入到反应器中。当搅拌器以1000 1/min开始时,开始记录时间。经由阀门V-4从反应器中取样。在通过气相色谱法进行分析之前将该样品进行氢化。这使得将不同的支化产物彼此分离变得容易。
本发明的试验结果
催化活性组合物的制备和试验的进行是根据上述方法来进行的。所用的原料是70%正丁烷,19%反式-2-丁烯,9%顺式-2-丁烯,1.7%的1-丁烯和0.3%异丁烷+C5烷烃的混合物。原料质量基于该混合物。转化率是基于所存在的丁烯。
表1:使用本发明的催化剂体系的示例性试验结果:催化剂前体NiCl2(PPh3)2;温度:20℃;活化剂:6ml的EtAlCl2溶液(0.1摩尔浓度的己烷溶液)
No. 离子液体 载体材料 IL/载体材料 转化率60min SC8 Iso指数 SDMH SMH SOct
      [-] [%] [%] [-] [%] [%] [%]
1 [BMIM]Cl/AlCl3 二氧化硅 0.126 69.4 94.2 1.0 11.6 76.8 11.6
2 [EMIM][FAP] 二氧化硅 0.171 12.6 98.8 0.97 9.9 77.1 13.0
3 [BMIM]Cl/AlCl3 活性炭 0.217 40.3 94.2 0.96 7.6 81.0 11.4
4 [BMIM]Cl/AlCl3 Si-二氧化硅 0.067 33.7 97.8 0.97 9.8 77.2 13.0
[BMIM]Cl/AlCl3=1-丁基-3-甲基氯化咪唑
Figure 714167DEST_PATH_IMAGE002
/氯化铝(比率1/1.1),[EMIM][FAP]=1-乙基-3-甲基咪唑
Figure 144011DEST_PATH_IMAGE002
三(五氟乙基)三氟磷酸盐,硅胶:Merck KGaA 类型10184(粒度0.063-0.200mm,BET表面积315m2/g,孔体积0.996ml/g),活性炭:Fluka 活性炭(粉末,BET表面积2056m2/g,孔体积1.723ml/g),Si-二氧化硅:Silica 60,硅烷化的:Merck KGaA(粒度0.063-0.200mm,BET表面积430m2/g,孔体积0.535ml/g)。
表1的条目1表明,使用本发明的催化剂体系(其使用NiCl2(PPh3)2,乙基二氯化铝作为活化剂,比例1/1.1的1-丁基-3-甲基氯化咪唑和氯化铝的混合物作为离子液体,和硅胶作为载体材料),具有大约30%的低的烯烃含量C4烃可以获得对于期望的二聚的反应产物94%的非常高的选择性以及同时对于不想要的二甲基己烯低的选择性(11.6%)。Iso指数是1。
表1的条目2表示了在其它方面相同条件下使用1-乙基-3-甲基咪唑
Figure 723077DEST_PATH_IMAGE002
三(五氟乙基)三氟磷酸盐作为离子液体。这里,获得了对于C8低聚物甚至更高的选择性,但是转化率更低。对于二甲基己烯的选择性是非常低的,在大约10%。同时,获得了<1的非常好的Iso指数。
表1的条目3表示了使用活性炭作为载体材料。这里实现了7%的特别低的对于二甲基己烯的选择性,并且以40%的转化率实现了特别低的Iso指数。
表1的条目4表示了使用硅胶,其已经通过甲硅烷化而进行了脱羟基化。这里,同样实现了<1的非常好的Iso指数。该实施例的具体特点是需要非常少的离子液体,如所示的,具有目前最低的IL/载体材料比率值0.067。
与现有技术的对比:
与常规的均相催化对比:
在开始时提到的纯均相催化Dimersol方法(参见Yves Chauvin,Helene Olivier,“Applied Homogeneous Catalysis with Organometallic Compounds”,编辑Boy Cornils,Wolfgang A. Herrmann,Verlag Chemie,1996,第258-268页)产生了至多40%的二甲基己烯。Iso指数典型地是1-1.35,并且在该方法中对于C8低聚物的选择性<90%。这意味着,本发明的催化剂体系在对于C8低聚物的选择性和产物的线性度二者方面,特别是对于低的二甲基己烯选择性方面优于Dimersol方法。此外,使用本发明的催化剂体系的反应方式是明显更简单的,因为由于它们的固定特性,它们能够更容易地与产物分离。
与常规的多相催化的对比:
在纯的多相催化方法的情况中,在典型地>1的Iso指数情况下, 对于二甲基己烯的选择性是大约15%-30%。二聚体选择性<90%(参见Albers等人,Oligomerisation of C3-C5 on Solid State Nickel Compounds:Complex Catalysts  for a versatile Reaction,DGMK-Tagungsbericht 2004-3)。这意味着,本发明的催化剂体系在对于C8低聚物的选择性和产物的线性度二者方面,特别是对于低的二甲基己烯选择性方面优于这种方法。
液体-液体2相反应模式:
使用NiCl2(PPh3)2,乙基二氯化铝作为活化剂和1-丁基-3-甲基氯化-咪唑
Figure 366548DEST_PATH_IMAGE002
/氯化铝(比率1/1.1)作为液-液2相反应模式中的极性相,观察到对于二甲基己烯的20%-30%的选择性和Iso指数>1(参见Gilbert等人,Oil & Gas Science and Technology– Rev.IFP 2007,第62卷第745-759页)。对于二聚体的选择性在大约95%,处于与使用本发明的催化剂体系类似的水平。但是,在产物的线性度和二甲基选择性方面,本发明的催化剂体系更优。

Claims (16)

1. 催化剂体系,其由下列组分组成:
a)载体材料,其选自下面材料中的至少一种:二氧化硅,氧化铝,氧化镁,氧化锆及它们的混合氧化物,碳纳米管;
b)离子液体;
c)包含镍的催化活性组合物;
d)活化剂,其选自具有烷基化性能的路易斯酸。
2. 根据权利要求1的催化剂体系,特征在于将这样的化合物用作离子液体,其中阴离子选自:
四氟硼酸根([BF4]-),六氟磷酸根([PF6]-),二氰胺基([N(CN)2]-),双三氟甲基磺酰胺基([NTf2]-),三氰甲基化物([C(CN)3]-),四氰基硼酸根([B(CN)4]-),卤离子(Cl-,Br-,F-,I-),六氟锑酸根([SbF6]-),六氟砷酸根([AsF6]-),硫酸根([SO4]2-),甲苯磺酸根([C7H7SO3]-),全氟丁基磺酸根([C4F9SO3 -),三(五氟乙基)三氟磷酸根([PF3(C2F5)3]-),硫氰酸根([SCN]-),碳酸根([CO3]2-),[R′-COO]-,[R’-SO3]-,[R’PO4R‘‘]-或者[(R’-SO2)2N]-,并且R’和R‘‘相同或者不同,每个是直链的或者支化的,含有1-12个碳原子的脂族或者脂环族烷基或者C5-C18取代的芳基,C5-C18取代的芳基-C1-C6-烷基或者C1-C6-烷基-C5-C18取代的芳基,其能够用卤素原子取代;
其中所述阳离子选自:
通式[NR1R2R3R4]+的季铵阳离子;
通式[PR1R2R3R4]+的                                               阳离子,或者:
下面通式的咪唑
Figure 770022DEST_PATH_IMAGE004
阳离子
Figure 848836DEST_PATH_IMAGE006
这里该咪唑核能用选自下面的至少一个基团取代:C1-C6烷基,C1-C6烷氧基,C1-C6取代的氨基烷基,C5-C12取代的芳基或者C5-C12取代的芳基-C1-C6烷基,
下面通式的吡啶阳离子
Figure 134772DEST_PATH_IMAGE008
这里该吡啶核能用选自下面的至少一个基团取代:C1-C6烷基,C1-C6烷氧基,C1-C6取代的氨基烷基,C5-C12取代的芳基或者C5-C12取代的芳基-C1-C6烷基,
下面通式的吡唑
Figure 85411DEST_PATH_IMAGE004
阳离子
这里该吡唑核能用选自下面的至少一个基团取代:C1-C6烷基,C1-C6烷氧基,C1-C6取代的氨基烷基,C5-C12取代的芳基或者C5-C12取代的芳基-C1-C6烷基,
和下面通式的三唑
Figure 54821DEST_PATH_IMAGE004
阳离子
Figure 997369DEST_PATH_IMAGE012
这里该三唑核能用选自下面的至少一个基团取代:C1-C6烷基,C1-C6烷氧基,C1-C6取代的氨基烷基,C5-C12取代的芳基或者C5-C12取代的芳基-C1-C6烷基,
和残基R1,R2,R3彼此独立地选自:
氢;
具有1-20个碳原子的直链或者支化的,饱和的或者不饱和的,脂族或者脂环族烷基;
杂芳基,杂芳基-C1-C6烷基,其中具有在该杂芳基残基中的3-8个碳原子,和至少一个选自N,O和S的杂原子,其能用选自下面的至少一个基团取代:C1-C6烷基和/或卤素原子;
芳基,芳基-C1-C6烷基,其在芳基残基中具有5-12个碳原子,其能任选地用至少一个C1-C6烷基和/或卤素原子取代;
和残基R选自
具有1-20个碳原子的直链或者支化的,饱和的或者不饱和的,脂族或者脂环族烷基;
杂芳基-C1-C6烷基,其具有在芳基残基中的4-8个碳原子,和至少一个选自 N,O和S的杂原子,其能用至少一个C1-C6烷基和/或卤素原子取代;
芳基-C1-C6烷基,在芳基残基中具有5-12个碳原子,其能任选地用至少一个C1-C6烷基和/或卤素原子取代。
3. 根据权利要求1至2任一的催化剂体系,特征在于该催化活性组合物包含镍,该镍处于可溶于所用的离子液体中的形式,并且处于0到+2氧化价。
4. 根据权利要求3的催化剂体系,特征在于使用NiCl2(P[C6H5]3)。
5. 根据权利要求1和2的催化剂体系,特征在于作为具有烷基化性能的路易斯酸,使用经验通式Al2XnR6-n的有机铝化合物或者这些化合物的混合物,其中n=0-6,并且X=Cl-或者Br-和R=C1-C6烷基或者C5-C12环烷基。
6. 根据权利要求1和2的催化剂体系,特征在于使用乙基二氯化铝作为具有烷基化性能的路易斯酸。
7. 根据权利要求1-6至少一项的催化剂体系,特征在于使用包含1-丁基-3-甲基氯化咪唑
Figure 435304DEST_PATH_IMAGE004
和氯化铝的组合物。
8. 根据权利要求1-6至少一项的催化剂体系,特征在于使用1-乙基-3-甲基咪唑
Figure 872232DEST_PATH_IMAGE004
三(五氟乙基)三氟磷酸盐。
9. 根据权利要求1-8至少一项的催化剂体系,特征在于作为载体材料,使用二氧化硅,该二氧化硅的粒度是0.063-0.2mm,BET表面积是250-1000m2/g,其根据DIN66131和66132测定。
10. 根据权利要求1-9至少一项的催化剂体系,特征在于包含二氧化硅的载体材料与根据权利要求2的离子液体的质量比是0.012-1.255。
11. 根据权利要求1-9至少一项的催化剂体系,特征在于包含二氧化硅的载体材料与根据权利要求2的离子液体的质量比是0.007-0.674,该包含二氧化硅的载体材料事先已经以本身已知的方式脱羟基化。
12. 根据权利要求1-9至少一项的催化剂体系,特征在于包含活性炭的载体材料与根据权利要求2的离子液体的质量比是0.022-2.171,该活性炭的BET表面积是1000m2/g-4000m2/g,其根据DIN66131和66132测定。
13. 用于低聚不饱和烃混合物的方法,其使用根据权利要求1-12至少一项的催化剂体系。
14. 根据权利要求13的方法,特征在于作为该不饱和烃混合物,使用包含具有3-5个碳原子的烯烃的料流。
15. 根据权利要求14的方法,特征在于作为该不饱和烃混合物,使用包含直链C4烯烃和饱和烃的料流。
16. 根据权利要求15的方法,特征在于作为不饱和烃混合物,使用包含直链的C4烯烃和质量份额为50%-80%的饱和烃的料流。
CN201080039993.3A 2009-09-08 2010-08-12 用于低聚烯烃的方法 Expired - Fee Related CN102481563B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009029284A DE102009029284A1 (de) 2009-09-08 2009-09-08 Verfahren zur Oligomerisierung von Olefinen
DE102009029284.5 2009-09-08
PCT/EP2010/061770 WO2011029691A1 (de) 2009-09-08 2010-08-12 Verfahren zur oligomerisierung von olefinen

Publications (2)

Publication Number Publication Date
CN102481563A true CN102481563A (zh) 2012-05-30
CN102481563B CN102481563B (zh) 2015-09-30

Family

ID=42668936

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080039993.3A Expired - Fee Related CN102481563B (zh) 2009-09-08 2010-08-12 用于低聚烯烃的方法

Country Status (9)

Country Link
US (1) US9200216B2 (zh)
EP (1) EP2475458B8 (zh)
JP (1) JP5818795B2 (zh)
CN (1) CN102481563B (zh)
AR (1) AR078268A1 (zh)
DE (1) DE102009029284A1 (zh)
ES (1) ES2458167T3 (zh)
PL (1) PL2475458T3 (zh)
WO (1) WO2011029691A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636035B (zh) * 2014-05-20 2018-09-21 贏創德固賽有限責任公司 自易變的原料來源透過醛化來製備高品質醇類的方法
CN109012727A (zh) * 2018-08-08 2018-12-18 南京晓庄学院 一种半金属性c4n3纳米板及其制备方法和应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009029050A1 (de) 2009-08-31 2011-03-03 Evonik Oxeno Gmbh Organophosphorverbindungen basierend auf Tetraphenol(TP)-substituierten Strukturen
DE102009051462B4 (de) 2009-10-30 2015-02-05 Clariant International Ag Verfahren zur Herstellung eines Kompositmaterials, Kompositmaterial und dessen Verwendung
DE102010030990A1 (de) 2010-07-06 2012-01-12 Evonik Oxeno Gmbh Verfahren zur selektiven Hydrierung von mehrfach ungesättigten Kohlenwasserstoffen in olefinhaltigen Kohlenwasserstoffgemischen
DE102010041821A1 (de) 2010-09-30 2012-04-05 Evonik Oxeno Gmbh Einsatz von Supported Ionic Liquid Phase (SILP) Katalysatorsystemen in der Hydroformylierung von olefinhaltigen Gemischen zu Aldehydgemischen mit hohem Anteil von in 2-Stellung unverzweigten Aldehyden
DE102010043558A1 (de) 2010-11-08 2012-05-10 Evonik Oxeno Gmbh Verfahren zur Hydroformylierung von ungesättigten Verbindungen
DE102011114132A1 (de) * 2011-08-14 2013-02-14 BLüCHER GMBH Neue Konzepte für die Gasbehandlung und Gasreinigung
DE202011106025U1 (de) * 2011-08-14 2012-08-17 BLüCHER GMBH Aktivkohle mit metallbasierter Komponente
DE102012202621A1 (de) * 2012-02-21 2013-08-22 Wacker Chemie Ag Verfahren zur Befüllung eines Reaktors mit einem Katalysator
KR20130102266A (ko) * 2012-03-07 2013-09-17 주식회사 씨트리 담지화된 이온성 액체상의 제조
DE102013212481A1 (de) 2013-06-27 2014-12-31 Evonik Industries Ag Oligomerisierung von C4-Strömen mit geringstem Gehalt an 1-Buten
DE102014200072A1 (de) * 2014-01-08 2015-07-09 Evonik Industries Ag Dimerisierung von Olefinen
SG10201604013RA (en) 2015-05-28 2016-12-29 Evonik Degussa Gmbh Hydrogen-assisted adsorption of sulphur compounds from olefin mixtures
ZA201801183B (en) 2017-02-27 2019-01-30 Evonik Degussa Gmbh Selective oligomerization of olefins
FR3086551A1 (fr) * 2018-09-28 2020-04-03 IFP Energies Nouvelles Composition catalytique a base de nickel (ii)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1868588A (zh) * 2006-07-03 2006-11-29 浙江工业大学 离子液体中负载型镍催化剂的制备方法
CN101180252A (zh) * 2005-05-20 2008-05-14 丹麦科技大学 通过担载离子液相催化作用进行的连续羰基化方法
CN101200404A (zh) * 2007-11-06 2008-06-18 中山大学 一种乙烯低聚合成短链烯烃的方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3592869A (en) * 1968-10-03 1971-07-13 Shell Oil Co Olefin oligomerization
JPH0297414A (ja) * 1988-10-01 1990-04-10 Kansai Coke & Chem Co Ltd 高品質活性炭の製造法
GB9102513D0 (en) 1991-02-06 1991-03-27 Exxon Chemical Patents Inc Hydrocarbon production
DE4339713A1 (de) 1993-11-22 1995-05-24 Basf Ag Verfahren zur Oligomerisierung von Olefinen zu hochlinearen Oligomeren und Katalysatoren dafür
GB9707842D0 (en) 1997-04-18 1997-06-04 Bp Chem Int Ltd Oligomerisation process
FR2765573B1 (fr) * 1997-07-04 1999-08-27 Inst Francais Du Petrole Enchainement de procedes pour l'oligomerisation des olefines
MY129122A (en) 1997-11-14 2007-03-30 Basf Ag Method for producing essentially unbranched octenes and dodecenes by oligomerising of unbranched butenes
BR0015178A (pt) * 1999-11-05 2002-06-18 Ici Plc Lìquidos iÈnicos imobilizados
FR2804622B1 (fr) * 2000-02-04 2002-04-05 Inst Francais Du Petrole Composition catalytique pour la dimerisation, la codimerisation et l'oligomerisation des olefines
FR2806644B1 (fr) * 2000-03-23 2002-05-10 Inst Francais Du Petrole Composition catalytique et procede pour la catalyse de dimerisation, de codimerisation et d'oligomerisation des olefines
US6673737B2 (en) 2001-05-30 2004-01-06 Exxonmobil Research And Engineering Company Ionic liquid compositions
FR2835521B1 (fr) * 2002-02-04 2004-04-09 Inst Francais Du Petrole Composition catalytique contenant un aluminoxane pour la dimerisation, la co-dimerisation et l'oligomerisation des olefines
US6777584B2 (en) * 2002-02-22 2004-08-17 Exxonmobil Research And Engineering Company Selective coupling of terminal olefins with ethylene to manufacture linear α-olefins
BR0313814B1 (pt) 2002-08-31 2012-11-27 processo para preparação de aldeìdos por hidroformilação de compostos olefinicamente insaturados, catalisado por complexos metálicos não modificados, na presença de ésteres de ácido carbÈnico cìclicos.
WO2004020380A1 (de) 2002-08-31 2004-03-11 Oxeno Olefinchemie Gmbh Verfahren zur hydroformylierung von olefinisch ungesättigten verbindungen, insbesondere olefinen in gegenwart cyclischer kohlensäureester
US7217676B2 (en) * 2004-01-16 2007-05-15 Exxon Mobil Chemical Patents Inc. Hydrophobization and silica for supported catalyst
EP1883616B1 (en) 2005-05-20 2009-09-30 Wacker Chemie AG A process for continuous carbonylation by supported ionic liquid-phase catalysis
DE102005042464A1 (de) 2005-09-07 2007-03-08 Oxeno Olefinchemie Gmbh Carbonylierungsverfahren unter Zusatz von sterisch gehinderten sekundären Aminen
JP5142178B2 (ja) * 2006-03-10 2013-02-13 独立行政法人科学技術振興機構 イオン性液体で被覆された固定化ルイス酸触媒、及びその使用
DE102006019460A1 (de) 2006-04-26 2007-10-31 Süd-Chemie AG Mit einer ionischen Flüssigkeit beschichteter poröser heterogener Katalysator
DE102006040431A1 (de) 2006-08-29 2008-03-20 Oxeno Olefinchemie Gmbh Verfahren zur Spaltung von MTBE
DE102006040434A1 (de) 2006-08-29 2008-03-06 Oxeno Olefinchemie Gmbh Verfahren zur Spaltung von MTBE
DE102006040430B4 (de) 2006-08-29 2022-06-15 Evonik Operations Gmbh Verfahren zur Spaltung von MTBE
DE102008002187A1 (de) 2008-06-03 2009-12-10 Evonik Oxeno Gmbh Verfahren zur Herstellung von C5-Aldehydgemischen mit hohem n-Pentanalanteil
DE102008040511A1 (de) 2008-07-17 2010-01-21 Evonik Oxeno Gmbh Verfahren zur Herstellung von Isobuten durch Spaltung von MTBE-haltigen Gemischen
DE102009029050A1 (de) 2009-08-31 2011-03-03 Evonik Oxeno Gmbh Organophosphorverbindungen basierend auf Tetraphenol(TP)-substituierten Strukturen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101180252A (zh) * 2005-05-20 2008-05-14 丹麦科技大学 通过担载离子液相催化作用进行的连续羰基化方法
CN1868588A (zh) * 2006-07-03 2006-11-29 浙江工业大学 离子液体中负载型镍催化剂的制备方法
CN101200404A (zh) * 2007-11-06 2008-06-18 中山大学 一种乙烯低聚合成短链烯烃的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636035B (zh) * 2014-05-20 2018-09-21 贏創德固賽有限責任公司 自易變的原料來源透過醛化來製備高品質醇類的方法
CN109012727A (zh) * 2018-08-08 2018-12-18 南京晓庄学院 一种半金属性c4n3纳米板及其制备方法和应用
CN109012727B (zh) * 2018-08-08 2021-03-23 南京晓庄学院 一种半金属性c4n3纳米板及其制备方法和应用

Also Published As

Publication number Publication date
CN102481563B (zh) 2015-09-30
PL2475458T3 (pl) 2014-03-31
EP2475458B8 (de) 2013-11-06
AR078268A1 (es) 2011-10-26
JP5818795B2 (ja) 2015-11-18
US9200216B2 (en) 2015-12-01
JP2013503746A (ja) 2013-02-04
ES2458167T3 (es) 2014-04-30
WO2011029691A1 (de) 2011-03-17
DE102009029284A1 (de) 2011-03-10
US20130030233A1 (en) 2013-01-31
EP2475458A1 (de) 2012-07-18
EP2475458B1 (de) 2013-10-02

Similar Documents

Publication Publication Date Title
CN102481563B (zh) 用于低聚烯烃的方法
US4533651A (en) Catalysts for olefin oligomerization and isomerization
US6706657B2 (en) Catalytic composition for dimerizing, co-dimerizing and oligomerizing olefins
RU2525917C2 (ru) Каталитическая композиция и способ олигомеризации этилена
JP4273257B2 (ja) オレフィンの二量化、共二量化、オリゴマー化及び重合用の触媒組成物
RU2647863C2 (ru) Каталитическая композиция и способ олигомеризации этилена
KR20190011244A (ko) 선택적 에틸렌 올리고머화 개선 방법
KR20150070224A (ko) 비스포스파이트 혼합물 및 히드로포르밀화에서의 촉매 혼합물로서의 그의 용도
CN105289742B (zh) 用于乙烯选择性齐聚的催化剂、配体及其制备方法
CA2707122A1 (en) Catalyst composition for oligomerization of ethylene, oligomerization process and method for its preparation
CN106582851B (zh) 用于乙烯选择性齐聚的催化剂组分及其催化剂
CN105175447B (zh) 单亚磷酸酯配体的混合物及其用于催化加氢甲酰基化反应的用途
CN1736602A (zh) 一种用于烯烃氢甲酰化制醛的负载型催化剂
CN101252990B (zh) 直链α-烯烃的制备方法和其中使用的催化剂
CN107983409A (zh) 低分子烯烃聚合物的制备方法
Zhang et al. Two kinds of cobalt–based coordination polymers with excellent catalytic ability for the selective oxidation of cis-cyclooctene
AU9724898A (en) Nonaqueous ionic ligand liquids, process for preparing them and their use as catalyst constituents
DE60110489T2 (de) Katalytische Zusammensetzung und Verfahren für die Dimerisierung, Codimerisierung und Oligomerisierung von Olefinen
US3907923A (en) Oligomerization process
CN105562098A (zh) 一种乙烯齐聚催化剂组合物及其应用
Nasirov et al. Ionic liquids in catalytic processes of transformation of olefins and dienes
Meyer et al. Chemical engineering of ionic liquid processes
CN107986929B (zh) 低分子烯烃聚合物的制备方法
US20190168202A1 (en) Catalytic composition based on chromium and a ligand based on phosphine and its use in a method for producing octenes
WO2015104185A1 (de) System enthaltend ni(ii)-katalysator, organometallhalogenid, anion-precursor und puffer sowie seine verwenduing zur dimerisierung von olefinen

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: EVONIK DEGUSSA GMBH

Free format text: FORMER OWNER: OXENO OLEFINCHEMIE GMBH

Effective date: 20140704

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20140704

Address after: essen

Applicant after: Evonik Degussa GmbH

Address before: mAhR

Applicant before: Oxeno Olefinchemie GmbH

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150930

Termination date: 20170812