CN102479715B - 半导体器件的形成方法 - Google Patents

半导体器件的形成方法 Download PDF

Info

Publication number
CN102479715B
CN102479715B CN201010565095.3A CN201010565095A CN102479715B CN 102479715 B CN102479715 B CN 102479715B CN 201010565095 A CN201010565095 A CN 201010565095A CN 102479715 B CN102479715 B CN 102479715B
Authority
CN
China
Prior art keywords
tensile stress
nmos pass
pass transistor
stress layer
formation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010565095.3A
Other languages
English (en)
Other versions
CN102479715A (zh
Inventor
张海洋
沈满华
孙武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Beijing Corp
Priority to CN201010565095.3A priority Critical patent/CN102479715B/zh
Publication of CN102479715A publication Critical patent/CN102479715A/zh
Application granted granted Critical
Publication of CN102479715B publication Critical patent/CN102479715B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种半导体器件的形成方法,包括:提供半导体基底,所述半导体基底上形成有NMOS晶体管;形成张应力层,覆盖所述NMOS晶体管;在所述NMOS晶体管的栅电极上方的张应力层中形成开口;对所述半导体基底进行退火;去除所述张应力层。本发明能够减弱不同沟道宽度的NMOS晶体管受应力记忆技术影响的差别,有利于改善器件性能。

Description

半导体器件的形成方法
技术领域
本发明涉及半导体制造技术,尤其涉及一种半导体器件的形成方法。
背景技术
由于应力可以改变硅材料的能隙和载流子迁移率,因此通过应力来提高MOS晶体管的性能成为越来越常用的手段。通过适当控制应力,可以提高载流子(NMOS晶体管中的电子,PMOS晶体管中的空穴)迁移率,也就提高了驱动电流,因而应力可以极大地提高MOS晶体管的性能。
现有技术中,双应力衬垫技术在NMOS晶体管上形成张应力衬垫层(tensile stress liner),在PMOS晶体管上形成压应力衬垫层(compressive stressliner),从而增大了PMOS晶体管和NMOS晶体管的驱动电流,提高了电路的响应速度。据研究,使用双应力衬垫技术的集成电路能够带来24%的速度提升。
此外,在现有的高性能的半导体器件中,还通过嵌入式锗硅(EmbeddedGeSi)技术来提高PMOS晶体管的性能,主要是在需要形成源区和漏区的区域形成锗硅材料,然后再进行掺杂形成PMOS晶体管的源区和漏区。形成锗硅材料是为了引入硅和锗硅(SiGe)之间晶格失配形成的压应力,以提高PMOS晶体管的性能。
随着半导体器件的特征尺寸(CD,Critical Dimension)的不断减小,应力记忆技术(SMT,Stress Memorization Technology)得到了广泛的使用。SMT用于提高NMOS晶体管的性能,主要包括:首先在NMOS晶体管上形成张应力层,所述张应力层一般为刚性较强的氮化硅层;之后对所述NMOS晶体管和张应力层进行退火,由于所述张应力层的刚性较强,从而将张应力层中的张应力引入至所述NMOS晶体管的栅电极、源区、漏区和衬底,且所述张应力持续存在,被“记忆”在所述NMOS晶体管的栅电极、源区、漏区和衬底,故此得名;接下来去除所述张应力层,完成应力记忆过程。
但是,现有技术的应力记忆技术会影响NMOS晶体管的性能参数,如阈值电压(threshold voltage)、饱和电流等,尤其是沟道宽度(channel width或devicewidth)较小的NMOS晶体管对应力更为敏感。图1示出了沟道长度为40nm(gate=40nm)的NMOS晶体管在经过应力记忆技术处理后,阈值电压随着沟道宽度的偏移关系曲线,可见,器件的沟道宽度越小,阈值电压的偏移越大,即受应力记忆技术的影响越大。由于在半导体工艺中,半导体基底上往往形成有大量的晶体管,沟道宽度较小的NMOS晶体管对应力的过度敏感会影响器件性能。
发明内容
本发明解决的问题是应力记忆技术对不同沟道宽度的NMOS晶体管的性能参数影响不同,影响器件性能。
为解决上述问题,本发明提供了一种半导体器件的形成方法,包括:
提供半导体基底,所述半导体基底上形成有NMOS晶体管;
形成张应力层,覆盖所述NMOS晶体管;
在所述NMOS晶体管的栅电极上方的张应力层中形成开口;
对所述半导体基底进行退火;
去除所述张应力层。
可选的,所述开口沿所述NMOS晶体管的沟道宽度方向的长度与所述NMOS晶体管的沟道宽度成反比。
可选的,所述开口沿所述NMOS晶体管的沟道宽度方向的长度与(L/W)*L成正比,其中,L为所述NMOS晶体管的沟道长度,W为所述NMOS晶体管的沟道宽度。
可选的,所述开口的深度与所述NMOS晶体管的沟道宽度成反比。
可选的,所述开口的形状可以是矩形或椭圆形。
可选的,所述张应力层的材料为氮化硅。
可选的,所述张应力层的形成方法为等离子增强型化学气相沉积或高密度等离子增强型化学气相沉积。
可选的,所述开口的形成方法为干法刻蚀。
可选的,使用干法刻蚀和/或湿法刻蚀去除所述张应力层。
可选的,所述半导体基底上还形成有PMOS晶体管,所述形成张应力层包括:
形成张应力层,覆盖所述PMOS晶体管和NMOS晶体管;
在所述张应力层上形成光刻胶层并图形化,定义出所述NMOS晶体管的图形;
以所述图形化后的光刻胶层为掩膜进行刻蚀,去除所述PMOS晶体管表面的张应力层。
可选的,所述NMOS晶体管的表面还形成有衬垫层和刻蚀阻挡层,所述张应力层形成于所述刻蚀阻挡层之上。
与现有技术相比,本发明具有以下优点:
本技术方案在NMOS晶体管上形成张应力层之后,在NMOS晶体管的栅电极上方的张应力介质层中形成开口,之后再进行退火,由于去除了部分张应力介质层,降低了退火过程中张应力层对NMOS晶体管的影响,减弱了不同沟道宽度的NMOS晶体管受应力记忆技术影响的差别,有利于改善器件性能。
进一步的,本技术方案中所述开口沿沟道宽度方向的长度以及深度和NMOS晶体管的沟道宽度成反比,即沟道宽度越小,所述开口的体积越大,也即形成所述开口过程中去除的张应力层越多,从而减小引入NMOS晶体管的张应力,有利于避免沟道宽度较小的NMOS晶体管对应力过度敏感导致的器件性能下降。
附图说明
图1是现有技术的经过应力记忆技术处理的NMOS晶体管的阈值电压和沟道宽度之间的关系曲线图;
图2是本发明实施例的半导体器件的形成方法的流程示意图;
图3至图7是本发明第一实施例的半导体器件的形成方法的中间结构的剖面图和俯视图;
图8和图9是本发明第二实施例的半导体器件的形成方法的中间结构的剖面图和俯视图;
图10和图11是本发明第三实施例的半导体器件的形成方法的中间结构的剖面图和俯视图。
具体实施方式
现有技术中,应力记忆技术对不同沟道宽度的NMOS晶体管的性能参数的影响不同,尤其是沟道宽度较小的NMOS晶体管对应力非常敏感,会导致器件性能下降。
本技术方案在NMOS晶体管上形成张应力层之后,在NMOS晶体管的栅电极上方的张应力介质层中形成开口,之后再进行退火,由于去除了部分张应力介质层,降低了退火过程中张应力层对NMOS晶体管的影响,减弱了不同沟道宽度的NMOS晶体管受应力记忆技术影响的差别,有利于改善器件性能。
进一步的,本技术方案中所述开口沿沟道宽度方向的长度以及深度和NMOS晶体管的沟道宽度成反比,即沟道宽度越小,所述开口的体积越大,也即形成所述开口过程中去除的张应力层越多,从而减小引入NMOS晶体管的张应力,有利于避免沟道宽度较小的NMOS晶体管对应力过度敏感导致的器件性能下降。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在以下描述中阐述了具体细节以便于充分理解本发明。但是本发明能够以多种不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广。因此本发明不受下面公开的具体实施方式的限制。
图2示出了本发明实施例的半导体器件的形成方法的流程示意图,包括:
步骤S11,提供半导体基底,所述半导体基底上形成有NMOS晶体管;
步骤S12,形成张应力层,覆盖所述NMOS晶体管;
步骤S13,在所述NMOS晶体管的栅电极上方的张应力层中形成开口;
步骤S14,对所述半导体基底进行退火;
步骤S15,去除所述张应力层。
图3至图7示出了本发明第一实施例的半导体器件的形成方法的中间结构的剖面图及俯视图,下面结合图2和图3至图7对本发明的第一实施例进行详细说明。
结合图2和图3,执行步骤S11,提供半导体基底,所述半导体基底上形成有NMOS晶体管。具体的,提供半导体基底10,所述半导体基底10上形成有NMOS晶体管,所述NMOS晶体管包括形成在半导体基底10上的栅极结构11、位于栅极结构11两侧的半导体基底10中的源区12和漏区13,其中,所述栅极结构11可以包括栅介质层和位于其上的栅电极,还可以包括形成在所述栅介质层和栅电极侧壁上的侧墙。
所述半导体基底20的材质可以是单晶硅,也可以是绝缘体上硅(SOI,Silicon On Insulator)结构或硅上外延层结构。本实施例中,所述NMOS晶体管上方覆盖有衬垫层14和刻蚀阻挡层15,所述衬垫层14的材料可以是氧化硅,所述刻蚀阻挡层15的材料可以是氮化硅。
结合图2和图4,执行步骤S12,形成张应力层,覆盖所述NMOS晶体管。具体的,形成张应力层16,覆盖所述NMOS晶体管。所述张应力层16的材料可以是氮化硅,其形成方法可以是等离子增强型化学气相沉积(PECVD)或高密度等离子增强型化学气相沉积(HDPCVD),在形成之后,可以对所述张应力层16的表面进行平坦化,使其表面平整,所述平坦化的方法可以是化学机械抛光(CMP)。在形成所述张应力层16的过程中,可以通过调节反应过程的压强、气体流量以及等离子体的功率或本领域技术人员公知的其他方法,对所述张应力层16具备的应力类型和大小进行调节,使其具有张应力(tensile stress)。
结合图2、图5和图6,执行步骤S13,在所述NMOS晶体管的栅电极上方的张应力层中形成开口。具体的,在所述NMOS晶体管的栅极结构11上方的张应力层16中形成开口17,所述开口17的形成方法为干法刻蚀,所述干法刻蚀可以包括:在所述张应力层16的表面上形成光刻胶层并图形化,定义出所述开口17的图形;之后以所述图形化后的光刻胶层为掩膜对所述张应力层16进行刻蚀,形成所述开口17;最后去除所述光刻胶层。图6是形成开口17后所述半导体器件的俯视图,需要说明的是,图6仅为示意,为了更清楚的说明本实施例的技术方案,图6中并未示出全部的张应力层16,而是将其下方的源区12和漏区13暴露出来,图5是图6沿a-b方向的剖面图。
所述开口17在所述张应力层16表面的形状可以为矩形或椭圆形,本实施例中为矩形。
所述开口17沿所述NMOS晶体管的沟道宽度方向的长度D与所述NMOS晶体管的沟道宽度W成反比,即所述沟道宽度W越小,所述开口17沿沟道宽度方向的长度D也就越大。优选的,所述开口17沿沟道宽度方向的长度D与(L/W)*L成正比,其中,L为所述NMOS晶体管的沟道长度。
所述开口17的深度与所述NMOS晶体管的沟道宽度W成反比,即所述沟道宽度W越小,所述开口17的深度越深。本实施例中,所述NMOS晶体管的沟道宽度W较小,所述开口17的深度较深,其底部暴露出所述刻蚀阻挡层15。
参考图2,执行步骤S14,对所述半导体基底20进行退火。结合图5和图6,经过退火后,将所述张应力层16中的张应力引入至所述NMOS晶体管的栅极结构11、源区12、漏区13和衬底中。退火的工艺条件可以参照现有技术中应力记忆技术中退火的工艺条件。
由于在所述张应力层16上形成了开口17,即将所述张应力层16的一部分加以去除,从而降低了退火过程中引入至NMOS晶体管的张应力,使得张应力层16对NMOS晶体管的性能参数的影响减弱。进一步的,所述开口17的尺寸与所述NMOS晶体管的沟道宽度W相关,其沿沟道宽度方向的长度D与沟道宽度W成反比,其深度与沟道宽度W成反比,即所述NMOS晶体管的沟道宽度W越小,所述开口17的尺寸越大,使得去除的张应力层16也就越多,从而避免了沟道宽度较小的NMOS晶体管对应力的过度敏感,导致器件性能下降的问题。
结合图2和图7,执行步骤S15,去除所述张应力层。具体的,去除所述张应力层,暴露出所述刻蚀阻挡层15。所述张应力层的去除方法可以是干法刻蚀和/或湿法刻蚀,例如可以首先使用干法刻蚀去除所述张应力层的大部分,之后采用热磷酸溶液对所述剩余的张应力层进行湿法刻蚀,将其全部去除,暴露出所述刻蚀阻挡层15。当然,在其他具体实施例中,也可以不形成所述衬垫层14和刻蚀阻挡层15,而将所述张应力层直接形成在NMOS晶体管上,在去除所述张应力层之后,相应的暴露出所述NMOS晶体管。
图8和图9示出了第二实施例的中间结构的剖面图和俯视图,其中,图8为图9沿a-b方向的剖视图,类似的,为了清楚的说明本实施例的方案,并未示出所述源区22和漏区23上方的张应力层26。第二实施例的步骤与第一实施例类似,包括:提供半导体基底20,所述半导体基底20上形成有NMOS晶体管,所述NMOS晶体管包括栅极结构21、源区22和漏区23,所述NMOS晶体管上还覆盖有衬垫层24和刻蚀阻挡层25;之后形成张应力层26,覆盖所述刻蚀阻挡层25;接着在所述栅极结构21上方的张应力层26上形成开口27;之后对所述半导体基底20进行退火并将所述张应力层26去除。由于第二实施例中NMOS晶体管的沟道宽度W大于第一实施例中NMOS晶体管的沟道宽度W,因此,第二实施例中,形成在所述张应力层26上的开口27尺寸较小,其沿沟道宽度方向的长度D相对于第一实施例较小,其深度相对于第一实施例而言也较小,开口27并未贯穿所述张应力层26,其底部暴露出残留的张应力层26。
图10和图11示出了第三实施例的中间结构的剖面图和俯视图,其中,图10为图11沿a-b方向的剖视图,类似的,为了清楚的说明本实施例的方案,并未示出所述源区32和漏区33上方的张应力层36。第三实施例的步骤与第一实施例和第二实施例类似,包括:提供半导体基底30,所述半导体基底30上形成有NMOS晶体管,所述NMOS晶体管包括栅极结构31、源区32和漏区33,所述NMOS晶体管上还覆盖有衬垫层34和刻蚀阻挡层35;之后形成张应力层36,覆盖所述刻蚀阻挡层35;接着在所述栅极结构31上方的张应力层36上形成开口37。由于第三实施例中NMOS晶体管的沟道宽度W与第二实施例中NMOS晶体管的沟道宽度W相比更大,因此,第三实施例中,形成在所述张应力层36上的开口37尺寸进一步减小,其沿沟道宽度方向的长度D小于第二实施例中的开口长度D,其深度相对也比第二实施例中的开口深度小,开口37并未贯穿所述张应力层36,其底部暴露出残留的张应力层36。
在本发明的其他具体实施例中,半导体基底上还可以并列形成有PMOS晶体管和NMOS晶体管,形成张应力层的过程可以包括:形成张应力层,覆盖所述PMOS晶体管和NMOS晶体管;在所述张应力层上形成光刻胶层并图形化,定义出所述NMOS晶体管的图形;以所述图形化后的光刻胶层为掩膜进行刻蚀,去除所述PMOS晶体管表面的张应力层。之后在所述NMOS晶体管的栅电极上方的张应力层上形成开口并对所述半导体基底进行退火,具体请参见上述实施例的内容,这里不再赘述。
综上,本技术方案在NMOS晶体管上形成张应力层之后,在NMOS晶体管的栅电极上方的张应力介质层中形成开口,之后再进行退火,由于去除了部分张应力介质层,降低了退火过程中张应力层对NMOS晶体管的影响,减弱了不同沟道宽度的NMOS晶体管受应力记忆技术影响的差别,有利于改善器件性能。
进一步的,本技术方案中所述开口沿沟道宽度方向的长度以及深度和NMOS晶体管的沟道宽度成反比,即沟道宽度越小,所述开口的体积越大,也即形成所述开口过程中去除的张应力层越多,从而减小引入NMOS晶体管的张应力,有利于避免沟道宽度较小的NMOS晶体管对应力过度敏感导致的器件性能下降。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

Claims (9)

1.一种半导体器件的形成方法,其特征在于,包括: 
提供半导体基底,所述半导体基底上形成有NMOS晶体管; 
形成张应力层,覆盖所述NMOS晶体管; 
在所述NMOS晶体管的栅电极上方的张应力层中形成开口; 
对所述半导体基底进行退火; 
去除所述张应力层; 
其中,所述开口沿所述NMOS晶体管的沟道宽度方向的长度与所述NMOS晶体管的沟道宽度成反比,或者,所述开口的深度与所述NMOS晶体管的沟道宽度成反比,即 沟道宽度越小,则开口的体积越大。 
2.根据权利要求1所述的半导体器件的形成方法,其特征在于,所述开口沿所述NMOS晶体管的沟道宽度方向的长度与(L/W)*L成正比,其中,L为所述NMOS晶体管的沟道长度,W为所述NMOS晶体管的沟道宽度。 
3.根据权利要求1所述的半导体器件的形成方法,其特征在于,所述开口的形状可以是矩形或椭圆形。 
4.根据权利要求1所述的半导体器件的形成方法,其特征在于,所述张应力层的材料为氮化硅。 
5.根据权利要求4所述的半导体器件的形成方法,其特征在于,所述张应力层的形成方法为等离子增强型化学气相沉积。 
6.根据权利要求1所述的半导体器件的形成方法,其特征在于,所述开口的形成方法为干法刻蚀。 
7.根据权利要求1所述的半导体器件的形成方法,其特征在于,使用干法刻蚀和/或湿法刻蚀去除所述张应力层。 
8.根据权利要求1所述的半导体器件的形成方法,其特征在于,所述半导体基底上还形成有PMOS晶体管,所述形成张应力层包括: 
形成张应力层,覆盖所述PMOS晶体管和NMOS晶体管; 
在所述张应力层上形成光刻胶层并图形化,定义出所述NMOS晶体管的图形; 
以所述图形化后的光刻胶层为掩膜进行刻蚀,去除所述PMOS晶体管表面的张应力层。 
9.根据权利要求1所述的半导体器件的形成方法,其特征在于,所述NMOS晶体管的表面还形成有衬垫层和刻蚀阻挡层,所述张应力层形成于所述刻蚀阻挡层之上。 
CN201010565095.3A 2010-11-29 2010-11-29 半导体器件的形成方法 Active CN102479715B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010565095.3A CN102479715B (zh) 2010-11-29 2010-11-29 半导体器件的形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010565095.3A CN102479715B (zh) 2010-11-29 2010-11-29 半导体器件的形成方法

Publications (2)

Publication Number Publication Date
CN102479715A CN102479715A (zh) 2012-05-30
CN102479715B true CN102479715B (zh) 2014-04-02

Family

ID=46092296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010565095.3A Active CN102479715B (zh) 2010-11-29 2010-11-29 半导体器件的形成方法

Country Status (1)

Country Link
CN (1) CN102479715B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545211A (zh) * 2012-07-13 2014-01-29 中国科学院微电子研究所 半导体器件制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI357624B (en) * 2007-05-29 2012-02-01 United Microelectronics Corp Metal-oxide-semiconductor transistor and method of
JP2011029483A (ja) * 2009-07-28 2011-02-10 Renesas Electronics Corp 半導体装置およびその製造方法
CN102315266B (zh) * 2010-06-30 2013-08-28 中国科学院微电子研究所 半导体结构及其制造方法

Also Published As

Publication number Publication date
CN102479715A (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
US9722082B2 (en) Methods and apparatus for doped SiGe source/drain stressor deposition
US8536653B2 (en) Metal oxide semiconductor transistor
KR101706429B1 (ko) 채널 스트레인용 게르마늄 프로파일을 포함하는 트랜지스터 디바이스 및 그 형성방법
US20120068268A1 (en) Transistor structure and method of fabricating the same
CN102194697A (zh) 半导体结构的形成方法
CN103779278A (zh) Cmos管的形成方法
US8629503B2 (en) Asymmetrical transistor device and method of fabrication
CN102931232B (zh) Nmos晶体管及其形成方法
CN102364663A (zh) 栅极侧墙刻蚀方法、mos器件制造方法以及mos器件
CN102479715B (zh) 半导体器件的形成方法
CN102931233B (zh) Nmos晶体管及其形成方法
CN102637601A (zh) 一种具有掩埋沟道的mos晶体管形成方法
US20090114957A1 (en) Semiconductor device and method of manufacturing the same
CN103377938B (zh) 半导体器件的形成方法
US9041119B2 (en) Forming CMOS with close proximity stressors
CN103426766B (zh) Pmos晶体管及其形成方法
CN103928328A (zh) 鳍式场效应晶体管的形成方法
CN108122757A (zh) 半导体结构及其制造方法
CN103022100A (zh) 鳍式场效应管的结构及其形成方法
JP5026801B2 (ja) 半導体装置の製造方法
CN104167363A (zh) 在FinFET器件上形成离子注入侧墙保护层的方法
CN103811347A (zh) 晶体管的形成方法
CN103426758B (zh) 深耗尽沟道场效应晶体管及其制备方法
CN102082127A (zh) 半导体器件的制作方法
CN103378151B (zh) 一种降低负载效应的硅锗结构及其形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant