CN102458911A - 燃料电池系统 - Google Patents

燃料电池系统 Download PDF

Info

Publication number
CN102458911A
CN102458911A CN2010800268388A CN201080026838A CN102458911A CN 102458911 A CN102458911 A CN 102458911A CN 2010800268388 A CN2010800268388 A CN 2010800268388A CN 201080026838 A CN201080026838 A CN 201080026838A CN 102458911 A CN102458911 A CN 102458911A
Authority
CN
China
Prior art keywords
voltage
auxiliary engine
changer
fuel cell
driving engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800268388A
Other languages
English (en)
Other versions
CN102458911B (zh
Inventor
片野刚司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN102458911A publication Critical patent/CN102458911A/zh
Application granted granted Critical
Publication of CN102458911B publication Critical patent/CN102458911B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Abstract

一种燃料电池系统(10),包括:变换器(24),其用于提升燃料电池堆(12)的输出电压并将提升的电压供应给用于驱动发动机(14)的第一逆变器和用于空气压缩机发动机(20)的第二逆变器;电压获取装置(54);以及变换器控制装置(56)。电压获取装置(54)根据基于空气压缩机发动机(20)的加速需求的目标空气压缩机发动机扭矩来获取空气压缩机发动机(20)的要求电压。变换器控制装置(56)通过比较空气压缩机发动机(20)的要求电压和驱动发动机(14)的要求电压来设定变换器(24)的升压比并控制变换器(24)。

Description

燃料电池系统
技术领域
本发明涉及一种燃料电池系统,该系统包括:燃料电池,其使用燃料气体和氧化气体来发电;车辆驱动发动机逆变器;辅助发动机逆变器;以及变换器,其在提升电压之后向车辆驱动发动机逆变器和辅助发动机逆变器供应燃料电池的输出电压。
背景技术
安装在燃料电池车辆等中,并且通过向发动机供应来自燃料电池堆的电力来驱动作为车辆驱动源而供应的车辆驱动发动机的燃料电池系统是公知的。燃料电池堆使用燃料气体和氧化气体来发电。
此外,日本专利申请公布No.2004-146118(JP-A-2004-146118)公开了一种燃料电池系统,其包括:燃料电池堆,向车辆驱动发动机和用于向燃料电池堆供应氧化剂的空气压缩机供应电力;二次电池;电压变换装置,其连接到燃料电池堆,并且执行从二次电池提取电力并提升电压的操作,或者执行在降低电力的电压之后向二次电池供应电力的操作;以及控制装置。在激活燃料电池堆时,控制装置控制电压变换装置,使得电压变换装置执行将燃料电池堆的空气压缩机侧与电压变换装置之间的连接点处电势提升到高于燃料电池堆开路电压的电压的升压操作,并因此向空气压缩机供应二次电池的电力,并在操作空气压缩机持续特定时间之后执行将电压从高于开路电压的级别降低的降压操作,使得向空气压缩机供应来自燃料电池堆的电力。
此外,能够经由执行电压变换操作的共享的变换器,向车辆驱动发动机和诸如用于向燃料电池堆供应氧化气体的空气压缩机的辅助设备供应来自燃料电池堆的电力的燃料电池系统也是可以想到的。在这种情况下,在燃料电池堆与车辆驱动发动机和辅助设备二者之间提供变换器。根据这种构造,燃料电池堆的电压能够由变换器升高,然后能够供应给车辆驱动发动机和空气压缩机。
在变换器提供在燃料电池堆与车辆驱动发动机和辅助设备二者之间的燃料电池系统中,对车辆驱动发动机的输入电压与对诸如空气压缩机等的辅助设备的输入电压是相同的。在此对于辅助设备的输入电压实际上是对于驱动辅助设备的辅助发动机的输入电压。在一些其他情况中,车辆驱动发动机的服务电压范围被设计为特定范围,并且辅助发动机的电压被设计为车辆驱动发动机的服务电压范围的最低限度。由于辅助发动机的服务电压根据车辆驱动发动机的实际服务电压而变化,所以在实际应用中有时以高于设计电压的电压来操作辅助发动机,这成为效率劣化的因素。因此,期望的是辅助发动机的服务电压的设计值接近其实际的服务电压。
另一方面,如果辅助发动机的服务电压被设计为高于前述的车辆驱动发动机的服务电压的最低限度,则每当在燃料电池运行期间存在转变响应时,例如,每当燃料电池车辆经历加速等,响应于来自辅助发动机的需求,提升对车辆驱动发动机的输入电压。由于通过变换器频繁地执行这样的升压操作,损失可能变大,并且系统的整体效率可能劣化。
发明内容
本申请的发明人考虑到前述不便的原因在于没有清楚地区分对于变换器需要大幅提升电压的转变响应与对于变换器仅需少量提升电压的转变响应。那么,发明人研究了如下的构想:为了实质上消除这种不便,重要的是根据辅助发动机的加速需求的程度来改变辅助发动机的要求电压。
在具有其中变换器提供在燃料电池堆与车辆驱动发动机之间的构造的燃料电池系统中,本发明实现了一种结构,其提高了转变响应度,并且也提高了效率,并且降低了燃料消耗。
根据本发明的燃料电池系统包括:燃料电池,其使用燃料气体和氧化气体来发电;车辆驱动发动机逆变器,向其供应直流电力而向车辆驱动发动机供应交流电力;辅助发动机逆变器,向其供应直流电力并且向辅助发动机供应交流电力;变换器,其提供在燃料电池与车辆驱动发动机和辅助发动机二者之间,以及提升燃料电池的输出电压并将提升的输出电压供应给车辆驱动发动机逆变器和辅助发动机逆变器;电压获取装置,其用于获取车辆驱动发动机的要求电压,并且用于根据基于辅助发动机的加速需求的目标辅助发动机扭矩来获取辅助发动机的要求电压;以及变换器控制装置,其用于通过比较获取的辅助发动机的要求电压和车辆驱动发动机的要求电压来设定变换器的电压提升比并控制变换器。
电压获取装置可以根据目标驱动发动机扭矩来获取车辆驱动发动机的要求电压。
在根据本发明的燃料电池系统中,变换器控制装置可以设定变换器的电压提升比并可以控制变换器,使得从变换器输出所获取的车辆驱动发动机的要求电压和辅助发动机的要求电压中较高的要求电压。
该燃料电池系统可以进一步包括:命令装置,其能够命令给予优选权的车辆燃料经济的经济模式和给予优选权的车辆加速性能的动力模式二者中的任意一种,并且如果命令了经济模式,则变换器控制装置可以设定变换器的电压提升比并可以控制变换器,使得从变换器输出车辆驱动发动机的要求电压和辅助发动机的要求电压中的车辆驱动发动机的要求电压,并且如果命令了动力模式,则变换器控制装置可以设定变换器的电压提升比并可以控制变换器,使得从变换器输出车辆驱动发动机的要求电压和辅助发动机的要求电压中较高的要求电压。
此外,该燃料电池系统可以进一步包括:命令装置,其能够命令其中给予优先权的车辆燃料经济的经济模式和其中给予优选权的车辆加速性能的动力模式二者中的任意一种,并且如果命令了经济模式且目标辅助发动机扭矩从稳态的提高量大于事先设定的预定提高量,则变换器控制装置可以设定变换器的电压提升比并可以控制变换器,使得从变换器输出车辆驱动发动机的要求电压和辅助发动机的要求电压中的车辆驱动发动机的要求电压。此外,如果命令了动力模式,或者如果命令了经济模式且目标辅助发动机扭矩从稳态的提高量小于或等于事先设定的预定提高量,则变换器控制装置可以设定变换器的电压提升比并且可以控制变换器,使得从变换器输出车辆驱动发动机的要求电压和辅助发动机的要求电压中较高的要求电压。
电压获取装置可以基于辅助发动机的加速需求和辅助发动机的预期达到的转速,从目标辅助发动机扭矩来计算辅助发动机的要求电压,所述辅助发动机的预期达到的转速是根据加速需求、在下一个计算步骤的开始处所预期达到的。
该燃料电池可以进一步包括:映射存储装置,其用于存储映射,该映射表示基于辅助发动机的加速需求中的目标辅助发动机扭矩与辅助发动机的要求电压的变化之间的关系;以及电压获取装置,其可以参考映射、基于辅助发动机的加速需求,从目标辅助发动机扭矩获取辅助发动机的要求电压。
该燃料电池系统可以进一步包括:确定装置,其用于确定要求慢加速和快加速中的哪一个,并且可以根据由确定装置的确定结果来切换对应于用于加速辅助发动机的转速的扭矩的设定值。
该燃料电池系统可以进一步包括:命令装置,能够命令优先考虑车辆燃料经济的经济模式和优先考虑车辆加速性能的动力模式二者中的任意一种,并且基于由命令装置所命令的经济模式和动力模式,确定装置可以确定要求慢加速和快加速中的哪一个,并且电压获取装置可以根据确定装置的确定结果来切换与用于加速辅助发动机的转速相对应的扭矩的设定值。
该燃料电池系统可以进一步包括:操作量检测装置,其用于检测命令车辆加速的加速命令部的操作的量,并且确定装置可以基于操作量检测装置检测的值来确定要求慢加速和快加速中的哪一个,并且电压获取装置可以根据确定装置的确定结果来切换与用于加速辅助发动机的转速相对应的扭矩的设定值。
该燃料电池系统可以进一步包括:操作量变化率检测装置,其用于检测命令车辆加速的加速命令部的操作量的变化率,并且确定装置可以基于操作量变化率检测装置检测的值来确定要求慢加速和快加速中的哪一个,并且电压获取装置可以根据确定装置的确定结果来切换与用于加速辅助发动机的转速相对应的扭矩的设定值。
该燃料电池系统可以进一步包括:车辆速度检测装置,其用于检测车辆的速度,并且确定装置可以基于车辆速度的检测值来确定要求慢加速和快加速中的哪一个,并且电压获取装置可以根据确定装置的确定结果来切换与用于加速辅助发动机的转速相对应的扭矩的设定值。
该燃料电池系统可以进一步包括:温度检测装置,其用于检测辅助发动机的温度,并且电压获取装置可以根据温度检测装置检测的值来校正辅助发动机的要求电压。
辅助发动机可以是驱动燃料电池空气压缩机的空气压缩机发动机。
根据本发明的燃料电池系统,在其中变换器提供在燃料电池堆与车辆驱动发动机和辅助设备这二者之间的构造中,基于辅助发动机的加速需求,根据目标辅助发动机扭矩来获取辅助发动机的要求电压,并且通过将获取的辅助发动机的要求电压与车辆驱动发动机的要求电压进行比较来设定变换器的升压比。因此,根据设定条件,在转变响应具有高加速需求时能够将辅助发动机的要求电压设定为高,并且在转变响应具有低加速需求时能够将辅助发动机的要求电压设定为低。因此,可以实现一种结构,该结构能够提高转变响应度,并且还抑制不必要的变换器的大升压操作,并因此提高了效率并且实现了良好的燃料经济。
附图说明
在下面参考附图的本发明的示例实施例的详细描述中,将描述本发明的特征、优点以及技术和工业意义,其中类似的标记表示类似的元件,并且其中:
图1是示出根据本发明实施例的燃料电池系统的基本构造的示意图;
图2是示出图1所示的系统的一部分的构造的示意图;
图3是示出计算图1所示的系统中的空气压缩机发动机的要求电压的方法的流程图;
图4是示出空气压缩机发动机的加速需求和目标扭矩之间关系的示例的示意图;
图5是示出在空气压缩机发动机的转速和扭矩之间关系的图示中,在图1所示的系统中计算空气压缩机发动机的要求电压的情况下,转变响应的两个示例中的操作范围的示意图;
图6是示出在本发明的另一个示例实施例中计算空气压缩机发动机的要求电压的方法的流程图;以及
图7是示出在本发明的又一实施例中空气压缩机发动机的检测温度与空气压缩机的要求电压的校正量之间关系的示例的示意图。
具体实施方式
在下文将参考附图来详细描述本发明的实施例。图1至5示出本发明的实施例。如图1所示,燃料电池系统10例如安装在燃料电池车辆中,并且具有作为燃料电池组的燃料电池堆12。燃料电池堆12通过作为燃料气体的氢气和作为氧化气体的空气之间的电化学反应来发电。电力能够从燃料电池堆12供应到作为驱动车辆的驱动源的车辆驱动发动机14(Ma)(在下文中,简称为“驱动发动机14”)和作为车辆辅助设备的空气压缩机16。因此,燃料电池系统10包括:燃料电池堆12;驱动发动机14;第一逆变器18(下面参考图2描述),其是车辆驱动发动机逆变器;空气压缩机发动机20(Mb),其用于驱动空气压缩机16;第二逆变器22(下面参考图2描述),其是空气压缩机发动机逆变器;变换器24;以及控制部26。
燃料电池堆12例如通过堆叠多个燃料单位电池,并在堆叠方向上、在燃料电池堆12的两个相对侧上设置集流板和端板来形成。然后,用系杆、螺母等将燃料单位电池、集流板和端板固定在一起。附带地,也可以在集流板和端板之间提供绝缘板。每个燃料单位电池例如是这样一种电池,其包括通过将电解质隔膜夹在阳极侧电极和阴极侧电极之间而形成的隔膜组件,以及设置在该组件两侧上的分离器。构造每个燃料单位电池使得能够向阳极侧电极供应氢气,并能够向阴极侧电极供应空气。在阳极侧电极处产生的氢离子被引发通过电解质隔膜移动到阴极,并使其经历与阴极侧电极处的氧的电化学反应,使得与产生水一起,使电子通过外部电路从阳极侧电极移动到阴极侧电极,因此产生电动势。
氢气从氢气源(未示出)供应到氢气供应通道28中,然后从氢气供应通道28供应到燃料电池堆12。此后,氢气在燃料电池堆12的内部通道中经历电化学反应,然后通过氢气排放通道30排放。在氢气供应通道28和氢气排放通道30之间提供返回路径32。返回路径32提供有作为氢循环泵的氢泵34。使用返回路径32,以便引导作为氢气排放通道30中的包含未反应氢的气体的氢废气返回到氢气供应通道28。此外,在氢气排放通道30的下游侧提供作为排气阀的放气阀36。在氢气排放通道30和返回路径32之间提供气液分离器(未示出)。
此外,空气由提供在氧化气体通道38上游侧上的空气压缩机16进行增压,然后在穿过增湿器40之后供应到燃料电池堆12的内部通道。供应到内部通道的空气经受电化学反应,并通过氧化气体排放通道42排放,然后在穿过增湿器40之后排放到大气中。通过向空气供应从作为从燃料电池堆12排放的包含未反应空气的气体的空气废气获得的湿气,增湿器40执行使即将供应到燃料电池堆12的空气湿润的功能。
在由作为电压变换设备且作为DC/DC变换器的变换器24变换为升高的电压之后,燃料电池堆12的输出电压能够供应给驱动发动机14和用于驱动空气压缩机16的空气压缩机发动机20,这二者都是负载。如图2所示,变换器24实际上连接到驱动该驱动发动机14的第一逆变器18,并连接到驱动空气压缩机发动机20的第二逆变器22。第一逆变器18被供应有直流电力,而向驱动发动机14供应交流电力,由此驱动该驱动发动机14。第二逆变器22被供应有直流电力,并且向空气压缩机发动机20供应交流电力,由此驱动空气压缩机发动机20。
在将电压供应到第一逆变器18和第二逆变器22之前,变换器24提升燃料电池堆12的输出电压。也就是说,变换器24向第一逆变器18和第二逆变器22供应处于相同电压处的电流。变换器24的升压操作受到图1所示的控制部26的控制。控制部26获得例如代表诸如车辆加速器踏板操作量等的负载需求的信号,以及代表由诸如检测燃料电池堆12或通道内部的状态的压力传感器、温度传感器等的各种传感器检测的信息的信号,并相应地控制变换器24和各种逆变器18和22(图2),以便控制驱动发动机14和空气压缩机发动机20。例如,控制部26通过控制空气压缩机发动机20的驱动量来控制供应到燃料电池堆12的空气量。此外,控制部26也控制氢泵34(图1),以及在氢气供应通道28中提供的气体供应阀44、放气阀36的打开和关闭等。控制部26包括具有CPU、存储器等的微型计算机。
如图2所示,燃料电池堆12的电压Vfc由变换器24提升,并且例如能够提升到300V至650V的范围。在这种情况下,例如,变换器24的升压比被设定成使得从变换器24输出驱动发动机14的要求电压和空气压缩机发动机20的要求电压中较高的要求电压。但是,如果变换器24的升压比高,则变换器24的效率降低到例如90%等。因此,非常频繁增加升压比并不可取。本实施例旨在改进这个有待改进的方面。
此外,如图1所示的燃料电池系统10包括:模式命令部46,其是模式命令装置;踏板操作量传感器48,其检查加速器踏板的操作量,并且是用于命令车辆加速的加速命令部;以及车辆速度传感器50,其检测车辆的速度。模式命令部46是由操作人员操作的开关、按钮等,并且使得可以选择性地命令其中给予优先权的车辆燃料经济的“经济模式”和其中给予优先权的车辆加速性能的“动力模式”中的一种。附带地,也可以采用这样的结构:经济模式和动力模式选择性地显示在被提供在仪表板或其周围区域的显示器中,并且能够通过触摸板的使用或者通过按钮等的操作来选择性地命令模式。
此外,控制部26包括:确定装置52、电压获取装置54和变换器控制装置56。通过使用代表由模式命令部46命令的模式的信号和来自踏板操作量传感器48的检测信号中的至少一个,确定装置52确定在考虑当前状态的情况下要求慢加速和快加速中的哪一个。
电压获取装置54根据基于空气压缩机发动机20的加速需求的目标空气压缩机发动机扭矩来计算,即获得空气压缩机发动机20的要求电压,并且根据目标驱动发动机扭矩来计算,即获得驱动发动机14的要求电压。由电压获取装置54或外部控制部(未示出),通过使用例如来自踏板操作量传感器48和车辆速度传感器50等的检测值来计算目标驱动发动机扭矩。作为来自外部控制部的计算值的目标驱动发动机扭矩被输入到控制部26。
此外,在计算空气压缩机发动机20的要求电压的情况下,电压获取装置54从基于空气压缩机发动机20的加速需求的目标空气压缩机发动机扭矩,并且从空气压缩机发动机20的预期达到的转速来计算空气压缩机发动机20的要求电压,所述空气压缩机发动机20的预期达到的转速是根据加速需求、在下一个计算处理的开始时所预期达到的。也就是说,电压获取装置54计算空气压缩机发动机20的要求电压,该电压允许达到基于空气压缩机发动机20的加速需求的目标空气压缩机发动机扭矩,以及根据空气压缩机发动机20的加速需求、在下一个计算处理的开始时所预期达到的空气压缩机发动机20的预期达到的转速。
例如,确定装置52从来自模式命令部46的输入信号所代表的选择模式、车辆的加速等来确定空气压缩机发动机20的加速需求。在所选模式是经济模式的情况下,确定装置52确定当前的状态是其中要求慢加速的状态。另一方面,在所选模式是动力模式的情况下,确定装置52确定当前的状态是其中要求快加速的状态。电压获取装置54根据确定的结果来切换与用于空气压缩机发动机20的加速的转速相对应的扭矩的设定值。
变换器控制装置56将计算的空气压缩机发动机20的要求电压与驱动发动机14的要求电压进行比较,并根据该比较来设定变换器24的升压比,然后相应地控制变换器24。更具体地,变换器控制装置56设定变换器24的升压比并相应地控制变换器24,使得变换器24输出空气压缩机发动机20的要求电压和驱动发动机14的要求电压中较高的电压。然而,在本实施例中,在其中设定经济模式的情况下,如下所述来设定变换器24的升压比。在此注意到,本发明也可应用于没有设定经济模式或者动力模式的功能的车辆。在那种情况下,设定变换器24的升压比,使得变换器24输出空气压缩机发动机20的要求电压和驱动发动机14的要求电压中较高的电压。此外,在车辆能够设定除了经济模式和动力模式之外的模式的情况下,设定变换器24的升压比,使得变换器24输出在那种模式下空气压缩机发动机20的要求电压和驱动发动机14的要求电压中较高的电压。
接下来,将参考图3至5来描述在确定装置52(图1)确定加速需求之后,计算空气压缩机发动机20(图1)的要求电压的方法的示例。图3是示出计算图1所示的系统中的空气压缩机发动机20的要求电压的方法的示例的流程图。图4是示出空气压缩机发动机的加速需求与目标扭矩之间关系的示例的示意图。图5是示出在空气压缩机发动机的转速和扭矩之间关系的图示中,在图1所示系统中计算空气压缩机发动机的要求电压的情况下,在动力模式和经济模式之间的转变响应时的操作的范围的示意图。在下面的描述中,如图1和2所示的相同元件由相同的附图标记来表示。
首先,在计算空气压缩机发动机20的要求电压的情况下,根据已经由确定装置52确定的空气压缩机发动机20的加速需求,在图3的步骤S1计算目标空气压缩机扭矩。也就是说,按照图4所示的关系很显然,空气压缩机发动机20的加速需求越高,空气压缩机发动机20的目标扭矩变得越高。此外,做出空气压缩机发动机20的加速需求,使得例如在燃料电池堆12的发电负载根据车辆的加速等而增加的情况下,空气压缩机发动机20的扭矩随着通过提高空气压缩机16的转速而增加对燃料电池堆12的空气供应量这种需要的提高而增加。此外,在空气压缩机发动机20从稳定运行状态到高转速状态的转变状态中,根据对于快加速或慢加速的加速需求来确定目标扭矩。
在图5中,曲线Lc代表负载扭矩曲线,并且点划线ECO代表示出在经济模式期间在加速时发生的转变状态的曲线,并且虚线PWR代表示出在动力模式中加速的情况下发生的转变状态的曲线。此外,V1、V2和V3代表作为空气压缩机发动机20的输入侧的第二逆变器22的输入电压VH(见图2)的等压曲线。以V1、V2和V3的顺序,电压变大(V1<V2<V3)。如图5所示,在本实施例中,例如在其中空气压缩机发动机20从具有转速和扭矩的特定值的稳定状态P1加速到具有转速和扭矩的其他值的稳定状态P2的情况下,根据在转变状态中的目标扭矩相对于负载扭矩曲线的扭矩的增加程度来确定空气压缩机发动机20的加速。
例如,如图5所示,可以采用一种构造,在其中由于扭矩与转速之间不同的关系,当命令了经济模式时和命令了动力模式时前述的转变遵循不同的路径。也就是说,当命令了动力模式时,由确定装置52确定当前的状态是要求快加速的状态。因此,关于电压VH,要求电压从电压V1增加到电压V2,然后增加到电压V3,然后降低到电压V2。也就是说,当命令了动力模式时,由确定装置52确定当前的状态是要求快加速的状态。因此,关于电压VH,电压要求从P1的电压增加到电压V1的曲线上扭矩高的点,然后进一步增加到电压V2和V3。此后,电压要求又降低到V2,因此状态转移到稳定状态P2。在这种情况下,升压的量是大的,使得空气压缩机发动机20的加速大。
在命令了经济模式的情况下,由确定装置52确定当前的状态是要求慢加速的状态。因此,尽管关于电压VH的电压要求从电压V1增加到电压V2,但是扭矩从电压V2的曲线上高扭矩的点降低,使得状态转移到稳定状态P2。在这种情况下,升压量小于其中命令了动力模式情况下的量,并因此也降低了空气压缩机20的加速。也就是说,在本实施例中,电压获取装置54根据确定装置52的确定结果,切换与加速空气压缩机发动机20时的转速相对应的扭矩的设定值。
在这种情况下,以下面的方式输出空气压缩机发动机20的目标扭矩。也就是说,在已经设定了输入电压时,控制部26计算与目标扭矩相对应的电流命令。然后,控制部26向第二逆变器22输出与电流命令相当的驱动控制信号。以这种方式,能够输出目标扭矩。根据空气压缩机发动机20的扭矩与负载-扭矩曲线Lc上的扭矩之间的差来确定空气压缩机发动机20的加速。因此,在其中目标扭矩高的动力模式期间,能够以足够高的加速来加速空气压缩机发动机20,使得能够提高在转变响应时的响应。
另一方面,在其中目标扭矩低的经济模式期间,在转变响应时的响应度变低。但是,在经济模式期间,驾驶员的关于加速的需求相对低,没有实际的问题发生。此外,由于能够在没有变换器24不必要地将电压提升到大程度的情况下完成转变,所以能够提高变换器24的效率,并能实现低的燃料消耗。
本发明基于前述的原理。在图3的步骤S1,根据由确定装置52确定的空气压缩机发动机20的加速需求,计算空气压缩机发动机20的目标扭矩。然后在步骤S2,计算根据加速需求在下一个计算处理的开始时所预期达到的空气压缩机发动机20的预期达到的转速和预期达到扭矩。接着,在步骤S3,计算将实现预期达到的转速和预期达到扭矩的空气压缩机的要求电压。例如,在命令了动力模式的情况中,在图5中TO处或附近的扭矩被计算为目标扭矩,并且在每一计算处理中的预期达到的转速和扭矩被计算为与点A、B或C相对应的转速n和扭矩T。因此,例如,在与点P1、A和B相对应的计算处理的每一个中,可以计算在与点A、B或C相对应的下一次计算处理的开始时预期达到的预期转速和预期扭矩。例如,在其中当前的计算处理中以6000min-1和290V输出10Nm扭矩时,预期将达到6200min-1并需要输出20Nm的扭矩的情况下,在当前计算处理中将实现6200min-1下的20Nm的扭矩的电压被计算为空气压缩机发动机20的要求电压。
另一方面,在命令了经济模式的情况下,图5中的扭矩TO’被计算为目标扭矩,并且相应地计算每个计算处理中的预期达到的转速n和预期达到的转动扭矩T。然后,在每个计算处理中,将实现下一次计算处理开始时的预期达到的转速和扭矩的电压能够被计算为空气压缩机发动机20的要求电压。在命令了经济模式的情况下,扭矩和转速被设定在沿着图5中阴影所示区域的左侧和右侧边缘的路径上。
根据前述的燃料电池系统10,在变换器24提供在燃料电池堆12与驱动发动机14和空气压缩机发动机20这二者之间的构造中,根据基于空气压缩机发动机20的加速需求的目标空气压缩机发动机扭矩来计算空气压缩机发动机20的要求电压,并且通过比较空气压缩机发动机20的要求电压与驱动发动机14的要求电压来设定变换器24的升压比。因此,在具有高加速需求的转变响应时,能够将空气压缩机发动机20的要求电压设定为高。另一方面,在具有低加速需求的转变响应时,能够将空气压缩机发动机20的要求电压设定为低。因此,可以实现一种结构,该结构能提高转变响应度,并还抑制变换器24不必要的大升压操作,并因此提高了效率并实现了良好的燃料经济。也就是说,在其中命令经济模式的情况中,设定变换器24的升压比并控制变换器24,使得从变换器24输出驱动发动机14的要求电压和空气压缩机发动机20的要求电压中的驱动发动机14的要求电压。在其中命令动力模式的情况中,设定变换器24的升压比并控制变换器24,使得从变换器24输出驱动发动机14的要求电压和空气压缩机发动机20的要求电压中较高的要求电压。
附带地,在寻找空气压缩机发动机20的目标扭矩时,也可以根据空气压缩机发动机20的当前转速与其转变后转速之间的关系、为每个加速需求计算适当的目标扭矩。例如,代替确定要求快加速的状态和要求慢加速的状态之一作为当前加速需求,确定装置52可以通过参考以当前稳定状态中空气压缩机发动机20的转速和扭矩、转变后稳定状态中空气压缩机发动机20的转速和扭矩以及基于来自模式命令部46等的输入的快加速或慢加速需求为基础的映射等,来计算空气压缩机发动机20的加速需求或者找到空气压缩机发动机20的加速需求,并且可以通过计算等来获得根据该加速需求的目标空气压缩机发动机扭矩。
图6是示出在本发明的另一个示例实施例中计算空气压缩机发动机要求电压的方法的流程图。在该实施例中,燃料电池系统10包括:映射存储装置58(见图1),其存储代表基于空气压缩机发动机20的加速需求的目标空气压缩机发动机扭矩与空气压缩机发动机20的要求电压的变化之间关系的映射。那么,电压获取装置54参考该映射,从基于空气压缩机发动机20的加速需求的目标空气压缩机发动机扭矩获取空气压缩机发动机20的要求电压。
也就是说,在图6中的步骤S10中,如图3中的步骤S1中一样,从空气压缩机发动机20的加速需求来计算目标空气压缩机发动机扭矩。接着,在步骤S11中,电压获取装置54参考由映射存储装置58存储的映射,从基于空气压缩机发动机20的加速需求的目标空气压缩机发动机扭矩来获取空气压缩机发动机20的要求电压。根据第二实施例的该构造,不同于第一实施例,可以省略图3中步骤S2中的计算处理。
此外,在前述的实施例中,确定装置52也可以从踏板操作量传感器48检测的值来确定关于空气压缩机发动机20,当前状态是要求快加速的状态或是要求慢加速的状态,并且根据确定的结果,电压获取装置54可以切换与用于加速空气压缩机发动机20的转速相对应的空气压缩机发动机20的扭矩的设定值。在这种情况下,确定装置52例如以下面的方式来确定加速需求。也就是说,如果作为由踏板操作量传感器48检测的值的加速器踏板的下压量小于或等于阈值,则确定装置52确定当前状态是要求慢加速的状态。另一方面,如果加速器踏板的下压量大于阈值,则确定装置52确定当前状态是要求快加速的状态。
此外,在前述的实施例中,确定装置52可以从用于检测由踏板操作量传感器48检测的踏板操作的量中的变化率的踏板操作量变化率检测装置(未示出)检测的值来确定关于空气压缩机发动机20,当前状态是要求慢加速的状态或是要求快加速的状态,并且根据确定的结果,电压获取装置54可以切换与加速空气压缩机发动机20时的转速相对应的空气压缩机发动机20的扭矩的设定值。在这种情况下,确定装置52例如以下面的方式来确定加速需求。也就是说,如果作为由踏板操作量变化率检测装置检测的值的加速器踏板的下压量的变化率,即踏板下压速度小于或等于阈值,则确定装置52确定当前状态是要求慢加速的状态。如果加速器踏板的下压量的变化率大于阈值,则确定装置52确定当前状态是要求快加速的状态。
此外,在前述实施例中,确定装置52可以从车辆速度传感器(图1)检测的值来确定关于空气压缩机发动机20,当前状态是要求慢加速的状态或是要求快加速的状态,并且根据确定的结果,电压获取装置54可以切换与用于加速空气压缩机发动机20的转速相对应的空气压缩机发动机20的扭矩的设定值。在这种情况下,确定装置52例如以下面的方式来确定加速需求。也就是说,如果作为由车辆速度传感器50检测的值的车辆速度小于或等于阈值,则确定装置52确定当前状态是要求慢加速的状态,并且如果车辆速度大于阈值,则确定装置52确定当前状态是要求快加速的状态。此外,确定装置52不限于用于确定慢加速和快加速之一作为加速需求的装置,而还可以是用于确定三个或更多个加速需求之一的装置。
此外,在前述实施例中,确定装置52还可以使用由模式命令部46所命令的模式、由踏板操作量传感器48检测的值、由踏板操作量变化率检测装置检测的值和车辆速度传感器50检测的值中的至少两个,即通过采用前述模式或任何前述的检测值的多个条件,来确定关于空气压缩机发动机20,当前状态是要求慢加速的状态或是要求快加速的状态。例如,如果建立了特定条件,其中已经由模式命令部46命令了动力模式并且作为由踏板操作量传感器48检测的值的踏板操作量大于或等于阈值,则确定装置52可以确定当前状态是要求快加速的状态。在其中该特定条件未建立并且踏板操作量大于比前述阈值小的第二阈值的情况下,则确定装置52可以确定当前状态是要求慢加速的状态。
此外,在前述实施例中,变换器控制装置56设定变换器24的升压比并控制变换器24,使得从变换器24输出空气压缩机发动机20的要求电压和驱动发动机14的要求电压中较高的要求电压。但是,变换器控制装置56也能够如下操作。即,在其中通过模式命令部46命令经济模式的情况下,变换器控制装置56可以设定变换器24的升压比并控制变换器24,使得从变换器24输出驱动发动机14的要求电压和空气压缩机发动机20的要求电压中的驱动发动机14的要求电压,也就是说,可以基于来自驱动发动机14侧的要求来设定变换器24的升压比并控制变换器24。另一方面,在命令了动力模式的情况下,变换器控制装置56可以设定变换器24的升压比并控制变换器24,使得从变换器24输出驱动发动机14的要求电压和空气压缩机发动机20的要求电压中较高的要求电压。在这个构造中,在命令经济模式的情况下,根据驱动发动机14的要求电压来适当地设定空气压缩机发动机20的电压,即第二逆变器22的输入电压。但是,在经济模式期间,驾驶员对于空气压缩机发动机20加速的要求低,没有大的实际问题,但能够追求进一步降低燃料消耗。
在由模式命令部46命令了经济模式,并且目标空气压缩机发动机扭矩从稳定状态提升的量大于事先设定的预定提升量(例如,+1Nm)的情况下,变换器控制装置56设定变换器24的升压比,使得从变换器24输出驱动发动机14的要求电压和空气压缩机发动机20的要求电压中的驱动发动机14的要求电压。此外,在命令了动力模式的情况下,或者在命令经济模式并且目标空气压缩机发动机扭矩从稳定状态提升的量小于或等于事先设定的预定提升量(例如,+1Nm)的情况下,变换器控制装置56也可以设定变换器24的升压比并控制变换器24,使得从变换器24输出驱动发动机14的要求电压和空气压缩机发动机20的要求电压中较高的一个。在这种情况下,允许对于来自空气压缩机发动机20的要求确定的变换器24的升压比的允许量的宽度可以更大。
此外,在前述实施例中,燃料电池系统10可以进一步包括诸如检测空气压缩机发动机20的温度的热敏电阻等的发动机温度传感器60(见图1)。在这种情况下,电压获取装置54根据由发动机温度传感器60检测的值来校正空气压缩机发动机20的要求电压。例如,如图7所示的代表发动机温度和校正量之间关系的映射事先存储在映射存储装置58(见图1)中。那么,在发动机温度等于事先设定的标准工作温度t1的情况下,电压获取装置54将参考该映射从检测的发动机温度确定的“0”设定为用于空气压缩机发动机20的要求电压的校正量。然而,例如,如果发动机温度低于标准工作温度t1,则电压获取装置54参考该映射将电压校正量设定为低,也就是说,将空气压缩机发动机20的要求电压校正为较低的电压,并比较校正后的空气压缩机发动机20的要求电压与驱动发动机14的要求电压。另一方面,如果发动机温度高于标准工作温度t1,则电压获取装置54参考该映射将电压校正量设定为高,也就是说,将空气压缩机发动机20的要求电压校正为较高的电压,并比较校正后的空气压缩机发动机20的要求电压与驱动发动机14的要求电压。
前述构造便于根据发动机温度来适当地设定要求电压。也就是说,如果发动机温度低,则甚至当电压相对低时发动机也能够输出期望的扭矩。如果发动机温度高,如果不使电压为高则有无法输出期望的扭矩的可能性。因此,根据空气压缩机发动机20的使用状态,系统的整体效率能够提高。附带地,在其中心是标准工作温度的特定发动机温度的范围内,能够设定其中电压校正量为“0”的范围。
附带地,在前述实施例中,空气压缩机16是辅助设备,并且空气压缩机发动机20是辅助发动机,本发明不限于这样的构造。例如,氢泵34(见图1)可以被采用为辅助设备(见图1),并且用于驱动氢泵34的氢泵发动机可以是辅助发动机。

Claims (15)

1.一种燃料电池系统,包括:
燃料电池,所述燃料电池使用燃料气体和氧化气体来发电;
车辆驱动发动机逆变器,所述车辆驱动发动机逆变器被供应直流电力并且向车辆驱动发动机供应交流电力;
辅助发动机逆变器,所述辅助发动机逆变器被供应直流电力并且向辅助发动机供应交流电力;
变换器,所述变换器被设置在所述车辆驱动发动机和辅助发动机这二者与所述燃料电池之间,所述变换器提升所述燃料电池的输出电压并将提升的输出电压供应给所述车辆驱动发动机逆变器和所述辅助发动机逆变器;
电压获取装置,所述电压获取装置根据基于所述辅助发动机的加速需求的目标辅助发动机扭矩来获取所述辅助发动机的要求电压;以及
变换器控制装置,所述变换器控制装置通过比较所获取的所述辅助发动机的要求电压和所述车辆驱动发动机的要求电压,来设定所述变换器的升压比并且控制所述变换器。
2.根据权利要求1所述的燃料电池系统,其中,
所述电压获取装置根据目标驱动发动机扭矩来获取所述车辆驱动发动机的要求电压。
3.根据权利要求1或2所述的燃料电池系统,其中,
所述变换器控制装置设定所述变换器的升压比并控制所述变换器,以使得从所述变换器输出所获取的所述辅助发动机的要求电压和所述车辆驱动发动机的要求电压中的较高的要求电压。
4.根据权利要求1或2所述的燃料电池系统,进一步包括:
命令装置,所述命令装置能够命令经济模式和动力模式中的任何一种,在所述经济模式中车辆的燃料经济性优先,在所述动力模式中所述车辆的加速性能优先,
其中:
如果命令了所述经济模式,则所述变换器控制装置设定所述变换器的所述升压比并控制所述变换器,以使得从所述变换器输出所述车辆驱动发动机的要求电压和所述辅助发动机的要求电压中的所述车辆驱动发动机的要求电压;以及
如果命令了所述动力模式,则所述变换器控制装置设定所述变换器的所述升压比并控制所述变换器,以使得从所述变换器输出所述车辆驱动发动机的要求电压和所述辅助发动机的要求电压中的较高的要求电压。
5.根据权利要求1或2所述的燃料电池系统,进一步包括:
命令装置,所述命令装置能够命令经济模式和动力模式中的任何一种,在所述经济模式中车辆的燃料经济性优先,在所述动力模式中所述车辆的加速性能优先,
其中:
如果命令了所述经济模式并且所述目标辅助发动机扭矩从稳定状态的提高量大于事先设定的预定提高量,则所述变换器控制装置设定所述变换器的所述升压比并控制所述变换器,以使得从所述变换器输出所述车辆驱动发动机的要求电压和所述辅助发动机的要求电压中的所述车辆驱动发动机的要求电压;以及
如果命令了所述动力模式,或者如果命令了所述经济模式而所述目标辅助发动机扭矩从所述稳定状态的所述提高量小于或等于事先设定的预定提高量,则所述变换器控制装置设定所述变换器的所述升压比并控制所述变换器,以使得从所述变换器输出所述车辆驱动发动机的要求电压和所述辅助发动机的要求电压中的较高的要求电压。
6.根据权利要求1至5中任何一项所述的燃料电池系统,其中
所述电压获取装置从基于所述辅助发动机的加速需求的所述目标辅助发动机扭矩和根据所述加速需求在下一个计算步骤开始时预期要达到的所述辅助发动机的预期达到转速,来计算所述辅助发动机的要求电压。
7.根据权利要求1至5中任何一项所述的燃料电池系统,进一步包括:
映射存储装置,所述映射存储装置用于存储映射,所述映射表示基于所述辅助发动机的加速需求的所述目标辅助发动机扭矩与所述辅助发动机的要求电压的变化之间的关系,
其中,所述电压获取装置参考所述映射,来从基于所述辅助发动机的加速需求的所述目标辅助发动机扭矩获取所述辅助发动机的要求电压。
8.根据权利要求1至7中任何一项所述的燃料电池系统,进一步包括:
确定装置,所述确定装置用于确定当前状态要求慢加速和快加速中的哪一个,
其中,根据所述确定装置的确定结果来切换与用于加速所述辅助发动机的转速相对应的扭矩的设定值。
9.根据权利要求8所述的燃料电池系统,进一步包括:
命令装置,所述命令装置能够命令经济模式和动力模式中的任何一种,在所述经济模式中车辆的燃料经济性优先,在所述动力模式中所述车辆的加速性能优先,
其中,所述确定装置基于通过所述命令装置所命令的所述经济模式和所述动力模式之一来确定要求慢加速和快加速中的哪一个,以及
其中,所述电压获取装置根据所述确定装置的确定结果来切换与用于加速所述辅助发动机的转速相对应的扭矩的设定值。
10.根据权利要求8所述的燃料电池系统,进一步包括:
操作量检测装置,所述操作量检测装置用于检测加速命令部的操作量,其中所述加速命令部用于命令车辆加速,
其中,所述确定装置基于所检测的操作量来确定要求慢加速和快加速中的哪一个,以及
其中,所述电压获取装置根据所述确定装置的确定结果来切换与用于加速所述辅助发动机的转速相对应的扭矩的设定值。
11.根据权利要求8所述的燃料电池系统,进一步包括:
操作量变化率检测装置,所述操作量变化率检测装置用于检测加速命令部的操作量的变化率,其中所述加速命令部用于命令车辆加速,
其中,所述确定装置基于所检测的变化率来确定要求慢加速和快加速中的哪一个,以及
其中,所述电压获取装置根据所述确定装置的确定结果来切换与用于加速所述辅助发动机的转速相对应的扭矩的设定值。
12.根据权利要求8所述的燃料电池系统,进一步包括:
车辆速度检测装置,所述车辆速度检测装置用于检测车辆的速度,
其中,所述确定装置基于所检测的车辆速度来确定要求慢加速和快加速中的哪一个,以及
其中,所述电压获取装置根据所述确定装置的确定结果来切换与用于加速所述辅助发动机的转速相对应的扭矩的设定值。
13.根据权利要求1至12中任何一项所述的燃料电池系统,进一步包括:
温度检测装置,所述温度检测装置用于检测所述辅助发动机的温度,
其中,所述电压获取装置根据所检测的温度来校正所述辅助发动机的要求电压。
14.根据权利要求13所述的燃料电池系统,其中:
所述电压获取装置校正所述辅助发动机的要求电压,以使得随着所检测的温度更高时所述辅助发动机的要求电压也更高。
15.根据权利要求1至14中任何一项所述的燃料电池系统,其中,
所述辅助发动机是驱动燃料电池空气压缩机的空气压缩机发动机。
CN201080026838.8A 2009-06-16 2010-05-04 燃料电池系统 Active CN102458911B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-142895 2009-06-16
JP2009142895A JP5077295B2 (ja) 2009-06-16 2009-06-16 車両搭載用燃料電池システム
PCT/IB2010/001021 WO2010146421A2 (en) 2009-06-16 2010-05-04 Fuel cell system

Publications (2)

Publication Number Publication Date
CN102458911A true CN102458911A (zh) 2012-05-16
CN102458911B CN102458911B (zh) 2014-05-14

Family

ID=43302674

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080026838.8A Active CN102458911B (zh) 2009-06-16 2010-05-04 燃料电池系统

Country Status (5)

Country Link
US (1) US8594874B2 (zh)
JP (1) JP5077295B2 (zh)
CN (1) CN102458911B (zh)
DE (1) DE112010002556B4 (zh)
WO (1) WO2010146421A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105599630A (zh) * 2014-11-15 2016-05-25 丰田自动车株式会社 包括燃料电池系统的车辆
CN107512191A (zh) * 2017-09-13 2017-12-26 无锡商业职业技术学院 一种用于氢燃料电池电动汽车的实验装置
CN110957505A (zh) * 2019-11-25 2020-04-03 中国第一汽车股份有限公司 一种多模式燃料电池系统的控制方法
CN113978271A (zh) * 2020-07-27 2022-01-28 本田技研工业株式会社 供电控制系统及供电控制方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5527259B2 (ja) * 2011-03-07 2014-06-18 三菱自動車工業株式会社 出力トルク制御装置
JP5733140B2 (ja) * 2011-09-29 2015-06-10 トヨタ自動車株式会社 電動車両
US9020799B2 (en) * 2012-02-14 2015-04-28 GM Global Technology Operations LLC Analytic method of fuel consumption optimized hybrid concept for fuel cell systems
JP6237583B2 (ja) * 2014-11-14 2017-11-29 トヨタ自動車株式会社 燃料電池システムおよびエアコンプレッサの回転数制御方法
JP6146396B2 (ja) 2014-11-14 2017-06-14 トヨタ自動車株式会社 電動モーターによって駆動する車両、および、その車両の制御方法
JP6174553B2 (ja) * 2014-12-11 2017-08-02 本田技研工業株式会社 燃料電池システムの制御方法及び燃料電池自動車
JP6547957B2 (ja) * 2016-02-25 2019-07-24 トヨタ自動車株式会社 エアコンプレッサー装置
DE102016208082A1 (de) * 2016-05-11 2017-11-16 Volkswagen Ag Brennstoffzellenfahrzeug mit einer Mehrzahl wählbarer Betriebsmodi
JP6801345B2 (ja) * 2016-09-30 2020-12-16 アイシン精機株式会社 燃料電池システム
KR102336394B1 (ko) * 2017-03-17 2021-12-08 현대자동차주식회사 연료전지 공기 공급 제어방법 및 시스템
DE102020107200A1 (de) 2020-03-17 2021-09-23 Audi Aktiengesellschaft Anzeigevorrichtung, Brennstoffzellenfahrzeug und Verfahren zum Boosten eines solchen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000295715A (ja) * 1999-04-01 2000-10-20 Fuji Electric Co Ltd 電気自動車の電源システム
CN1319514A (zh) * 2000-01-31 2001-10-31 三洋电机株式会社 混合型汽车的电源装置
CN1530536A (zh) * 2003-03-13 2004-09-22 本田技研工业株式会社 发动机驱动式发电机
JP2006081268A (ja) * 2004-09-08 2006-03-23 Toyota Motor Corp 電気システムの制御装置
CN101100170A (zh) * 2006-07-03 2008-01-09 株式会社日立制作所 车辆控制装置、车辆控制方法以及车辆
KR20080010648A (ko) * 2006-07-27 2008-01-31 한라공조주식회사 차량용 태양전지 시스템

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6321145B1 (en) * 2001-01-29 2001-11-20 Delphi Technologies, Inc. Method and apparatus for a fuel cell propulsion system
JP2002252932A (ja) * 2001-02-23 2002-09-06 Nissan Motor Co Ltd 電力制御装置
JP4294884B2 (ja) * 2001-04-05 2009-07-15 本田技研工業株式会社 燃料電池電源装置
JP2004146118A (ja) * 2002-10-22 2004-05-20 Nissan Motor Co Ltd 燃料電池システム
WO2005045453A1 (en) * 2003-11-11 2005-05-19 Ansaldo Fuel Cells S.P.A. Apparatus and method for fuel cell resistance test
JP4534122B2 (ja) * 2003-12-26 2010-09-01 トヨタ自動車株式会社 ハイブリッドシステム
JP2006048483A (ja) * 2004-08-06 2006-02-16 Toyota Motor Corp 電源装置およびその電力収支の補正方法並びに電源の電流電圧特性推定方法
JP4353154B2 (ja) 2005-08-04 2009-10-28 トヨタ自動車株式会社 燃料電池自動車
JP2007126085A (ja) * 2005-11-07 2007-05-24 Toyota Motor Corp 車両の制御装置
JP5071879B2 (ja) 2005-12-07 2012-11-14 トヨタ自動車株式会社 燃料電池システム
JP4665809B2 (ja) * 2006-03-24 2011-04-06 トヨタ自動車株式会社 電動機駆動制御システム
DE102007024567A1 (de) * 2007-05-25 2008-11-27 Daimler Ag Hochvolt-Bordnetzarchitektur für ein Brennstoffzellen-Fahrzeug sowie integrierte Leistungselektronik für eine Hochvolt-Bordnetzarchitektur
US8122985B2 (en) * 2007-07-30 2012-02-28 GM Global Technology Operations LLC Double-ended inverter drive system for a fuel cell vehicle and related operating method
JP2009112164A (ja) * 2007-10-31 2009-05-21 Aisin Aw Co Ltd 電動機制御装置,駆動装置およびハイブリッド駆動装置
JP2010179806A (ja) * 2009-02-06 2010-08-19 Toyota Motor Corp ハイブリッド自動車

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000295715A (ja) * 1999-04-01 2000-10-20 Fuji Electric Co Ltd 電気自動車の電源システム
CN1319514A (zh) * 2000-01-31 2001-10-31 三洋电机株式会社 混合型汽车的电源装置
CN1530536A (zh) * 2003-03-13 2004-09-22 本田技研工业株式会社 发动机驱动式发电机
JP2006081268A (ja) * 2004-09-08 2006-03-23 Toyota Motor Corp 電気システムの制御装置
CN101100170A (zh) * 2006-07-03 2008-01-09 株式会社日立制作所 车辆控制装置、车辆控制方法以及车辆
KR20080010648A (ko) * 2006-07-27 2008-01-31 한라공조주식회사 차량용 태양전지 시스템

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105599630A (zh) * 2014-11-15 2016-05-25 丰田自动车株式会社 包括燃料电池系统的车辆
US9884567B2 (en) 2014-11-15 2018-02-06 Toyota Jidosha Kabushiki Kaisha Vehicle including fuel cell system
CN105599630B (zh) * 2014-11-15 2018-05-29 丰田自动车株式会社 包括燃料电池系统的车辆
CN107512191A (zh) * 2017-09-13 2017-12-26 无锡商业职业技术学院 一种用于氢燃料电池电动汽车的实验装置
CN107512191B (zh) * 2017-09-13 2024-01-23 无锡商业职业技术学院 一种用于氢燃料电池电动汽车的实验装置
CN110957505A (zh) * 2019-11-25 2020-04-03 中国第一汽车股份有限公司 一种多模式燃料电池系统的控制方法
CN110957505B (zh) * 2019-11-25 2021-05-04 中国第一汽车股份有限公司 一种多模式燃料电池系统的控制方法
CN113978271A (zh) * 2020-07-27 2022-01-28 本田技研工业株式会社 供电控制系统及供电控制方法
CN113978271B (zh) * 2020-07-27 2024-03-19 本田技研工业株式会社 供电控制系统及供电控制方法

Also Published As

Publication number Publication date
WO2010146421A8 (en) 2011-03-17
WO2010146421A3 (en) 2011-05-05
US20120095637A1 (en) 2012-04-19
DE112010002556B4 (de) 2022-12-29
JP5077295B2 (ja) 2012-11-21
CN102458911B (zh) 2014-05-14
DE112010002556T5 (de) 2012-09-06
US8594874B2 (en) 2013-11-26
WO2010146421A2 (en) 2010-12-23
JP2011003278A (ja) 2011-01-06

Similar Documents

Publication Publication Date Title
CN102458911B (zh) 燃料电池系统
JP5143665B2 (ja) 電力システム及び燃料電池車両
CN100570934C (zh) 带有燃料电池的直流电源
JP4163222B2 (ja) 燃料電池車両の電源システム
KR100987736B1 (ko) 연료전지시스템
CN102458905B (zh) 燃料电池系统及其电力控制方法
CN101953009B (zh) 燃料电池系统及移动体
CN102204001B (zh) 燃料电池系统
US8765312B2 (en) Converter controlling apparatus
JP2004146114A (ja) 燃料電池システム
JP2002118981A (ja) 燃料電池を有する直流電源
KR20080060298A (ko) 연료전지시스템 및 이동체
EP2241473A1 (en) Fuel cell vehicle
JP5359621B2 (ja) 燃料電池システムおよびその制御方法
CN102474177A (zh) 变换器控制装置
JP5387180B2 (ja) 移動体用燃料電池システムおよびその制御方法
US20180233793A1 (en) Fuel cell system
CN103518281A (zh) 燃料电池系统
CN108987769A (zh) 使用电压分布控制的燃料电池系统起动
JP4699489B2 (ja) 燃料電池車両
JP6174528B2 (ja) 2電源負荷駆動燃料電池システムの制御方法及び燃料電池自動車
JP2008172952A (ja) 電圧変換装置および車両
JP2010057284A (ja) 車両用電源装置
JP2017139150A (ja) 燃料電池システム
JP2023079249A (ja) 燃料電池システムの制御方法、燃料電池システム、及び、燃料電池自動車

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant