CN102439805A - 在拉曼激光发射应用中使用的滤波器光纤及其制造技术 - Google Patents

在拉曼激光发射应用中使用的滤波器光纤及其制造技术 Download PDF

Info

Publication number
CN102439805A
CN102439805A CN201080010152XA CN201080010152A CN102439805A CN 102439805 A CN102439805 A CN 102439805A CN 201080010152X A CN201080010152X A CN 201080010152XA CN 201080010152 A CN201080010152 A CN 201080010152A CN 102439805 A CN102439805 A CN 102439805A
Authority
CN
China
Prior art keywords
optical fiber
wavelength
refractive index
target wavelength
place
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201080010152XA
Other languages
English (en)
Other versions
CN102439805B (zh
Inventor
J·W·尼科尔森
P·W·维斯克
M·F·严
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OFS Fitel LLC
Original Assignee
OFS Fitel LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OFS Fitel LLC filed Critical OFS Fitel LLC
Publication of CN102439805A publication Critical patent/CN102439805A/zh
Application granted granted Critical
Publication of CN102439805B publication Critical patent/CN102439805B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094042Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a fibre laser
    • H01S3/094046Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a fibre laser of a Raman fibre laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06733Fibre having more than one cladding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094042Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a fibre laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0078Frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08086Multiple-wavelength emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/09408Pump redundancy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094084Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light with pump light recycling, i.e. with reinjection of the unused pump light, e.g. by reflectors or circulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers

Abstract

一种光波导具有折射率变化,所述折射率变化被构造为使得所述光纤在工作波长范围上具有支持多个斯托克斯频移的有效面积并且在所述工作波长范围内的目标波长下具有负色散值。所述折射率变化还被构造为使得所述光纤在比所述目标波长更长的波长下具有有限LP01截止,从而对于选定的弯曲直径,所述LP01截止波长使得在所述目标波长下的宏弯曲损耗和在比所述目标波长更长的波长下的宏弯曲损耗不同,从而抑制在比所述目标波长更长的波长下的拉曼散射。

Description

在拉曼激光发射应用中使用的滤波器光纤及其制造技术
对相关申请的交叉引用
本申请要求2009年5月11日提交的61/177058号美国临时专利申请的优先权,该临时申请由本申请的受让人拥有,并且其全部内容通过引用包含于此。
技术领域
本发明总体上涉及光纤装置和方法,并且更具体地,涉及在拉曼激光发射应用中使用的改进的滤波器光纤以及用于设计和制造这种光纤的技术。
背景技术
光纤激光器和放大器典型地基于掺有激光激活的稀土离子(如镱(Yb)、铒(Er)、钕(Nd)等)的光纤。光纤中的受激拉曼散射是有用的效应,其可被用于在这些掺杂稀土的光纤不工作的波长区域提供非线性增益。当激光束通过拉曼激活光纤传播时发生受激拉曼散射,结果导致称为“斯托克斯频移”的可预知的波长增加。通过在一段拉曼激活光纤的输入端和输出端提供一系列特定波长的反射光栅,可以产生一系列的级联斯托克斯频移,从而将输入波长转换为选定的目标波长。
图1是根据现有技术的示例性系统20的图,其中使用受激拉曼散射产生用于泵浦掺铒光纤放大器(EDFA)的1480nm的高功率输出80,所述掺铒光纤放大器在1550nm区域提供增益。如所示出的,系统20包括两个级:整体的Yb光纤激光器40和级联拉曼谐振器(cascaded Raman resonator,CRR)60。
在激光器40中,由一段在1000nm至1200nm区域内工作的双包层掺Yb光纤42提供激活介质。在光纤输入端44提供高反射光栅HR1,并且在光纤输出端46提供输出耦合光栅OC1。光纤42在高反射器件HR1和输出耦合器OC1之间的部分起到激光器腔体48的作用。由利用锥形光纤束(tapered fiber bundle)TFB1耦合到光纤42的多个泵浦二极管50向光纤42提供泵浦能量。在该示例中,激光器40提供波长为1117nm的单模辐射作为输出52。
该激光器的输出被用于泵浦级联拉曼谐振器60。谐振器60包括拉曼激活光纤62。在该光纤的输入端66提供多个输入光栅64,并且在该光纤的输出端70提供多个输出光栅68。所述多个输入光栅64包括高反射器件HR2-HR6;所述多个输出光栅68包括高反射器件HR7-HR11和输出耦合器OC2。
示出了针对输入高反射器件HR2-HR6、输出高反射器件HR7-HR11和输出耦合器OC2的从1175nm至1480nm的示例性波长。如图1中所示,输入光栅64和输出光栅68包括通过相应的斯托克斯频移分开的一系列嵌套的波长匹配对。输入光栅64、输出光栅68和拉曼光纤62提供一系列嵌套的拉曼腔体72。尽管图1示出了使用光栅64和68构成的级联拉曼谐振器60,但是众所周知,可以使用其它波长选择元件(如熔合光纤耦合器)和其它结构(如WDM环路镜)构成类似的谐振器。
掺Yb光纤激光器40的1117nm的输出52被提供为进入谐振器60的输入,结果导致在宽范围上的一系列级联斯托克斯频移,导致波长从1117nm的输入逐步增加到1480nm的系统输出。然后可以将输出80的一个应用用于在基模下泵浦在1530至1590nm区域中提供增益的高功率的硅基掺铒光纤放大器(EDFA)。
然而,在系统20中,即使在实现目标波长之后,仍继续出现一定量的拉曼散射。因此,对于较高的功率,由于光被转换为下一个不需要的更高阶的斯托克斯频移而可能损失大量的泵浦能量。该不需要的斯托克斯频移限制了在期望的输出波长下能够获得的功率量。此外,如果CRR的输出80被用于泵浦EDFA,那么该不需要的更高阶斯托克斯频移可能潜在地干扰在EDFA中放大的信号波长。
发明内容
本发明解决了现有技术的这些问题以及其它问题,本发明的各方面涉及在拉曼激光发射应用中使用的滤波器光纤以及用于设计和制造这种光纤的技术。
根据本发明的一种实践方式,一种光纤包括具有折射率变化的光波导,所述折射率变化被构造为使得该光纤在工作波长范围上具有支持多个斯托克斯频移的有效面积并且在该工作波长范围内的目标波长下具有负色散值。该折射率变化还被构造为使得该光纤在比该目标波长更长的波长下具有有限LP01截止,从而对于选定的弯曲直径,该LP01截止波长使得在该目标波长下的宏弯曲损耗和在比该目标波长更长的波长下的宏弯曲损耗不同,从而本质上防止在比该目标波长更长的波长下的拉曼散射。
下面描述本发明的更多方面。
附图说明
图1是根据现有技术的级联拉曼谐振器系统的图。
图2是根据本发明一方面的未按比例绘出的截面图。
图3、图3A、图3B、图3C示出根据本发明多个方面的四个示例性光纤的近似按比例绘出的折射率分布。
图4和图5是示出分别以75mm和190mm的卷轴直径(spooldiameter)评估的LP01截止波长与在1480nm和1590nm产生的宏弯曲损耗之间关系的一对曲线图。
图6是示出在W形折射率分布中导致在1590nm的恒定LP01截止波长的纤芯半径和纤芯折射率的分布的曲线图。
图7是示出根据本发明的原型滤波器光纤设计中衰减和波长之间关系的曲线图。
图8A-8C是列出四个示例性光纤设计的规格的一系列表格。
图9是根据所描述的本发明各方面的一般方法的流程图。
具体实施方式
现在描述根据本发明各方面的在高功率拉曼激光发射应用中使用的滤波器光纤及设计和制造这种光纤的技术的具体示例。
上面讨论的图1中所示的拉曼激光发射系统20用于提供本讨论的背景。特别地,为了本讨论,假定例如可以使用根据本文中描述的技术构造的滤波器光纤,代替CRR 60中的拉曼光纤62。在此情况下,通过提供适当长度的滤波器光纤,并且在该光纤的输入端和输出端提供适当的输入和输出光栅组来制造CRR,该输入和输出光栅组具有配置成产生一系列级联斯托克斯频移的波长,从而将输入波长逐步转换为期望的目标波长。
然而,应该理解,可以关于其它拉曼激光发射系统和配置实施当前描述的滤波器光纤和技术。例如,可以结合2009年5月11日提交的61/177058号美国临时专利申请中描述的任意激光发射系统或者其变体实施本发明,该临时申请由本申请的受让人拥有,并且其全部内容通过引用包含在本文中。
如下面详细讨论的,根据本发明的滤波器光纤被构造为在工作波长范围上允许多个斯托克斯频移而无超连续谱产生。这种滤波器光纤被构造为防止对由较高阶斯托克斯频移的拉曼散射导致的超过目标波长的波长的有害泵浦能量消耗。
这些期望的特性是通过将滤波器光纤构造为包括以下属性而实现的:
(a)在它的整个工作范围上是正常(即,负的)色散,以避免超连续谱产生;
(b)有在目标波长下的小的有效面积,即,小到足以允许在工作波长范围上的多个斯托克斯频移处于期望的功率水平的有效面积;
(c)对于100米或更长的光纤长度可接受的低损耗;以及
(d)对于比目标波长更长的波长下的有限LP01模式截止,从而对于选定的弯曲直径,该LP01截止波长使得在目标波长下的宏弯曲损耗和在比目标波长更长的波长下的宏弯曲损耗不同。
注意,本讨论使用以ps/(nm-km)为单位的色散参数D。负值的D构成正常色散,而正值的D构成反常色散。在反常色散情况下,出现调制不稳定和孤波形成等现象,这两种现象都不会出现在正常色散情况下。注意,标准单模光纤具有1300nm左右的零色散波长,并且具有在比该零色散波长更长的波长下的反常色散。
根据本发明的一种实践方式,LP01截止位于在超过目标波长一半和一个斯托克斯频率频移之间的波长处,从而对于给定的卷轴直径(例如,75mm、190mm),该选定的LP01模式截止导致在目标波长的宏弯曲损耗(例如,小于0.01dB/km)和在第一斯托克斯频移的宏弯曲损耗(例如,大于300dB/km)之间有很大不同。
根据本发明的一个方面,这些光纤属性是通过使用W形折射率分布实现的。应该理解,本文中描述的本发明的各方面可使用其它折射率分布形状和其它折射率变化来实现。
不能在选定的截止波长以上引导LP01模式的W形滤波器光纤已经被用于S波段掺铒光纤放大器(EDFA)应用中。W形滤波器光纤还被用于在高功率Yb光纤放大器中抑制拉曼散射。在这些较早的应用中,滤波器光纤在宽波长范围上的色散都不是重点的考虑。
拉曼激光发射应用需要在离散的频率的拉曼增益。然而,当足够高的功率以反常色散进入光纤时,由于调制不稳定性,可能出现超连续谱的产生而不是在离散的频率的拉曼增益。因此,根据本发明的光纤被构造为在工作波长范围上展现正常色散。
因为在给定的光纤中的拉曼增益与泵浦功率强度有关,所以拉曼增益与光纤的模式的有效面积成反比。因此,根据本发明的光纤被构造为具有小的有效面积。然而,由于拉曼激光器中的光纤长度趋向于在100米以上的量级,所以光纤的功率损耗也扮演重要角色。
因此,根据本发明的滤波器光纤被构造为明显不同于较早的滤波器光纤以提供具有小有效面积、低损耗和正常色散的光纤,从而促进针对期望的目标波长的拉曼散射。该光纤使用LP01模式截止的滤波特性以阻止在比期望的目标波长更长的波长下的拉曼散射。
现在描述用于设计构造为具有上述属性的滤波器光纤的特定技术。出于讨论的目的,假定期望的目标波长是1480nm,并且在1480nm之后的第一个斯托克斯频移是1590nm。然而,通过本描述将明显看到,所描述的光纤和技术可适用于其它波长。
图2示出根据本发明第一方面的光纤100的示例的未按比例绘出的截面图。光纤100包括由氧化硅(SiO2)或其它适当的材料制成的光波导,该光波导可以被化学掺杂以产生多个不同的同心区域:
纤芯101,其具有外半径r1和折射率n1
内包层103,其围绕纤芯101,具有外半径r2和折射率n2;以及
外包层105,其围绕内包层103,具有外半径r0和折射率n0
图2中还示出了纤芯-内包层边界102和内包层-外包层边界104。
每个光纤区域具有相应的“折射率差”Δn,该折射率差是使用外包层折射率n0作为基准值确定的:
对于外包层105,Δn0=n0-n0=0;
对于纤芯101,Δn1=n1-n0
对于内包层103,Δn2=n2-n0
图3是根据本发明各方面的第一示范性光纤的近似按比例绘出的折射率分布(refractive index profile,RIP)120。RIP 120以图形形式示出光纤区域101、103、105相应的外半径r0-r2和折射率差Δn0-Δn2
如图3中所示,RIP 120传统上被称为W形分布。它包括对应于纤芯101的中心峰(spike)121,纤芯101具有相对窄的外半径r1和相对大的正折射率差Δn1。中心峰121被对应于内包层103的沟槽123包围,内包层103具有与纤芯的外半径r1相比相对大的外半径r2,并且具有相对小的负折射率差Δn2(相对于Δn0)。沟槽123被对应于外包层105的相对平坦的外部区域125包围,外部区域125具有外半径r0和折射率差Δn0
图3A-3C示出根据本发明的更多方面的光纤的第二和第三示例的近似按比例绘出的折射率分布120’和120”。RIP 120’和120”二者都是W形的,包括中心峰121’/121”、沟槽123’/123”和外包层125’/125”,并且具有实现期望的滤波效果的相应值r0’/r0”、r1’/r1”、r2’/r2”、Δn0’/Δn0”、Δn1’/Δn1”以及Δn2’/Δn2”。
现在描述用于针对给定的目标波长达到适当的折射率分布的技术。
在本文中描述的拉曼滤波器光纤设计中,泵浦能量在目标波长提供增益,并且不被超过该目标波长的更高阶斯托克斯散射消耗。出于讨论的目的,假定期望的目标波长是1480nm,并且在1480nm之后的第一斯托克斯频移是1590nm。然而,通过本描述将明显看到,所描述的光纤和技术可适用于其它波长。
根据本发明的滤波器光纤被构造为,与在第一斯托克斯频移波长(即1590nm)的宏弯曲损耗相比较,在目标波长(即1480nm)的宏弯曲损耗具有显著不同。当前描述的拉曼滤波应用利用该衰减不同。
在使用中,拉曼光纤典型地缠绕在具有已知直径的卷轴上。因此,在典型的拉曼激光发射应用中,拉曼光纤受到已知弯曲直径的宏弯曲损耗。
图4和图5是示出分别以75mm(图4)和190mm(图5)的卷轴直径评估的LP01截止波长与在1480nm和1590nm得到的宏弯曲损耗之间关系的一对曲线图140和150。
图4中所示的曲线图140示出当LP01截止波长在1540nm和1610nm之间时,缠绕在75mm直径卷轴上的拉曼光纤预期在1480nm具有小于0.01dB/km的宏弯曲损耗,而在1590nm具有大于100dB/km的宏弯曲损耗。类似地,图5中所示的曲线图150示出当LP01截止波长在1510nm和1590nm之间时,缠绕在190mm直径卷轴上的拉曼光纤预期在1480nm具有小于0.01dB/km的宏弯曲损耗,而在1590nm具有大于100dB/km的宏弯曲损耗。目标波长和斯托克斯波长之间的所述104量级的衰减差提供了显著的滤波效果,以抑制更高阶的拉曼散射。根据本发明的实践方式,在下一斯托克斯阶的功率比先前斯托克斯阶的功率低或者与之相当,先前阶斯托克斯阶比输出波长低20dB。
图6是示出例如图3A-3C中所示的W形折射率分布中导致在1590nm的恒定LP01截止波长的纤芯半径和纤芯折射率的轮廓的曲线图160。在这些W形设计中,纤芯被具有-0.008Δn折射率差和12μm外半径的沟槽区包围。该沟槽区又被未掺杂的氧化硅包围。图6还示出产生1590nm LP01截止波长的光纤设计在1480nm的色散,右侧纵轴上示出标度。还示出在1480nm的有效面积。该图确定了就这种W形折射率分布中的纤芯半径和纤芯折射率来说具有上述属性的设计空间。尽管这些设计是针对1480nm的目标波长以及1590nm的斯托克斯波长的进行的,但是可以针对其它目标波长的应用进行类似设计。当卷轴直径为75mm时,这些设计显示出在1480nm宏弯曲损耗低于0.01dB/km,而在1590nm宏弯曲损耗高于300dB/km。
可以将其它沟槽半径和沟槽折射率用于该W形滤波器光纤设计。一般来说,较小的外沟槽半径和较小的沟槽折射率量值会增加有效面积和宏弯曲损耗。随后的表格示出具有不同沟槽折射率和沟槽外半径、同时保持相同的1590nm LP01截止的设计中的性质比较。通过使用190mm的较大卷轴直径,拉曼滤波器光纤可以具有较大的有效面积,同时在1.48μm保持期望的负色散和低弯曲损耗。还希望选择具有较小纤芯折射率的的设计,较小的纤芯折射率一般会减小光纤衰减。
图7是示出根据本发明的原型滤波器光纤设计中衰减和波长之间关系的曲线图170。针对多个不同外包层直径产生实验数据:120μm(曲线171);121μm(曲线172);122μm(曲线173);125μm(曲线174);130μm(曲线175)和140μm(曲线176)。由于这些光纤是从同一预制品拉出的,所以它们的纤芯直径与包层直径成比例,并且例如140μm的包层直径光纤中的纤芯直径比120μm的包层直径光纤中的纤芯直径大16.7%左右。曲线171-176示出所描述的滤波效果:该滤波器光纤在截止波长之下具有低衰减,并且在截止波长之上具有高衰减。曲线171-176还示出外包层直径是在设计具有期望的截止波长的滤波器光纤时要考虑的附加参数。例如,可以在设计过程要结束时修改外包层直径以对截止波长进行精细调节。
图8A-8C是给出上面关于图3、图3A、图3B和图3C讨论的四个示例性光纤的规格和测得的性能的一系列表格180-182。图8A中给出的表格180给出光纤1(图3)、光纤2(图3A)、光纤3(图3B)和光纤4(图3C)的以下细节:
(a)纤芯半径r1(μm);
(b)纤芯折射率差Δn1
(c)沟槽半径r2(μm);
(d)沟槽折射率差Δn2
(e)LP01截止波长(nm);
(f)在1480nm的色散(ps/nm/km);
(g)在1480nm的有效面积Aoff(μm2)
图8B中给出的表格181给出这四个光纤对于75mm的弯曲半径、在1480nm和1590nm的弯曲损耗。图8C中给出的表格182给出这四个光纤对于190mm的弯曲半径、在在1480nm和1590nm的弯曲损耗。如表格181和182中所示,所描述的光纤设计导致在目标波长1480nm的弯曲损耗和在超过该目标波长一个斯托克斯频移的1590nm的弯曲损耗显著不同。
图9是给出用于设计根据本文中给出的本发明的各方面的滤波器光纤的一般方法200的流程图。该方法包括以下部分:
框201:提供具有折射率变化的光波导,该折射率变化被构造为使得该光纤在工作波长范围上具有支持多个斯托克斯频移的有效面积并且在该工作波长范围内的目标波长下具有负色散值。
框202:将该光纤构造为使得该光纤在比所述目标波长更长的波长下具有有限LP01截止,从而对于选定的弯曲直径,该LP01截止波长使得在该目标波长下的宏弯曲损耗和在比该目标波长更长的波长下的宏弯曲损耗不同。
框203:从而抑制在比该目标波长更长的波长下的拉曼散射。
尽管以上描述包括使本领域技术人员能够实现本发明的细节,但是应该理解,本描述本质上是说明性的,并且对于受益于这些教导的本领域技术人员来说,对以上描述的许多修改及改变是显而易见的。因此,希望本发明仅由所附权利要求限定,并且如现有技术所允许的那样宽泛地解释权利要求。

Claims (25)

1.一种光纤,包括:
具有折射率变化的光波导,所述折射率变化被构造为使得所述光纤在工作波长范围上具有支持多个斯托克斯频移的有效面积,并且在所述工作波长范围内的目标波长下具有负色散值,
其中所述折射率变化还被构造为使得所述光纤在比所述目标波长更长的波长下具有有限LP01截止,从而对于选定的弯曲直径,所述LP01截止波长使得在所述目标波长下的宏弯曲损耗和在比所述目标波长更长的波长下的宏弯曲损耗不同,
从而抑制在比所述目标波长更长的波长下的拉曼散射。
2.根据权利要求1所述的光纤,其中所述折射率变化包括方位角折射率变化。
3.根据权利要求1所述的光纤,其中所述折射率变化包括径向折射率变化。
4.根据权利要求3所述的光纤,其中所述光波导包括多个同心区域,所述多个同心区域包括纤芯、围绕所述纤芯的内包层和围绕所述内包层的外包层,每个光纤区域具有相应的外半径和相应的折射率差。
5.根据权利要求1所述的光纤,其中对于选定的弯曲直径,在所述目标波长下的宏弯曲损耗低于0.01dB/km,并且在超过所述目标波长一个斯托克斯频移处的宏弯曲损耗大于300dB/km。
6.根据权利要求5所述的光纤,其中所述选定的弯曲直径对应于所述滤波器光纤缠绕在其上的光纤卷轴的弯曲直径。
7.根据权利要求5所述的光纤,其中折射率分布具有对应于所述纤芯的中心峰和对应于所述内包层的沟槽,其中所述中心峰具有正折射率差,并且所述沟槽具有负折射率差。
8.根据权利要求5所述的光纤,
其中所述外包层具有外半径r0、折射率n0和折射率差Δn=0,
其中所述纤芯具有外半径r1、折射率n1和折射率差Δn1=n1-n0,并且
其中所述内包层具有外半径r2、折射率n2和折射率差Δn2=n2-n0
9.根据权利要求8所述的光纤,
其中所述目标波长是1480nm,其中所述光纤具有1590nm处的第一斯托克斯频移和1590nm处的LP01截止波长,并且,
其中,在±10%范围内,
r1=2.0μm,
Δn1=0.01308,
r2=12μm,
Δn2=-0.008。
10.根据权利要求8所述的光纤,
其中所述目标波长是1480nm,其中所述光纤具有1590nm处的第一斯托克斯频移和1590nm处的LP01截止波长,并且,
其中,在±10%的范围内,
r1=2.5μm,
Δn1=0.00917,
r2=6μm,
Δn2=-0.008。
11.根据权利要求8所述的光纤,
其中所述目标波长是1480nm,其中所述光纤具有1590nm处的第一斯托克斯频移和1590nm处的LP01截止波长,并且,
其中,在±10%的范围内,
r1=2.0μm,
Δn1=0.01098,
r2=12μm,
Δn2=-0.004。
12.根据权利要求8所述的光纤,
其中所述目标波长是1480nm,其中所述光纤具有1590nm处的第一斯托克斯频移和1590nm处的LP01截止波长,并且,
其中,在±10%的范围内,
r1=1.8μm,
Δn1=0.01529,
r2=8μm,
Δn2=-0.008。
13.一种包括根据权利要求1所述的光纤的拉曼放大器。
14.一种包括根据权利要求1所述的光纤的级联拉曼谐振器。
15.一种制造滤波器光纤的方法,包括:
提供具有折射率变化的光波导,所述折射率变化被构造为使得所述光纤在工作波长范围上具有支持多个斯托克斯频移的有效面积,并且在所述工作波长范围内的目标波长下具有负色散值,
将所述光纤的折射率变化构造为使得所述光纤在比所述目标波长更长的波长下具有有限LP01截止,从而对于选定的弯曲直径,所述LP01截止波长使得在所述目标波长下的宏弯曲损耗和在比所述目标波长更长的波长下的宏弯曲损耗不同,
从而抑制在比所述目标波长更长的波长下的拉曼散射。
16.根据权利要求15所述的方法,还包括:
提供包括方位角折射率变化的折射率变化。
17.根据权利要求15所述的方法,还包括:
提供包括径向折射率变化的折射率变化。
18.根据权利要求17所述的方法,还包括:
提供包括多个同心区域的光波导,所述多个同心区域包括纤芯、围绕所述纤芯的内包层和围绕所述内包层的外包层,每个光纤区域具有相应的外半径和相应的折射率差。
19.根据权利要求15所述的方法,其中对于选定的弯曲直径,在所述目标波长下的宏弯曲损耗低于0.01dB/km,并且在超过所述目标波长一个斯托克斯频移处的宏弯曲损耗大于300dB/km。
20.根据权利要求15所述的方法,其中所述选定的弯曲直径对应于所述滤波器光纤缠绕在其上的光纤卷轴的弯曲直径。
21.根据权利要求17所述的方法,其中折射率分布具有对应于所述纤芯的中心峰和对应于所述内包层的沟槽,其中所述中心峰具有正折射率差,并且所述沟槽具有负折射率差。
22.根据权利要求17所述的方法,
其中所述外包层具有外半径r0、折射率n0和折射率差Δn=0,
其中所述纤芯具有外半径r1、折射率n1和折射率差Δn1=n1-n0,并且
其中所述内包层具有外半径r2、折射率n2和折射率差Δn2=n2-n0
23.根据权利要求22所述的方法,
其中所述目标波长是1480nm,其中所述光纤具有1590nm处的第一斯托克斯频移和1590nm处的LP01截止波长,并且,
其中,在±10%的范围内,
r1=2.0μm,
Δn1=0.01308,
r2=12μm,
Δn2=-0.008。
24.根据权利要求22所述的方法,
其中所述目标波长是1480nm,其中所述光纤具有1590nm处的第一斯托克斯频移和1590nm处的LP01截止波长,并且,
其中,在±10%的范围内,
r1=2.5μm,
Δn1=0.00917,
r2=6μm,
Δn2=-0.008。
25.根据权利要求22所述的方法,
其中所述目标波长是1480nm,其中所述光纤具有1590nm处的第一斯托克斯频移和1590nm处的LP01截止波长,并且,
其中,在±10%的范围内,
r1=2.0μm,
Δn1=0.01098,
r2=12μm,
Δn2=-0.004。
CN201080010152.XA 2009-05-11 2010-05-11 在拉曼激光发射应用中使用的滤波器光纤及其制造技术 Active CN102439805B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17705809P 2009-05-11 2009-05-11
US61/177,058 2009-05-11
PCT/US2010/034321 WO2010132405A1 (en) 2009-05-11 2010-05-11 Filter fiber for use in raman lasing applications and techniques for manufacturing same

Publications (2)

Publication Number Publication Date
CN102439805A true CN102439805A (zh) 2012-05-02
CN102439805B CN102439805B (zh) 2016-06-08

Family

ID=43062199

Family Applications (4)

Application Number Title Priority Date Filing Date
CN201080010152.XA Active CN102439805B (zh) 2009-05-11 2010-05-11 在拉曼激光发射应用中使用的滤波器光纤及其制造技术
CN2010800101534A Pending CN102449936A (zh) 2009-05-11 2010-05-11 用于在高功率级联拉曼光纤激光器中抑制反向激光发射的系统和技术
CN2010800101553A Active CN102388512B (zh) 2009-05-11 2010-05-11 基于滤波器光纤的级联拉曼光纤激光器系统
CN201080010143.0A Active CN102449864B (zh) 2009-05-11 2010-05-11 用于高功率水平的级联拉曼激光发射的系统和方法

Family Applications After (3)

Application Number Title Priority Date Filing Date
CN2010800101534A Pending CN102449936A (zh) 2009-05-11 2010-05-11 用于在高功率级联拉曼光纤激光器中抑制反向激光发射的系统和技术
CN2010800101553A Active CN102388512B (zh) 2009-05-11 2010-05-11 基于滤波器光纤的级联拉曼光纤激光器系统
CN201080010143.0A Active CN102449864B (zh) 2009-05-11 2010-05-11 用于高功率水平的级联拉曼激光发射的系统和方法

Country Status (6)

Country Link
US (4) US8428409B2 (zh)
EP (4) EP2430716B1 (zh)
JP (6) JP2012527019A (zh)
KR (4) KR20120023651A (zh)
CN (4) CN102439805B (zh)
WO (4) WO2010132405A1 (zh)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010132405A1 (en) * 2009-05-11 2010-11-18 Ofs Fitel Llc Filter fiber for use in raman lasing applications and techniques for manufacturing same
JP5353582B2 (ja) * 2009-09-10 2013-11-27 富士通株式会社 光増幅装置
US8441718B2 (en) * 2009-11-23 2013-05-14 Lockheed Martin Corporation Spectrally beam combined laser system and method at eye-safer wavelengths
ES2684474T3 (es) * 2010-02-01 2018-10-03 Draka Comteq B.V. Fibra óptica con dispersión desplazada no nula que tiene una longitud de onda pequeña
WO2011130131A1 (en) 2010-04-12 2011-10-20 Lockheed Martin Corporation Beam diagnostics and feedback system and method for spectrally beam-combined lasers
US7929818B1 (en) * 2010-06-30 2011-04-19 Corning Incorporated Large effective area fiber with graded index GE-free core
US8472486B1 (en) * 2011-08-17 2013-06-25 The United States Of America As Represented By The Secretary Of The Air Force Seeded raman amplifier for applications in the 1100-1500 nm spectral region
JP2014532894A (ja) * 2011-10-19 2014-12-08 オーエフエス ファイテル,エルエルシー カスケード・ラマン・レージング・システム
EP2781040B1 (en) 2012-02-07 2019-10-02 AFL Telecommunications LLC Multiple wavelength optical assemblies for inline measurement of optical power on fiber optic networks
GB2505409B (en) * 2012-08-27 2016-08-03 V-Gen Ltd Generation of narrow line width high power optical pulses
US9366806B2 (en) * 2012-08-29 2016-06-14 Ofs Fitel, Llc Gain-producing fibers with increased cladding absorption while maintaining single-mode operation
US9366810B2 (en) * 2012-08-29 2016-06-14 Ofs Fitel, Llc Double-clad, gain-producing fibers with increased cladding absoroption while maintaining single-mode operation
IL221918A (en) 2012-09-12 2016-11-30 V-Gen Ltd Optically isolated
CN103022865A (zh) * 2012-12-14 2013-04-03 清华大学 多波长泵浦合成光纤激光器
US20140198377A1 (en) * 2013-01-15 2014-07-17 Omron Corporation Laser oscillator
KR101440580B1 (ko) * 2013-01-23 2014-09-17 주식회사 에이제이월드 필터링 기능이 있는 광커넥터
US9164230B2 (en) * 2013-03-15 2015-10-20 Ofs Fitel, Llc High-power double-cladding-pumped (DC) erbium-doped fiber amplifier (EDFA)
CN105431754B (zh) * 2013-03-15 2018-05-15 恩耐公司 旋转的非圆形且非椭圆形的纤芯光纤以及使用其的设备
US10562132B2 (en) 2013-04-29 2020-02-18 Nuburu, Inc. Applications, methods and systems for materials processing with visible raman laser
US10971896B2 (en) 2013-04-29 2021-04-06 Nuburu, Inc. Applications, methods and systems for a laser deliver addressable array
PL2992575T3 (pl) * 2013-05-03 2021-01-25 Atla Lasers As Wzmacniacz światłowodowy
US9835778B1 (en) 2013-09-13 2017-12-05 Lockheed Martin Corporation Apparatus and method for a diamond substrate for a multi-layered dielectric diffraction grating
JP5680170B1 (ja) * 2013-11-14 2015-03-04 株式会社フジクラ ファイバレーザ装置
CN105006733A (zh) * 2014-04-22 2015-10-28 深圳激扬光电有限公司 一种高峰值功率激光器及其保护方法和装置
US9397466B2 (en) 2014-07-11 2016-07-19 Nlight, Inc. High power chirally coupled core optical amplification systems and methods
US9793679B2 (en) 2014-08-06 2017-10-17 Mox Networks, LLC Distributed Raman amplifier systems
KR102397735B1 (ko) 2014-08-06 2022-05-12 목스 네트웍스, 엘엘씨 분산형 라만 증폭기 시스템
US11646549B2 (en) 2014-08-27 2023-05-09 Nuburu, Inc. Multi kW class blue laser system
US10008819B2 (en) * 2014-09-16 2018-06-26 Ipg Photonics Corporation Broadband red light generator for RGB display
JP6140743B2 (ja) * 2015-02-12 2017-05-31 株式会社フジクラ ファイバレーザ装置および増幅用コイルの製造方法
US20160285230A1 (en) * 2015-03-26 2016-09-29 Ofs Fitel, Llc Systems and techniques for termination of ports in fiber lasers
KR20230042412A (ko) * 2015-07-15 2023-03-28 누부루 인크. 레이저 전달 어드레스 가능한 어레이를 위한 용례, 방법 및 시스템
CN105470802B (zh) * 2015-12-30 2019-07-12 昂纳信息技术(深圳)有限公司 全光纤声光调q激光器及其输出方法
US20220072659A1 (en) * 2016-04-29 2022-03-10 Nuburu, Inc. Methods and Systems for Reducing Hazardous Byproduct from Welding Metals Using Lasers
US11612957B2 (en) * 2016-04-29 2023-03-28 Nuburu, Inc. Methods and systems for welding copper and other metals using blue lasers
US10656328B2 (en) * 2016-04-29 2020-05-19 Nuburu, Inc. Monolithic visible wavelength fiber laser
WO2018005927A1 (en) * 2016-07-01 2018-01-04 Ipg Photonics Corporation Fiber laser system with mechanism for inducing parasitic light losses
CA2971601C (en) 2017-01-27 2022-06-21 Teraxion Inc. Optical fiber filter of wideband deleterious light and uses thereof
JP6888963B2 (ja) 2017-01-31 2021-06-18 株式会社フジクラ ファイバレーザシステム、及び、その制御方法
JP6911153B2 (ja) 2017-01-31 2021-07-28 ヌブル インク 青色レーザーを使用して銅を溶接するための方法及びシステム
US11473982B2 (en) * 2017-03-02 2022-10-18 Ofs Fitel, Llc Broad bandwidth graded index multimode optical fiber for distributed temperature sensing in the 1550 NM region
KR102423330B1 (ko) 2017-04-21 2022-07-20 누부루 인크. 다중-피복 광섬유
JP7177090B2 (ja) * 2017-05-15 2022-11-22 アイピージー フォトニクス コーポレーション 高パワークラッディングポンプ単一モードファイバーラマンレーザー
JP2020523793A (ja) 2017-06-13 2020-08-06 ヌブル インク 超高密度波長ビーム結合レーザシステム
JP6523511B1 (ja) * 2018-03-30 2019-06-05 株式会社フジクラ ファイバレーザ装置、ファイバレーザ装置の製造方法、及び、設定方法
CN108695680B (zh) * 2018-06-22 2020-10-02 电子科技大学 一种全光纤化ld泵浦的多模光纤级联拉曼随机激光器
CN109193337A (zh) * 2018-10-29 2019-01-11 中国人民解放军国防科技大学 高功率光纤激光放大器系统受激拉曼散射抑制方法
CN109193336B (zh) * 2018-10-29 2019-11-05 中国人民解放军国防科技大学 光纤激光振荡器抑制受激布里渊散射的方法
WO2020107030A1 (en) * 2018-11-23 2020-05-28 Nuburu, Inc Multi-wavelength visible laser source
EP3917718A4 (en) 2019-02-02 2022-12-07 Nuburu, Inc. HIGH-BRIGHTNESS, HIGH-POWER, HIGH-RELIABILITY BLUE LASER DIODE SYSTEMS AND METHODS OF MAKING THEREOF
EP3997766A4 (en) * 2019-07-10 2023-08-16 Ofs Fitel Llc ULTRA-SPEED ALL-FIBER LASER SOURCE WIDELY TUNABLE
CN112397978B (zh) * 2019-08-15 2022-01-28 中国科学院大连化学物理研究所 一种碱金属激光器泵浦的光纤拉曼激光器
CN111817120B (zh) * 2020-07-20 2023-03-24 长沙大科激光科技有限公司 一种抑制受激拉曼散射效应的光纤及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1628401A (zh) * 2002-05-31 2005-06-15 皮雷利&C.有限公司 用于光学系统中的喇曼放大的级联喇曼泵
US6952517B2 (en) * 2003-01-29 2005-10-04 Furukawa Electric North America Method for the manufacture of optical fibers, improved optical fibers, and improved raman fiber amplifier communication systems
US7130512B2 (en) * 2005-03-04 2006-10-31 Corning Incorporated Supercontinuum emitting device
US7236672B2 (en) * 2005-03-30 2007-06-26 Corning Incorporated Optical systems utilizing optical fibers transmitting high power signal and a method of operating such systems

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947134A (en) * 1987-10-30 1990-08-07 American Telephone And Telegraph Company Lightwave systems using optical amplifiers
US4894833A (en) * 1988-08-09 1990-01-16 General Electric Company Surface emitting lasers with combined output
JPH0561079A (ja) * 1991-08-29 1993-03-12 Sumitomo Electric Ind Ltd 光フイルタ
JPH05224102A (ja) * 1992-02-07 1993-09-03 Ando Electric Co Ltd 戻り光の少ない励起用光モジュール
US5892615A (en) * 1997-03-17 1999-04-06 Sdl, Inc. Output power enhancement in optical fiber lasers
WO2005022705A2 (en) * 1997-03-21 2005-03-10 Imra America, Inc. High energy optical fiber amplifier for picosecond-nanosecond pulses for advanced material processing applications
US5815518A (en) * 1997-06-06 1998-09-29 Lucent Technologies Inc. Article comprising a cascaded raman fiber laser
US5864644A (en) * 1997-07-21 1999-01-26 Lucent Technologies Inc. Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices
US5887093A (en) * 1997-09-12 1999-03-23 Lucent Technologies Incorporated Optical fiber dispersion compensation
US6141470A (en) * 1998-02-06 2000-10-31 Lucent Technologies, Inc. Magnetically reconfigurable optical grating devices and communication systems
CA2320872A1 (en) * 1998-02-20 1999-08-26 Paul N. Freeman Upgradable, gain flattened fiber amplifiers for wdm applications
US6310899B1 (en) 1998-04-15 2001-10-30 Lucent Technologies Inc. Cascaded raman resonator system and apparatus
US6005877A (en) * 1998-04-22 1999-12-21 Hughes Electronics Corporation Distributed-feedback fiber-laser with asymmetric output ports
DE69942932D1 (de) * 1998-06-16 2010-12-23 Xtera Comm Inc Dispersionskompensierendes und verstärkendes optisches element
EP2306605B1 (en) * 1998-07-23 2012-05-23 The Furukawa Electric Co., Ltd. Pumping unit for a Raman amplifier and Raman amplifier comprising the same
US6556346B1 (en) * 1998-09-22 2003-04-29 Corning O.T.I.Spa Optical amplifying unit and optical transmission system
US6525872B1 (en) * 1999-02-11 2003-02-25 Jds Uniphase Corporation Fiber grating-stabilized, semiconductor pump source
US6407855B1 (en) * 1999-10-29 2002-06-18 Sdl, Inc. Multiple wavelength optical sources
WO2001065646A2 (en) * 2000-02-29 2001-09-07 Jds Uniphase Corporation Multiple stage optical fiber amplifier
JP2001249369A (ja) * 2000-03-02 2001-09-14 Nec Corp 光増幅器とこれを用いた光増幅中継器及び波長多重光伝送装置
US6885683B1 (en) * 2000-05-23 2005-04-26 Imra America, Inc. Modular, high energy, widely-tunable ultrafast fiber source
US6621835B1 (en) * 2000-06-12 2003-09-16 Jds Uniphase Corporation Raman amplifier in ring configuration
JP2002006348A (ja) * 2000-06-21 2002-01-09 Mitsubishi Electric Corp 光増幅器
US6700696B2 (en) * 2000-08-09 2004-03-02 Jds Uniphase Corporation High order fiber Raman amplifiers
US6941054B2 (en) 2000-08-31 2005-09-06 Pirelli S.P.A. Optical transmission link with low slope, raman amplified fiber
US6594288B1 (en) * 2000-11-06 2003-07-15 Cidra Corporation Tunable raman laser and amplifier
KR100358158B1 (ko) * 2000-11-21 2002-10-25 주식회사 케이티 소극기를 이용한 분산보상 라만 증폭기 및 그를 이용한하이브리드형 광섬유 증폭장치
US6563995B2 (en) * 2001-04-02 2003-05-13 Lightwave Electronics Optical wavelength filtering apparatus with depressed-index claddings
WO2002093704A1 (en) * 2001-05-15 2002-11-21 Ocg Technology Licensing, Llc Optical fiber and system containing same
JP3905479B2 (ja) * 2001-05-22 2007-04-18 三菱電機株式会社 ファイバレーザ装置
US6845194B2 (en) * 2001-06-27 2005-01-18 Furukawa Electric North America Inc. Optical bandpass filter using long period gratings
US20030021302A1 (en) * 2001-07-18 2003-01-30 Grudinin Anatoly Borisovich Raman cascade light sources
US7039076B2 (en) * 2001-08-10 2006-05-02 Jds Uniphase Corporation Fiber amplifier system for producing visible light
JP3917392B2 (ja) * 2001-08-28 2007-05-23 日本電信電話株式会社 ラマン増幅器の設計法
DE60220369T2 (de) * 2002-01-11 2007-09-20 Alcatel Lucent Kaskadenramanfaserlaser und optisches System mit einem solchem Laser
JP4007812B2 (ja) * 2002-01-18 2007-11-14 富士通株式会社 ラマン増幅器および波長多重光通信システム、並びに、ラマン増幅の制御方法
US6757468B2 (en) * 2002-03-14 2004-06-29 Corning Incorporated Dispersion compensation optical fiber and optical transmission line using same
US6721088B2 (en) * 2002-03-15 2004-04-13 Ofs Fitel Single-source multiple-order raman amplifier for optical transmission systems
JP2006515110A (ja) * 2002-06-28 2006-05-18 フォトナミ・インコーポレイテッド 戻り反射光無感応電気光学インターフェイスおよびそれを導波路に結合する方法
AU2003299543A1 (en) * 2002-10-04 2004-05-04 Spectra Systems Corporation Monolithic, side-pumped, passively q-switched solid-state laser
KR100992471B1 (ko) * 2002-12-10 2010-11-08 가부시키가이샤 니콘 자외 광원, 자외 광원을 이용한 레이저 치료 장치 및 자외 광원을 이용한 노광 장치
DE60310363T2 (de) * 2003-03-03 2007-04-12 Alcatel Raman Faserlaser mit mehrwellenlängiger, stabiler, kleiner Ausgangsleistung für Anwendungen als Seed-Laser
FR2852154B1 (fr) * 2003-03-04 2005-05-20 Cit Alcatel Fibre optique amplificatrice a anneau dope et amplificateur contenant une telle fibre
FR2854249B1 (fr) * 2003-04-25 2005-07-08 Cit Alcatel Dispositif et procede de transformation de mode de propagation de signaux, par interferences
DE60310382T2 (de) * 2003-05-28 2007-04-12 Alcatel Verfahren zur Adjustierung des Spektrums eines vielwellenlängen Raman Lasers
US7046433B2 (en) * 2003-12-30 2006-05-16 The Furukawa Electric Co., Ltd. Optical fiber, and optical module and Raman amplifier using the optical fiber
WO2005114317A1 (ja) * 2004-05-20 2005-12-01 The Furukawa Electric Co., Ltd. ラマン増幅用光ファイバ、光ファイバコイル、ラマン増幅器及び光通信システム
US7590155B2 (en) * 2004-08-05 2009-09-15 Jian Liu Hybrid high power laser to achieve high repetition rate and high pulse energy
JP2006108426A (ja) * 2004-10-06 2006-04-20 Kansai Electric Power Co Inc:The 光ファイバラマンレーザ
WO2006042239A2 (en) * 2004-10-06 2006-04-20 The Regents Of The University Of California Cascaded cavity silicon raman laser with electrical modulation, switching, and active mode locking capability
US7171074B2 (en) * 2004-11-16 2007-01-30 Furakawa Electric North America Inc. Large mode area fibers using higher order modes
US7508853B2 (en) * 2004-12-07 2009-03-24 Imra, America, Inc. Yb: and Nd: mode-locked oscillators and fiber systems incorporated in solid-state short pulse laser systems
US7420994B2 (en) 2005-03-04 2008-09-02 Corning Incorporated Pulsed cascaded Raman laser
JP2006286844A (ja) * 2005-03-31 2006-10-19 Furukawa Electric Co Ltd:The 光ファイバ増幅装置
US20070003198A1 (en) * 2005-06-29 2007-01-04 Lance Gibson Low loss optical fiber designs and methods for their manufacture
US7409128B2 (en) * 2005-06-29 2008-08-05 Lucent Technologies Inc. Pumping arrangement for fiber amplifiers with reduced reflective feedback
US7620077B2 (en) * 2005-07-08 2009-11-17 Lockheed Martin Corporation Apparatus and method for pumping and operating optical parametric oscillators using DFB fiber lasers
US7391561B2 (en) * 2005-07-29 2008-06-24 Aculight Corporation Fiber- or rod-based optical source featuring a large-core, rare-earth-doped photonic-crystal device for generation of high-power pulsed radiation and method
JP4699131B2 (ja) * 2005-08-05 2011-06-08 株式会社フジクラ 光ファイバレーザ、光ファイバ増幅器、mopa方式光ファイバレーザ
US7505489B2 (en) * 2005-10-17 2009-03-17 Polaronyx, Inc. Ultrahigh energy short pulse lasers
WO2007127356A2 (en) * 2006-04-28 2007-11-08 Corning Incorporated Pulsed uv and visible raman laser systems
US20080089366A1 (en) * 2006-05-15 2008-04-17 Polaronyx, Inc. High energy short pulse fiber laser achieved by combining pulse shaping, polarization shaping and spectral shaping
JP5064777B2 (ja) * 2006-12-08 2012-10-31 古河電気工業株式会社 レーザ装置
US7916386B2 (en) * 2007-01-26 2011-03-29 Ofs Fitel, Llc High power optical apparatus employing large-mode-area, multimode, gain-producing optical fibers
US8103142B2 (en) * 2007-02-05 2012-01-24 Ofs Fitel, Llc Preventing dielectric breakdown in optical fibers
US8081376B2 (en) * 2007-06-06 2011-12-20 Sumitomo Electric Industries, Ltd. Multi-stage fiber amplifier to suppress Raman scattered light
CA2693112C (en) * 2007-06-27 2013-12-10 Fujikura Ltd. Fiber laser having superior resistance to reflection light
EP2179312A1 (en) * 2007-07-20 2010-04-28 Corning Incorporated Large-mode-area optical fiber
JP4873645B2 (ja) * 2007-08-15 2012-02-08 新日本製鐵株式会社 光ファイバラマンレーザ装置
CN100492148C (zh) * 2007-12-13 2009-05-27 中国科学院上海光学精密机械研究所 全光纤窄线宽百纳秒脉冲信号系统
CN101217227A (zh) * 2008-01-16 2008-07-09 中国科学院上海光学精密机械研究所 泵浦源激光二极管的保护隔离装置
JP4834718B2 (ja) * 2008-01-29 2011-12-14 キヤノン株式会社 パルスレーザ装置、テラヘルツ発生装置、テラヘルツ計測装置及びテラヘルツトモグラフィー装置
JP5323562B2 (ja) * 2008-03-31 2013-10-23 古河電気工業株式会社 カスケードラマンレーザ
WO2010132405A1 (en) * 2009-05-11 2010-11-18 Ofs Fitel Llc Filter fiber for use in raman lasing applications and techniques for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1628401A (zh) * 2002-05-31 2005-06-15 皮雷利&C.有限公司 用于光学系统中的喇曼放大的级联喇曼泵
US6952517B2 (en) * 2003-01-29 2005-10-04 Furukawa Electric North America Method for the manufacture of optical fibers, improved optical fibers, and improved raman fiber amplifier communication systems
US7130512B2 (en) * 2005-03-04 2006-10-31 Corning Incorporated Supercontinuum emitting device
US7236672B2 (en) * 2005-03-30 2007-06-26 Corning Incorporated Optical systems utilizing optical fibers transmitting high power signal and a method of operating such systems

Also Published As

Publication number Publication date
CN102388512B (zh) 2013-12-04
KR101747153B1 (ko) 2017-06-14
EP2430781A1 (en) 2012-03-21
CN102439805B (zh) 2016-06-08
EP2430715A4 (en) 2013-06-05
KR20120025469A (ko) 2012-03-15
EP2430715A1 (en) 2012-03-21
WO2010132466A1 (en) 2010-11-18
CN102449936A (zh) 2012-05-09
EP2430781A4 (en) 2013-06-19
KR20120023651A (ko) 2012-03-13
JP2017126088A (ja) 2017-07-20
JP2012527017A (ja) 2012-11-01
US8792157B2 (en) 2014-07-29
KR20120025468A (ko) 2012-03-15
US20100284060A1 (en) 2010-11-11
KR20120019443A (ko) 2012-03-06
WO2010132482A1 (en) 2010-11-18
WO2010132493A1 (en) 2010-11-18
US8428409B2 (en) 2013-04-23
WO2010132405A1 (en) 2010-11-18
EP2430715B1 (en) 2017-07-12
CN102388512A (zh) 2012-03-21
CN102449864A (zh) 2012-05-09
EP2430714A1 (en) 2012-03-21
EP2430716A1 (en) 2012-03-21
JP2012527018A (ja) 2012-11-01
JP2012527019A (ja) 2012-11-01
US20100284061A1 (en) 2010-11-11
EP2430716B1 (en) 2020-01-15
US20100290106A1 (en) 2010-11-18
EP2430716A4 (en) 2013-06-05
KR101764156B1 (ko) 2017-08-14
JP5611328B2 (ja) 2014-10-22
US20100284659A1 (en) 2010-11-11
JP2015084113A (ja) 2015-04-30
CN102449864B (zh) 2014-05-07
EP2430714A4 (en) 2013-07-03
JP5773991B2 (ja) 2015-09-02
KR101723802B1 (ko) 2017-04-06
JP2012527014A (ja) 2012-11-01
US8351111B2 (en) 2013-01-08

Similar Documents

Publication Publication Date Title
CN102439805B (zh) 在拉曼激光发射应用中使用的滤波器光纤及其制造技术
JP4109323B2 (ja) 非線形性光ファイバ、光ファイバコイル及び波長変換器
Takenaga et al. Reduction of crosstalk by trench-assisted multi-core fiber
US7171074B2 (en) Large mode area fibers using higher order modes
US8564877B2 (en) Photonic bandgap fiber and fiber amplifier
US6751241B2 (en) Multimode fiber laser gratings
US8045259B2 (en) Active optical fibers with wavelength-selective filtering mechanism, method of production and their use
US8412015B2 (en) Segmented gain-doping of an optical fiber
JP5410750B2 (ja) アルミニウムドーパントを含む高sbs閾値光ファイバ
US6909538B2 (en) Fiber amplifiers with depressed cladding and their uses in Er-doped fiber amplifiers for the S-band
US20090041064A1 (en) Higher Order Mode Optical Fiber Laser or Amplifier
CN103827715A (zh) 用于低损耗耦合至多芯光纤的技术和装置
EP1281989A2 (en) Optical fiber and optical transmission method
WO2010122790A1 (ja) 空孔付き単一モード光ファイバ及びこれを用いた光伝送システム
JP2003098373A (ja) 波長分割多重伝送システム用の光ファイバ
Kang et al. Design of four-mode erbium doped fiber amplifier with low differential modal gain for modal division multiplexed transmissions
CN105009387A (zh) 光子带隙光纤、以及使用光子带隙光纤的光纤激光装置
CN100582825C (zh) 具有光放大功能的传输光纤及其制造方法
JPH03127032A (ja) 機能性光導波媒体
EP1488482A2 (en) Amplifiers and light sources employing s-band erbium-doped fiber and l-band thulium-doped fiber with distributed suppression of amplified spontaneous emission (ase)
EP1858128B1 (en) Large mode area fibers by using conversion to higher order modes
Jeong et al. Continuous wave single transverse mode laser oscillation in a Nd-doped large core double clad fiber cavity with concatenated adiabatic tapers
JPH10242556A (ja) 波長多重伝送用Er添加光ファイバ増幅器
Aleshkina et al. Spectrally selective optical loss in fibers with high-index rods embedded into silica cladding
Hasegawa et al. Advances in ultra-low loss silica fibers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant