JP5064777B2 - レーザ装置 - Google Patents

レーザ装置 Download PDF

Info

Publication number
JP5064777B2
JP5064777B2 JP2006332304A JP2006332304A JP5064777B2 JP 5064777 B2 JP5064777 B2 JP 5064777B2 JP 2006332304 A JP2006332304 A JP 2006332304A JP 2006332304 A JP2006332304 A JP 2006332304A JP 5064777 B2 JP5064777 B2 JP 5064777B2
Authority
JP
Japan
Prior art keywords
laser
output
light
laser light
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006332304A
Other languages
English (en)
Other versions
JP2008147389A (ja
Inventor
完二 田中
敬介 富永
晃 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2006332304A priority Critical patent/JP5064777B2/ja
Publication of JP2008147389A publication Critical patent/JP2008147389A/ja
Application granted granted Critical
Publication of JP5064777B2 publication Critical patent/JP5064777B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)

Description

本発明は、レーザ光源部と光増幅部とを備えたレーザ装置に関するものである。
従来から、たとえば半導体の露光等のレーザ加工に用いられるレーザ装置として、レーザ光源部と、このレーザ光源部に接続した光増幅部とを備えたレーザ装置が開示されている(特許文献1参照)。このレーザ装置は、いわゆるMOPA(Master Oscillator Power Amplifier)構造を有するものであって、レーザ光源部が所望の波長のレーザ光を出力し、光増幅部がこのレーザ光を所望の強度に増幅して出力するものである。
特開2003−8119号公報
ところで、レーザ装置が出力するレーザ光のスペクトル幅は、そのレーザ光の干渉性などに影響を与える。そのため、たとえばレーザ加工などの利用分野において、使用用途に応じた最適なスペクトル幅を有するレーザ光を用いたいという要求がある。
しかしながら、従来のレーザ装置は、出力するレーザ光のスペクトル幅を柔軟に変化させることができず、所望のスペクトル幅のレーザ光を得ることができないという問題があった。
本発明は、上記に鑑みてなされたものであって、所望のスペクトル幅を有するレーザ光を所望の強度で出力することができるレーザ装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係るレーザ装置は、所定の波長帯域の光を選択的に反射する反射手段を少なくとも一端に備えた光共振器と、前記光共振器内に配置した光増幅媒体とを有し、出力光強度に応じてスペクトル幅が変化するレーザ光を出力するレーザ光源部と、前記レーザ光源部に接続し該レーザ光源部が出力した前記レーザ光を増幅して増幅レーザ光を出力する光増幅部と、前記レーザ光源部と前記光増幅部とに接続し、前記光増幅部が出力する前記増幅レーザ光が所望のスペクトル幅を有するように前記レーザ光源部が出力する前記レーザ光の強度を制御するとともに該増幅レーザ光を所望の強度に制御する光出力制御部と、を備えることを特徴とする。
また、本発明に係るレーザ装置は、上記の発明において、前記光増幅媒体は、コア部に希土類元素を添加した光増幅ファイバであり、前記反射手段は、前記光増幅ファイバに接続したファイバブラッググレーティングであることを特徴とする。
また、本発明に係るレーザ装置は、上記の発明において、前記光増幅部の光出力側に配置され、前記光増幅部が出力した前記増幅レーザ光を入力させると該増幅レーザ光とは波長が異なる波長変換光を出力する波長変換素子を備えたことを特徴とする。
また、本発明に係るレーザ装置は、上記の発明において、前記増幅レーザ光のスペクトル幅は200pm以下であることを特徴とする。
また、本発明に係るレーザ装置は、上記の発明において、前記増幅レーザ光のスペクトル幅は50pm以上であることを特徴とする。
本発明によれば、所定の波長帯域の光を選択的に反射する反射手段を少なくとも一端に備えた光共振器と、前記光共振器内に配置した光増幅媒体とを有し、出力光強度に応じてスペクトル幅が変化するレーザ光を出力するレーザ光源部と、前記レーザ光源部に接続し該レーザ光源部が出力した前記レーザ光を増幅して増幅レーザ光を出力する光増幅部と、前記レーザ光源部と前記光増幅部とに接続し、前記光増幅部が出力する前記増幅レーザ光が所望のスペクトル幅を有するように前記レーザ光源部が出力する前記レーザ光の強度を制御するとともに該増幅レーザ光を所望の強度に制御する光出力制御部とを備えるので、所望のスペクトル幅を有するレーザ光を所望の強度で出力することができるレーザ装置を実現できるという効果を奏する。
以下に、図面を参照して本発明に係るレーザ装置の実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
(実施の形態1)
図1は、本発明の実施の形態1に係るレーザ装置の構成を模式的に表した概略図である。図1に示すように、このレーザ装置1は、レーザ光源部2と、光増幅部3と、光出力制御部である制御部4と、入出力部5とを備える。
レーザ光源部2は、極めて高い強度の光を出力できるダブルクラッド型の光ファイバレーザであって、波長900〜980nmの励起光を出力する半導体レーザであるLD21−1〜21-n(nは整数)と、LD21−1〜21-nに定電流値の駆動電力を供給する定電流源22と、LD21−1〜21-nが出力する励起光を導波するマルチモード光ファイバ23−1〜23-nと、マルチモード光ファイバ23−1〜23-nが導波する励起光をダブルクラッド光ファイバ251に結合する光合波器であるTFB(Tapered Fiber Bundle)23と、ダブルクラッド光ファイバ251に接続した反射手段である入力側FBG(ファイバブラッググレーティング、Fiber Bragg Grating)261と、入力側FBG261に接続した光増幅媒体である増幅用ダブルクラッド光ファイバ252と、増幅用ダブルクラッド光ファイバ252に接続した反射手段である出力側FBG262と、出力側FBG262に接続した標準のシングルモード光ファイバ253と、シングルモード光ファイバ253を介して出力側FBG262に接続した光分岐手段である光カプラ27と、光カプラ27に接続した光電変換手段であるPD(PhotoDetector)27とを備える。ここで、入力側FBG261と出力側FBG262は、波長選択性を持つ。入力側FBG261は、波長1083nmを中心とし、99%以上の反射率帯域5nmを持つ。出力側FBG262は、波長1083nmの光を中心とし、ピーク反射率10%の半値全幅(FWHM)が0.02nmである。そして、入力側FBG261と出力側FBG262とは、波長1083nmの光に対して、増幅用ダブルクラッド光ファイバ252を内部に配置したファブリペロー型の光共振器を構成する。
図2は、図1に示した増幅用ダブルクラッド光ファイバ252の模式的な断面および対応する屈折率プロファイルを示す図である。図2に示すように、増幅用ダブルクラッド光ファイバ252は、希土類元素であるイッテルビウム(Yb)のイオンを添加したコア部252aと、コア部252aの外周に形成したコア部252aよりも屈折率が低い内部クラッド部252bと、内部クラッド部252bの外周に形成した内部クラッド部252bよりも屈折率が低い外部クラッド部252cとを備え、屈折率プロファイル252dを有するものである。なお、ダブルクラッド光ファイバ251は、増幅用ダブルクラッド光ファイバ252と同様の構成を有するが、コア部にYbを添加していないものである。
また、光増幅部3は、シングルモード光ファイバ253を介してレーザ光源部2に接続したダブルクラッド型の光増幅器であって、励起光を出力するLD31−1〜31-m(mは整数)と、LD31−1〜31-mに定電流値の駆動電力を供給する定電流源32と、LD31−1〜31-mが出力する励起光を導波するマルチモード光ファイバ33−1〜33-mと、マルチモード光ファイバ33−1〜33-mが導波する励起光をダブルクラッド光ファイバ351に結合するTFB34と、シングルモード光ファイバ253に接続した光アイソレータISOと、光アイソレータISOとTFB34とを接続する標準のシングルモード光ファイバ353と、ダブルクラッド光ファイバ351を介してTFB34に接続した増幅用ダブルクラッド光ファイバ352と、シングルモード光ファイバ353を介して増幅用ダブルクラッド光ファイバ352に接続した光カプラ37と、シングルモード光ファイバ353を介して光カプラ37に接続した光出力端子39と、光カプラ37に接続したPD38とを備える。なお、ダブルクラッド光ファイバ351は、ダブルクラッド光ファイバ251と同様の構成を有し、増幅用ダブルクラッド光ファイバ352は、増幅用ダブルクラッド光ファイバ252と同様の構成を有する。
また、制御部4は、定電流源22、32およびPD28、38に接続し、後述する制御用のデータを記憶する記憶部41と、後述する制御用の演算を行う演算部42と、定電流源22、32が出力する電流値を繰り返し制御する電流制御部43とを有する。さらに、入出力部5は、制御部4に接続し、各種設定値の入力、表示などを行う。
つぎに、レーザ装置1の動作について説明する。レーザ光源部2において、LD21−1〜21-nは、定電流源22から駆動電力を供給されて、波長900〜980nmの励起光を出力し、マルチモード光ファイバ23−1〜23-nは、LD21−1〜21-nが出力した励起光をTFB24へ導波する。TFB24は、導波した励起光を、ダブルクラッド光ファイバ251および入力側FBG261を介して増幅用ダブルクラッド光ファイバ252へ結合する。増幅用ダブルクラッド光ファイバ252へ結合した励起光は、コア部252aおよび内部クラッド252bをマルチモードで伝搬しながら、コア部252aに添加したYbイオンを光励起する。その結果、Ybイオンは蛍光を発生するが、波長1083nmの光に対して入力側FBG261と出力側FBG262とが増幅用ダブルクラッド光ファイバ252を内部に配置した光共振器を構成しているので、波長1083nmの光が光共振器内を往復しながら光増幅されてレーザ発振が起こり、出力側FBG262側からレーザ光が出力される。
ここで、レーザ光源部2が出力するレーザ光は出力光強度に応じてスペクトル幅が変化する。具体的には、出力光強度が高くなるとスペクトル幅が広くなる。レーザ光源部2が出力するレーザ光の特性は、たとえば中心波長が1083nm、スペクトル幅が30〜160pm、強度が2〜8Wである。
一方、光増幅部3において、LD31−1〜31-mは、定電流源32から駆動電力を供給されて、波長900〜980nmの励起光を出力し、マルチモード光ファイバ33−1〜33-mは、LD31−1〜31-mが出力した励起光をTFB34へ導波する。TFB34は、ダブルクラッド光ファイバ351を介して導波した励起光を増幅用ダブルクラッド光ファイバ352へ結合する。ここで、増幅用ダブルクラッド光ファイバ352へ結合した励起光は、増幅用ダブルクラッド光ファイバ352をマルチモードで伝搬しながら、そのコア部に添加したYbイオンを光励起する。それとともに、TFB34は、レーザ光源部2が出力し、光アイソレータISOを通って入力したレーザ光を、ダブルクラッド光ファイバ351を介して増幅用ダブルクラッド光ファイバ352へ結合する。そして、増幅用ダブルクラッド光ファイバ352へ結合したレーザ光は、コア部をシングルモードで伝搬しながら、励起状態にあるYbイオンと相互作用し、誘導放出作用によって光増幅され、出力端子39から増幅レーザ光L1として出力される。ここで、増幅レーザ光L1のスペクトル幅は、増幅レーザ光L1の出力光強度に応じて、レーザ光源部2が出力するレーザ光のスペクトル幅とは異なるものとなり、たとえばスペクトル幅が広くなる。
本実施の形態1に係るレーザ装置1においては、制御部4が、レーザ光源部2の定電流源22を制御するとともに、光増幅部3の定電流源32を制御することによって、増幅レーザ光L1のスペクトル幅がレーザ光源部2の出力するレーザ光のスペクトル幅よりも広くなることを加味したうえで、増幅レーザ光L1が所望のスペクトル幅を有するようにレーザ光源部2が出力するレーザ光の強度を制御するとともに、増幅レーザ光L1が所望の強度となるように制御している。その結果、レーザ装置1が出力する増幅レーザ光L1は、所望のスペクトル幅を有するともに、所望の強度を有するものとなる。なお、増幅レーザ光L1の特性は、たとえばスペクトル幅が100〜600pm、強度が40Wである。
また、制御部4が行う制御は、たとえば以下のような手順で行われる。すなわち、レーザ光源部2において、光カプラ27が、レーザ光の一部を1〜10%程度の所定の分岐比で分岐し、PD28が分岐したレーザ光を受光してその光強度に応じた大きさの電流を制御部4に出力する。一方、光増幅部3において、光カプラ37が、増幅レーザ光の一部を1〜10%程度の所定の分岐比で分岐し、PD38が分岐したレーザ光を受光してその光強度に応じた大きさの電流を制御部4に出力する。ここで、制御部4は、PD28、38が出力する電流を受け付けてそれぞれの電流値を測定するとともに、入出力部5から入力される設定スペクトル幅および設定強度の値を受け付ける。つぎに、制御部4は、記憶部41から設定スペクトル幅および設定強度に対応するレーザ光源部2および光増幅部3のそれぞれに対する目標電流値の組み合わせのデータを読み出す。つぎに、制御部4は、演算部42に、測定したPD28からの電流値とレーザ光源部2に対する目標電流値との差分および測定したPD38からの電流値と光増幅部3に対する目標電流値との差分をそれぞれ演算させる。つぎに、制御部4は、電流制御部43に、演算したそれぞれの差分が所定の制御誤差以下となるように定電流源22、32がそれぞれ出力する駆動電力の電流値を繰り返し制御させる。その結果、LD21−1〜21-n、31−1〜31−mは、所定の強度の励起光を出力するように制御され、レーザ光源部2が出力するレーザ光の強度が所定のスペクトル幅を有するような強度に制御されるとともに、光増幅部3が出力するレーザ光の強度が所望のスペクトル幅と強度を有するように制御される。
ところで、レーザ光源部2が出力するレーザ光のスペクトル幅が、出力する光強度に応じて変化するのは、波長1083nmの光が、光共振器内を往復しながら光増幅される際に、光共振器内に配置した増幅用ダブルクラッド光ファイバ252などの光ファイバ内において発生する自己位相変調(SPM)などの非線形光学効果の影響を受けるためであると考えられる。また、光増幅部3においても、増幅用ダブルクラッド光ファイバ352などの光ファイバ内において発生する非線形光学効果の影響によって、増幅レーザ光L1のスペクトル幅が変化していると考えられる。
なお、光ファイバレーザにおいては、共振器長がたとえば10m以上と長いことから、出力するレーザ光は縦モードを多数含むスペクトラムを有する。この縦モードの間隔は、たとえば共振器長が10mの場合は、0.04pmとなる。このように縦モードを多数含むレーザ光の場合、スペクトル幅は、スペクトラムの包絡線から求めた半値全幅と規定する。
また、上述の非線形光学効果を光ファイバ内で効果的に発生させるためには、レーザ光源部2が出力するレーザ光の光強度が1W以上であることが好ましい。また、非線形光学効果が発生する光ファイバの非線形定数を調整すれば、出力する光の強度に対するスペクトル幅の変化量を適宜調整できる。
つぎに、本実施の形態1に係るレーザ装置1の具体的特性について説明する。図3は、レーザ装置1から出力する増幅レーザ光L1の強度を40Wになるように制御した場合の、レーザ光源部2から出力するレーザ光の強度に対する、増幅レーザ光L1のスペクトル幅および光増幅部3における駆動電流を示した図である。なお、レーザ光源部2から出力するレーザ光のスペクトル幅については、レーザ光の強度が2.17W、5.18W、8Wの場合に、それぞれ34pm、48pm、74pmであった。レーザ装置1において、図3に示すように、たとえば広いスペクトル幅の増幅レーザ光L1を出力しようとする場合にはレーザ光源部2から出力するレーザ光の強度を高く制御する一方、光増幅部3における駆動電流を低く制御することによって、図4に示すように、所望のスペクトル幅を実現しながら、増幅レーザ光L1の強度を一定値に制御することができた。また、図5は、レーザ装置1から出力する増幅レーザ光L1のスペクトルを示した図である。図5において、横軸は波長、縦軸はピーク値で規格化した光強度を示し、スペクトルS1、S2、S3は、光強度はいずれも40Wとして、スペクトル幅はそれぞれ約100pm、約200pm、約265pmとなるように制御した場合のものである。このように、レーザ装置1は、所望のスペクトル幅を有するレーザ光を所望の強度で出力することができた。
以上説明したように、本実施の形態1に係るレーザ装置1は、レーザ光源部2が出力光強度に応じてスペクトル幅が変化するレーザ光を出力し、制御部4が、光増幅部3が出力する増幅レーザ光L1が所望のスペクトル幅を有するようにレーザ光源部2が出力するレーザ光の強度を制御するとともに、増幅レーザ光L1を所望の強度に制御することによって、所望のスペクトル幅を有するレーザ光を所望の強度で出力することができる。
(実施の形態2)
つぎに、本発明の実施の形態2に係るレーザ装置について説明する。本実施の形態2に係るレーザ装置は、実施の形態1に係るレーザ装置と同様の構成を有するレーザ光出力部の光出力側に波長変換素子を備えたものである。
図7は、本実施の形態2に係るレーザ装置の構成を模式的に表した概略図である。図1に示すように、このレーザ装置6は、レーザ装置1と同様の構成を有し、光増幅部から増幅レーザ光L5を出力するレーザ光出力部7と、レーザ光出力部7の光出力側に配置された、非線形光学結晶である周期分極ニオブ酸リチウム(PPLN)結晶からなる波長変換素子8と、波長変換素子8を載置し、波長変換素子8の温度と増幅レーザ光L5に対する角度とを調整する調整機構9とを備える。なお、調整機構9は、たとえば波長変換素子8を載置する光学ステージと、この光学ステージに、波長変換素子8に接するように取り付けたペルチェ素子とを備えたものである。
このレーザ装置6において、レーザ光出力部7が出力する増幅レーザ光L5の中心波長は約1083nmであり、波長変換素子8は、増幅レーザ光L5を入力させると増幅レーザ光L5の波長の1/2である波長541.5nmの波長変換光L6を出力する。
調整機構9は、増幅レーザ光L5の強度に対する波長変換光L6の強度の比である波長変換効率を最適値にするため、波長変換素子8の温度と増幅レーザ光L5に対する角度とを調整する。ここで、増幅レーザ光L5のスペクトル幅が狭すぎると波長変換効率は向上するものの、波長変換素子8の温度と角度との調整精度を高くしなければ波長変換効率が不安定になり、増幅レーザ光L5のスペクトル幅が広すぎると波長変換素子8の温度と角度との調整精度は緩和するものの、波長変換効率が低下する。
しかし、本実施の形態2に係るレーザ装置6は、増幅レーザ光L5のスペクトル幅が、波長変換素子8の波長変換効率と温度および角度の調整精度とのバランスがとれるような値に制御されているので、波長変換素子8から、所定の波長変換効率を維持しつつ強度が安定した波長変換光を出力することができる。なお、増幅レーザ光L5のスペクトル幅は、200pm以下にすることで波長変換効率を十分に向上させることが可能であり、50pm以上にすることで温度と角度との調整精度を十分に緩和すること可能である。
なお、上記実施の形態2において、波長変換素子は 、PPLN結晶に限らず、MgOを添加したPPLN(PPMgLN)、周期分極タンタル酸リチウム(PPLT)、周期分極KTP(PPKTP)などの非線形光学結晶からなるものでもよい。
また、上記実施の形態1、2において、光共振器を構成する反射手段は、FBGに限らず、平面光波回路(PLC)の光導波路部に屈折率が周期的に変化するブラッググレーティング部を形成したものでもよいし、誘電体多層膜を用いた反射ミラーでもよい。
また、上記実施の形態1、2において、光増幅媒体は増幅用ダブルクラッド光ファイバであるが、コア部に希土類元素を添加した増幅用シングルモード光ファイバでもよく、希土類元素は、エルビウム(Er)やErとYbを共添加したものでもよい。また、レーザ装置から出力するレーザ光の波長は1083nmに限らず、レーザ光源部において光共振器を構成する反射手段の反射波長帯域の設定によって所望の波長とできる。
本発明の実施の形態1に係るレーザ装置の構成を模式的に表した概略図である。 図1に示した増幅用ダブルクラッド光ファイバの模式的な断面および対応する屈折率プロファイルを示す図である。 図1に示したレーザ装置から出力する増幅レーザ光の強度を40Wになるように制御した場合の、レーザ光源部から出力するレーザ光の強度に対する、レーザ光のスペクトル幅および光増幅部における駆動電流を示した図である。 図1に示したレーザ装置において、スペクトル幅に対する増幅レーザ光の強度を示した図である。 図1に示したレーザ装置から出力する増幅レーザ光のスペクトルを示した図である。 本発明の実施の形態2に係るレーザ装置の構成を模式的に表した概略図である。
符号の説明
1、6 レーザ装置
2 レーザ光源部
21−1〜21−n、31−1〜31−m LD
22、32 定電流源
23−1〜23−n、33−1〜33−m マルチモード光ファイバ
24、34 TFB
251、351 ダブルクラッド光ファイバ
252、352 増幅用ダブルクラッド光ファイバ
253、353 シングルモード光ファイバ
261 入力側FBG
262 出力側FBG
27、37 光カプラ
28、38 PD
39 光出力端子
4 制御部
41 記憶部
42 演算部
43 電流制御部
5 入出力部
7 レーザ光出力部
8 波長変換素子
9 調整機構

Claims (7)

  1. 所定の波長帯域の光を選択的に反射する反射手段を少なくとも一端に備えた光共振器と、前記光共振器内に配置した光増幅媒体とを有し、出力光強度の増加に応じてスペクトル幅が増加するレーザ光を出力するレーザ光源部と、
    前記レーザ光源部に接続し該レーザ光源部が出力した前記レーザ光を増幅して増幅レーザ光を出力する光増幅部と、
    前記レーザ光源部と前記光増幅部とに接続し、前記光増幅部が出力する前記増幅レーザ光が所望のスペクトル幅を有するように前記レーザ光源部が出力する前記レーザ光の強度を制御するとともに該増幅レーザ光を所望の強度に制御する光出力制御部と、
    を備え
    前記光増幅媒体は、コア部に希土類元素を添加した光増幅ファイバであり、前記反射手段は、前記光増幅ファイバに接続したファイバブラッググレーティングであることを特徴とするレーザ装置。
  2. 前記光増幅部は、コア部に希土類元素を添加した第二の光増幅ファイバを備えるとともに、
    前記光増幅ファイバおよび前記第二の光増幅ファイバを励起する半導体レーザと、
    前記半導体レーザを駆動する定電流源と、を更に備え、
    前記スペクトル幅は、前記定電流源から前記半導体レーザに供給される駆動電流によって制御されることを特徴とする請求項1に記載のレーザ装置。
  3. 前記光増幅部の光出力側に配置され、前記光増幅部が出力した前記増幅レーザ光を入力させると該増幅レーザ光とは波長が異なる波長変換光を出力する波長変換素子を備えたことを特徴とする請求項1または2に記載のレーザ装置。
  4. 前記増幅レーザ光のスペクトル幅は200pm以下であることを特徴とする請求項1〜3のいずれか1つに記載のレーザ装置。
  5. 前記増幅レーザ光のスペクトル幅は50pm以上であることを特徴とする請求項4に記載のレーザ装置。
  6. 前記レーザ光源からの出力光強度を測定する第一の受光部と、前記光増幅部からの出力光強度を測定する第二の受光部とを備え、
    前記光出力制御部は、外部から入力される設定強度と設定スペクトル幅に対応した、前記第一および第二の受光部における出力光強度の測定値を満たすように、前記各半導体レーザの出力光強度を制御することを特徴とする請求項2〜5のいずれか一つに記載のレーザ装置。
  7. 前記レーザ光源部の出力光強度を増加させて前記スペクトル幅を増加させた時には、前記光増幅部における前記半導体レーザの駆動電流を減じて前記増幅レーザ光の出力光強度を略一定にすることを特徴とする請求項2〜5のいずれか一つに記載のレーザ装置。
JP2006332304A 2006-12-08 2006-12-08 レーザ装置 Active JP5064777B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006332304A JP5064777B2 (ja) 2006-12-08 2006-12-08 レーザ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006332304A JP5064777B2 (ja) 2006-12-08 2006-12-08 レーザ装置

Publications (2)

Publication Number Publication Date
JP2008147389A JP2008147389A (ja) 2008-06-26
JP5064777B2 true JP5064777B2 (ja) 2012-10-31

Family

ID=39607236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006332304A Active JP5064777B2 (ja) 2006-12-08 2006-12-08 レーザ装置

Country Status (1)

Country Link
JP (1) JP5064777B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258323A (ja) * 2007-04-03 2008-10-23 Furukawa Electric Co Ltd:The パルスレーザ装置
WO2010060435A1 (en) * 2008-11-28 2010-06-03 Nkt Photonics A/S Improved cladding-pumped optical waveguide
CN102388512B (zh) * 2009-05-11 2013-12-04 Ofs菲特尔有限责任公司 基于滤波器光纤的级联拉曼光纤激光器系统
CN103328148B (zh) 2011-01-18 2015-12-09 古河电气工业株式会社 光纤激光装置以及激光照射位置定位方法
JP6210532B2 (ja) * 2013-07-05 2017-10-11 古河電気工業株式会社 レーザ装置
JP6182521B2 (ja) * 2013-12-05 2017-08-16 古河電気工業株式会社 光ファイバレーザ装置
CN107210578A (zh) * 2015-03-10 2017-09-26 国立大学法人东京大学 固体激光装置、光纤放大器系统和固体激光系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083557A (ja) * 1999-09-10 2001-03-30 Nikon Corp レーザ装置
JP4375846B2 (ja) * 1999-09-10 2009-12-02 古河電気工業株式会社 レーザ装置
JP2001332794A (ja) * 1999-09-27 2001-11-30 Cymer Inc 極めて狭い帯域を有するリソグラフィー用種注入f2レーザ
DE10140903A1 (de) * 2000-08-25 2002-05-08 Lambda Physik Ag Oszillator-Verstärker-System mit schmaler Bandbreite
JP2002350914A (ja) * 2001-05-30 2002-12-04 Nikon Corp 光源装置及び光照射装置
JP2003008119A (ja) * 2001-06-26 2003-01-10 Komatsu Ltd 注入同期式又はmopa方式のレーザ装置
JP2003204104A (ja) * 2002-01-10 2003-07-18 Gigaphoton Inc レーザ装置
JP2003224320A (ja) * 2002-01-28 2003-08-08 Komatsu Ltd 狭帯域化レーザ装置用共振器、その設計方法、及び狭帯域化レーザ装置
JP4151476B2 (ja) * 2003-05-14 2008-09-17 ソニー株式会社 レーザ光安定化方法、レーザ光発生装置
EP1675227A1 (en) * 2004-12-08 2006-06-28 PolarOnyx , Inc. Nonlinear polarization pulse mode locked fiber laser at a wavelength of one micron
JPWO2006109730A1 (ja) * 2005-04-07 2008-11-20 松下電器産業株式会社 レーザ光源及び光学装置

Also Published As

Publication number Publication date
JP2008147389A (ja) 2008-06-26

Similar Documents

Publication Publication Date Title
US7764719B2 (en) Pulsed fiber laser
CA2711939C (en) Narrow band fiber raman optical amplifier
US8351111B2 (en) Cascaded raman fiber laser system based on filter fiber
JP5064777B2 (ja) レーザ装置
CN102598437B (zh) 光纤激光器装置
US7477672B2 (en) Mitigation of photodarkening to achieve laser oscillation and amplification with highly doped fibers
KR101726334B1 (ko) 레이저 장치
JP2008122985A (ja) 高出力光パルスの発生装置および発生方法
US11316315B2 (en) Filter element, laser device, fiber laser device, filter method, and method for manufacturing laser device
EP2853008B1 (en) Generation of narrow line width high power optical pulses
JP5096171B2 (ja) レーザ光源装置、画像表示装置及び照明装置
US8982452B2 (en) All-in-one raman fiber laser
Qin et al. Thulium-doped fiber laser with bidirectional output in a ring laser cavity
EP2385593B1 (en) Fibre laser device
Lim et al. Wavelength flexible, kW-level narrow linewidth fibre laser based on 7GHz PRBS phase modulation
JP2017107966A (ja) 光源装置及び情報取得装置
JP2008172166A (ja) ノイズライクレーザ光源および広帯域光源
US8654800B2 (en) Method and apparatus for controlling mode coupling in high power laser system
JP4897960B2 (ja) パルスレーザ装置
Feng et al. High power Raman fiber lasers
JP2018174206A (ja) レーザ装置
US20230119153A1 (en) Architecture for high-power thulium-doped fiber amplifier
Jacquemet et al. Small linewidth CW high power PM Yb-fiber laser around 1150 nm and yellow generation
Honzátko et al. Progress in thulium doped fiber lasers and aplifiers
Paschotta Erbium-doped Fiber Amplifiers.”

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R151 Written notification of patent or utility model registration

Ref document number: 5064777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350