CN102437180B - 超高压锗硅hbt器件及其制造方法 - Google Patents

超高压锗硅hbt器件及其制造方法 Download PDF

Info

Publication number
CN102437180B
CN102437180B CN201110370460XA CN201110370460A CN102437180B CN 102437180 B CN102437180 B CN 102437180B CN 201110370460X A CN201110370460X A CN 201110370460XA CN 201110370460 A CN201110370460 A CN 201110370460A CN 102437180 B CN102437180 B CN 102437180B
Authority
CN
China
Prior art keywords
germanium
collector region
buried regions
silicon
counterfeit buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110370460XA
Other languages
English (en)
Other versions
CN102437180A (zh
Inventor
刘冬华
石晶
段文婷
钱文生
胡君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Hua Hong NEC Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Hua Hong NEC Electronics Co Ltd filed Critical Shanghai Hua Hong NEC Electronics Co Ltd
Priority to CN201110370460XA priority Critical patent/CN102437180B/zh
Publication of CN102437180A publication Critical patent/CN102437180A/zh
Priority to US13/680,506 priority patent/US8748238B2/en
Application granted granted Critical
Publication of CN102437180B publication Critical patent/CN102437180B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66242Heterojunction transistors [HBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • H01L29/7378Vertical transistors comprising lattice mismatched active layers, e.g. SiGe strained layer transistors

Abstract

本发明公开了一种超高压锗硅HBT器件,包括位于两个浅槽隔离结构之间的集电区,其特征是,所述浅槽隔离结构的底部具有赝埋层,所述集电区的两侧与赝埋层相连;所述浅槽隔离结构的上方具有锗硅场板;所述赝埋层通过一个穿越浅槽隔离结构的接触孔电极引出,所述锗硅场板通过另一个接触孔电极引出,这两个接触孔电极相连接作为集电极。本发明还公开了所述超高压锗硅HBT器件的制作方法。本发明所述锗硅HBT器件具有较小的尺寸,并具有较高的击穿电压。

Description

超高压锗硅HBT器件及其制造方法
技术领域
本发明涉及一种HBT(heterojunction bipolar transisters,异质结双极晶体管)器件,特别是涉及一种锗硅(SiGe)HBT器件。
背景技术
由于现代通信对高频带下高性能、低噪声和低成本的射频组件的需求,传统的硅材料器件无法满足性能规格、输出功率和线性度的要求,锗硅HBT器件则在更高、更宽的频段的功放中发挥重要作用。与砷化镓器件相比,虽然在频率上还处劣势,但锗硅HBT器件凭着更好的热导率和良好的衬底机械性能,较好地解决了功放的散热问题,锗硅HBT器件还具有更好的线性度、更高集成度。另一方面,锗硅HBT器件仍然属于硅基技术,和CMOS工艺有良好的兼容性,锗硅BiCMOS工艺为功放与逻辑控制电路的集成提供极大的便利,也降低了工艺成本。
国际上目前已经广泛采用锗硅HBT器件作为高频大功率功放器件应用于无线通讯产品,如手机中的功率放大器和低噪声放大器等。为了提高射频功率放大器的输出功率,在器件正常工作范围内通过提高工作电流和提高工作电压都是有效的方式。对于用于锗硅HBT器件,高耐压器件可使电路在相同功率下获得较小电流,从而降低功耗,因而需求广泛。因此在如何保持器件的特征频率的同时进一步提高锗硅HBT器件的耐压越来越成为锗硅HBT器件的研究热点。
发明内容
本发明所要解决的技术问题是提供一种具有高耐压能力的超高压锗硅HBT器件。为此,本发明还要提供所述超高压锗硅HBT器件的制造方法。
为解决上述技术问题,本发明超高压锗硅HBT器件包括位于两个浅槽隔离结构之间的集电区,所述浅槽隔离结构的底部具有赝埋层,所述集电区的两侧与赝埋层相连;所述浅槽隔离结构的上方具有锗硅场板;所述赝埋层通过一个穿越浅槽隔离结构的接触孔电极引出,所述锗硅场板通过另一个接触孔电极引出,这两个接触孔电极相连接作为集电极。
所述超高压锗硅HBT器件的制造方法包括如下步骤:
第1步,在硅片上刻蚀沟槽,在沟槽底部通过离子注入形成赝埋层;
第2步,以介质填充沟槽形成浅槽隔离结构,将两个浅槽隔离结构之间的有源区通过离子注入形成集电区,集电区两侧与所述赝埋层相连;
第3步,在硅片表面外延生长一层锗硅外延层;
第4步,在锗硅外延层之上先后淀积介质层和多晶硅,通过光刻和刻蚀工艺形成T形多晶硅发射区及其两肩膀部位下方的介质层;
第5步,采用光刻和刻蚀工艺刻蚀所述锗硅外延层,在浅槽隔离结构上方形成锗硅场板,在集电区上方形成锗硅基区;所述锗硅场板在赝埋层与集电区的交界处的正上方;
第6步,在多晶硅发射区的两侧、锗硅场板的两侧、锗硅基区的两侧形成侧墙;
第7步,在硅片上淀积层间介质,开设第一通孔连接赝埋层,第二通孔连接锗硅场板,在各个通孔中填充金属形成接触孔电极,第一通孔和第二通孔中的接触孔电极相连接作为集电极。
传统的锗硅HBT器件在集电区下方具有埋层(Buried Layer),需要在有源区中设置接触孔电极连接该埋层从而引出集电区,因而器件尺寸较大。
本发明的超高压锗硅HBT器件弃用了集电区下方的埋层结构,改在有源区两侧的隔离结构下方设置埋层,称作赝埋层(Pseudo Buried Layer),集电区的两侧与该赝埋层相连。这样便可在隔离结构中开设接触孔电极连接赝埋层从而引出集电区,极大地缩减了器件尺寸和面积。
传统的锗硅HBT器件的BC结(基区和集电区之间的PN结)为一维耗尽区模式,即只有从锗硅基区向衬底方向的纵向延伸。
本发明的超高压锗硅HBT器件中,赝埋层为n型重掺杂,集电区为轻掺杂。所述集电区的深度大于隔离结构,且集电区两侧连接两个赝埋层,这也意味着集电区包括部分隔离结构以下区域。这使得BC结改为两维分布,既有从锗硅基区向衬底方向的纵向延伸,也有从锗硅基区向赝埋层方向的横向延伸,提高了BC结的结击穿电压,从而提高了锗硅HBT器件的击穿电压BVCEO。
传统的锗硅HBT器件在隔离结构上方没有半导体场板。
本发明的超高压锗硅HBT器件中,在隔离结构上方新引入了锗硅场板,优选地该锗硅场板在赝埋层与集电区的交界处的正上方。该锗硅场板改善了集电区电场分布,从而进一步提高锗硅HBT器件的击穿电压。
附图说明
图1是本发明超高压锗硅HBT器件的结构示意图;
图2a~图2f是本发明超高压锗硅HBT器件的制造方法的各步骤示意图。
图中附图标记说明:
101为衬底;102为氧化层;103为内侧墙;107为赝埋层;201为浅槽隔离结构;202为集电区;301为锗硅外延层;401为介质层;402为T形多晶硅发射区;501为锗硅场板;502为锗硅基区;601为多晶硅发射区侧墙;602为锗硅场板侧墙或锗硅基区侧墙;701为第一通孔;702为第二通孔;703为第三通孔;704为第四通孔。
具体实施方式
请参阅图1,这是本发明超高压锗硅HBT器件的一个实施例。与传统的锗硅HBT器件相比,其区别主要体现在如下几点:
其一,传统的锗硅HBT器件在集电区之下为埋层。本发明在集电区之下没有埋层,在集电区两侧的隔离结构底部具有赝埋层,集电区的两侧与赝埋层相连接。
其二,传统的锗硅HBT器件在隔离结构之上没有半导体场板。本发明在隔离结构之上具有锗硅场板。
其三,传统的锗硅HBT器件是在有源区中具有接触孔电极,将集电区下方的埋层引出作为集电极。本发明是通过一个接触孔电极将赝埋层引出,通过另一个接触孔电极将锗硅场板引出,两者相连接作为集电极,在有源区中没有接触孔电极。
本发明超高压锗硅HBT器件的制造方法包括如下步骤:
第1步,请参阅图2a,在半导体衬底(通常为硅衬底)101上刻蚀沟槽。然后可选地在硅片表面淀积一层氧化硅,并采用各向异性刻蚀工艺,使衬底101表面和沟槽底部保留有一薄层的氧化硅102,并在沟槽侧壁形成氧化硅内侧墙103。接着在沟槽的底部进行高剂量、低能量的n型杂质离子注入,从而在沟槽底部形成n型赝埋层107。所述n型杂质例如采用磷,高剂量例如为1×1014~1×1016原子每平方厘米,低能量例如为2~50KeV。由于n型膺埋层107的离子注入能量较低,其与衬底101的结面积较小,因此与衬底101的寄生电容较小。
第2步,请参阅图2b,在沟槽中填充介质,优选为氧化硅,其与沟槽底部和侧壁的氧化硅102、103融为一体,不再区分。经平坦化工艺后,在沟槽中形成隔离结构201。所述平坦化工艺例如为干法反刻工艺或化学机械抛光(CMP)工艺,其刻蚀或研磨终点为衬底101上表面。接着在有源区(即隔离结构201之间的衬底101)进行中低剂量、中高能量的n型杂质离子注入,从而形成集电区202。所述n型杂质例如采用磷,中低剂量为2×1012~5×1014原子每平方厘米,中高能量为30~350KeV。集电区202的深度大于浅槽隔离结构201的深度,集电区202的两侧分别与赝埋层107相连。
第3步,请参阅图2c,采用外延工艺在浅槽隔离结构201和集电区202之上生长一层锗硅外延层301。所述锗硅外延层301为p型掺杂,掺杂浓度为1×1019~7×1019原子每立方厘米。例如在外延生长过程中进行原位掺杂(在位掺杂),p型杂质优选为硼。
第4步,请参阅图2d,在锗硅外延层301之上淀积一层介质层401,例如氧化硅,采用光刻和刻蚀工艺在该介质层401上形成一个发射区窗口。所述发射区窗口即T形发射区402与锗硅外延层301相接触的区域,该发射区窗口的底部为锗硅外延层301。然后在该介质层401之上淀积一层多晶硅402,所述多晶硅402可以是原位掺杂(在位掺杂)n型杂质,也可以是淀积后进行高剂量的n型杂质离子注入,还可以两者皆有之。优选地,在离子注入后还需进行退火工艺。该多晶硅402中的n型杂质为砷或磷,其掺杂浓度在2×1015原子每立方厘米以上。然后采用光刻和刻蚀工艺对所述多晶硅402及其下方的介质层401进行刻蚀,仅保留集电区202的上表面的部分区域之上的介质层401和多晶硅402(作为发射区)。多晶硅发射区402呈T形,其两个肩膀部位下方为介质层401。
请5步,请参阅图2e,采用光刻和刻蚀工艺对锗硅外延层301进行刻蚀,在浅槽隔离结构201之上形成锗硅场板501,在集电区202之上形成锗硅基区502。锗硅基区502的两端可以落在浅槽隔离结构201之上。但锗硅场板501和锗硅基区502之间不相连。所述锗硅场板501在赝埋层107与集电区202的交界处的正上方。
第6步,请参阅图2f,淀积一层介质材料,例如为氧化硅,并采用干法反刻工艺在介质层401和多晶硅发射区402的两侧形成侧墙601,在锗硅场板501和锗硅基区502的两侧形成侧墙602。
第7步,请参阅图1,淀积层间介质(ILD)(未图示),并采用光刻和刻蚀工艺在层间介质和浅槽隔离结构201中开设通孔。第一通孔701穿越层间介质和浅槽隔离结构201,底部为赝埋层107。第二通孔702穿越层间介质,底部为锗硅场板501。第三通孔703穿越层间介质,底部为锗硅基区502。第四通孔704穿越层间介质,底部为多晶硅发射区402。在所有通孔中填充金属形成接触孔电极。第一通孔701和第二通孔702中的电极相连作为集电极。第三通孔703中的电极作为基极。第四通孔704中的电极作为发射极。由于第一通孔701距离器件很近,避免了过大的集电极电阻,也减小了集电极的寄生电容。
所述在通孔中填充金属形成接触孔电极,例如采用钨塞工艺,包括:首先采用物理气相淀积(PVD)工艺在整个硅片表面淀积一层金属钛,钛衬垫于通孔的底部及侧壁上。其次采用化学气相淀积(CVD)工艺在钛表面淀积一层氮化钛。接着采用CVD工艺在硅片上淀积金属钨,钨填满各个通孔形成钨塞。最后采用化学机械抛光等平坦化工艺研磨钨,直至到达层间介质的上表面。
以上仅为本发明的优选实施例,并不用于限定本发明。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种超高压锗硅HBT器件,包括位于两个浅槽隔离结构之间的集电区,其特征是,所述浅槽隔离结构的底部具有赝埋层,所述集电区的两侧与赝埋层相连;所述浅槽隔离结构的上方具有锗硅场板;所述赝埋层通过一个穿越浅槽隔离结构的接触孔电极引出,所述锗硅场板通过另一个接触孔电极引出,这两个接触孔电极相连接作为集电极。
2.根据权利要求1所述的超高压锗硅HBT器件,其特征是,所述赝埋层的掺杂浓度大于集电区的掺杂浓度。
3.根据权利要求1所述的超高压锗硅HBT器件,其特征是,所述锗硅场板在赝埋层和集电区的交界处的正上方。
4.如权利要求1所述的超高压锗硅HBT器件的制造方法,其特征是,包括如下步骤:
第1步,在硅片上刻蚀沟槽,在沟槽底部通过离子注入形成赝埋层;
第2步,以介质填充沟槽形成浅槽隔离结构,将两个浅槽隔离结构之间的有源区通过离子注入形成集电区,集电区两侧与所述赝埋层相连;
第3步,在硅片表面外延生长一层锗硅外延层;
第4步,在锗硅外延层之上先后淀积介质层和多晶硅,通过光刻和刻蚀工艺形成T形多晶硅发射区及其两肩膀部位下方的介质层;
第5步,采用光刻和刻蚀工艺刻蚀所述锗硅外延层,在浅槽隔离结构上方形成锗硅场板,在集电区上方形成锗硅基区;所述锗硅场板在赝埋层与集电区的交界处的正上方;
第6步,在多晶硅发射区的两侧、锗硅场板的两侧、锗硅基区的两侧形成侧墙;
第7步,在硅片上淀积层间介质,开设第一通孔连接赝埋层,第二通孔连接锗硅场板,在各个通孔中填充金属形成接触孔电极,第一通孔和第二通孔中的接触孔电极相连接作为集电极。
5.根据权利要求4所述的超高压锗硅HBT器件的制造方法,其特征是,所述方法第1步中,形成赝埋层的离子注入剂量为1×1014~1×1016原子每平方厘米,能量为2~50KeV。
6.根据权利要求4所述的超高压锗硅HBT器件的制造方法,其特征是,所述方法第2步中,形成集电区的离子注入剂量为2×1012~5×1014原子每平方厘米,能量为30~350KeV。
7.根据权利要求4所述的超高压锗硅HBT器件的制造方法,其特征是,所述方法第3步中,在外延生长锗硅外延层的过程中进行原位掺杂,使锗硅外延层的掺杂浓度为1×1019~7×1019原子每立方厘米。
8.根据权利要求4所述的超高压锗硅HBT器件的制造方法,其特征是,所述方法第1步中,形成赝埋层的离子注入为n型杂质;所述方法第2步中,形成集电区的离子注入为n型杂质;所述方法第3步中,锗硅外延层为p型掺杂。
CN201110370460XA 2011-11-21 2011-11-21 超高压锗硅hbt器件及其制造方法 Active CN102437180B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201110370460XA CN102437180B (zh) 2011-11-21 2011-11-21 超高压锗硅hbt器件及其制造方法
US13/680,506 US8748238B2 (en) 2011-11-21 2012-11-19 Ultra high voltage SiGe HBT and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110370460XA CN102437180B (zh) 2011-11-21 2011-11-21 超高压锗硅hbt器件及其制造方法

Publications (2)

Publication Number Publication Date
CN102437180A CN102437180A (zh) 2012-05-02
CN102437180B true CN102437180B (zh) 2013-09-11

Family

ID=45985160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110370460XA Active CN102437180B (zh) 2011-11-21 2011-11-21 超高压锗硅hbt器件及其制造方法

Country Status (2)

Country Link
US (1) US8748238B2 (zh)
CN (1) CN102437180B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035688B (zh) * 2012-05-08 2015-06-03 上海华虹宏力半导体制造有限公司 一种锗硅hbt器件及其制造方法
CN103050521B (zh) * 2012-05-23 2015-02-04 上海华虹宏力半导体制造有限公司 锗硅hbt器件的集电区引出结构及其制造方法
CN103035689B (zh) 2012-05-23 2015-06-03 上海华虹宏力半导体制造有限公司 锗硅hbt的集电区引出结构及其制造方法
CN103811540B (zh) * 2012-11-15 2016-08-10 上海华虹宏力半导体制造有限公司 锗硅hbt晶体管及其版图结构和其制造方法
US20140292415A1 (en) * 2013-03-26 2014-10-02 Skyworks Solutions, Inc. Semiconductor device heat dissipation using high thermal conductivity dielectric layer
US20140347135A1 (en) 2013-05-23 2014-11-27 Nxp B.V. Bipolar transistors with control of electric field
US10553633B2 (en) * 2014-05-30 2020-02-04 Klaus Y.J. Hsu Phototransistor with body-strapped base
EP3041052A1 (en) * 2015-01-05 2016-07-06 Ampleon Netherlands B.V. Semiconductor device comprising a lateral drift vertical bipolar transistor
US9324846B1 (en) 2015-01-08 2016-04-26 Globalfoundries Inc. Field plate in heterojunction bipolar transistor with improved break-down voltage
US10170907B2 (en) * 2016-05-31 2019-01-01 Taiwan Semiconductor Manufacturing Co., Ltd. Dynamic ESD protection scheme
US10749017B1 (en) 2019-02-12 2020-08-18 Qualcomm Incorporated Heterojunction bipolar transistors with field plates
US20230178638A1 (en) * 2021-12-06 2023-06-08 Globalfoundries Singapore Pte. Ltd. Bipolar transistors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102044560A (zh) * 2009-10-16 2011-05-04 上海华虹Nec电子有限公司 超高频硅锗异质结双极晶体管
CN102097465A (zh) * 2009-12-15 2011-06-15 上海华虹Nec电子有限公司 BiCMOS工艺中的寄生垂直型PNP三极管及其制造方法
CN102117827A (zh) * 2009-12-31 2011-07-06 上海华虹Nec电子有限公司 BiCMOS工艺中的寄生垂直型PNP器件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054344A (en) * 1998-10-30 2000-04-25 Taiwan Semiconductor Manufacturing Company OTP (open trigger path) latchup scheme using buried-diode for sub-quarter micron transistors
JP4216634B2 (ja) * 2003-04-23 2009-01-28 株式会社日立製作所 半導体装置
JP2005045016A (ja) * 2003-07-22 2005-02-17 Nec Electronics Corp 半導体集積回路
US8273610B2 (en) * 2010-11-18 2012-09-25 Monolithic 3D Inc. Method of constructing a semiconductor device and structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102044560A (zh) * 2009-10-16 2011-05-04 上海华虹Nec电子有限公司 超高频硅锗异质结双极晶体管
CN102097465A (zh) * 2009-12-15 2011-06-15 上海华虹Nec电子有限公司 BiCMOS工艺中的寄生垂直型PNP三极管及其制造方法
CN102117827A (zh) * 2009-12-31 2011-07-06 上海华虹Nec电子有限公司 BiCMOS工艺中的寄生垂直型PNP器件

Also Published As

Publication number Publication date
US8748238B2 (en) 2014-06-10
CN102437180A (zh) 2012-05-02
US20130126945A1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
CN102437180B (zh) 超高压锗硅hbt器件及其制造方法
CN103563066B (zh) 互补双极型反相器
CN102522425B (zh) 超高压锗硅hbt晶体管器件的结构及制备方法
CN102254946B (zh) 一种射频横向扩散n型mos管及其制造方法
CN102088029B (zh) SiGe BiCMOS工艺中的PNP双极晶体管
CN102376776A (zh) BiCMOS工艺中的寄生PIN二极管及制造方法
CN101764101B (zh) Bcd集成工艺
CN103137676B (zh) 一种锗硅异质结双极晶体管及其制造方法
CN103035690B (zh) 击穿电压为7-10v锗硅异质结双极晶体管及其制备方法
CN101819994A (zh) SiGe异质结双极型晶体管及其制备方法
US8907453B2 (en) Parasitic lateral PNP transistor and manufacturing method thereof
CN103035689B (zh) 锗硅hbt的集电区引出结构及其制造方法
CN103094329A (zh) 具有深赝埋层的锗硅hbt器件及其制造方法
CN103178121B (zh) Pin二极管及其制造方法
CN102544082B (zh) 锗硅异质结npn三极管器件及制造方法
CN103094318B (zh) 一种SiGe HBT器件结构及其制造方法
CN102412286B (zh) 一种高速锗硅hbt器件结构及其制造方法
CN103178100B (zh) 纵向pnp型三极管及其制造方法
CN103050518B (zh) 锗硅异质结双极型晶体管及其制造方法
CN103050519B (zh) 锗硅hbt器件及制造方法
CN103137666B (zh) 一种纵向pnp双极晶体管及其制造方法
CN103137675A (zh) 具有高击穿电压的锗硅异质结双极晶体管结构及其制作方法
CN103050520B (zh) 一种SiGe HBT器件及其制造方法
CN103094328B (zh) 一种SiGe BiCMOS工艺中的寄生PNP器件结构及其制造方法
CN103066115A (zh) 垂直寄生型pnp三极管及制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SHANGHAI HUAHONG GRACE SEMICONDUCTOR MANUFACTURING

Free format text: FORMER OWNER: HUAHONG NEC ELECTRONICS CO LTD, SHANGHAI

Effective date: 20140207

COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 201206 PUDONG NEW AREA, SHANGHAI TO: 201203 PUDONG NEW AREA, SHANGHAI

TR01 Transfer of patent right

Effective date of registration: 20140207

Address after: 201203 Shanghai city Zuchongzhi road Pudong New Area Zhangjiang hi tech Park No. 1399

Patentee after: Shanghai Huahong Grace Semiconductor Manufacturing Corporation

Address before: 201206, Shanghai, Pudong New Area, Sichuan Road, No. 1188 Bridge

Patentee before: Shanghai Huahong NEC Electronics Co., Ltd.

TR01 Transfer of patent right