CN102396090B - 用于可充电锂电池的高电压负极活性材料 - Google Patents

用于可充电锂电池的高电压负极活性材料 Download PDF

Info

Publication number
CN102396090B
CN102396090B CN201080014087.8A CN201080014087A CN102396090B CN 102396090 B CN102396090 B CN 102396090B CN 201080014087 A CN201080014087 A CN 201080014087A CN 102396090 B CN102396090 B CN 102396090B
Authority
CN
China
Prior art keywords
active material
carbon
mole
compound
ramsdellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080014087.8A
Other languages
English (en)
Other versions
CN102396090A (zh
Inventor
麦克勒·范索尔纳特
劳尔·蒙康迪
克莱尔·威勒唯勒
乔塞特·奥列弗-富尔卡德
琼-克劳德·朱马斯
斯思利·泰西耶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Montpellier Ii, University of
Umicore NV SA
Centre National de la Recherche Scientifique CNRS
Saft Groupe SAS
Original Assignee
Montpellier Ii, University of
Umicore NV SA
Centre National de la Recherche Scientifique CNRS
Saft Groupe SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montpellier Ii, University of, Umicore NV SA, Centre National de la Recherche Scientifique CNRS, Saft Groupe SAS filed Critical Montpellier Ii, University of
Publication of CN102396090A publication Critical patent/CN102396090A/zh
Application granted granted Critical
Publication of CN102396090B publication Critical patent/CN102396090B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/08Intercalated structures, i.e. with atoms or molecules intercalated in their structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/41Particle morphology extending in three dimensions octahedron-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及用于二次可充电锂电池负极的活性材料,其中所述活性材料基于具有通式Li2Ti3O7或Li2.28Ti3.43O8的掺杂或未掺杂的含碳锂钛斜方锰矿氧化物。所述活性材料包含具有通式Li2-4cCcTi3O7(其中0.1<c<0.5)的经碳取代的斜方锰矿相,及多于0.1摩尔%的具有通式Li1+xTi2-xO4(其中0<x<0.33)的尖晶石相。

Description

用于可充电锂电池的高电压负极活性材料
技术领域
本发明涉及用于二次可充电锂电池负极的活性材料,其中所述活性材料基于具有通式Li2Ti3O7或Li2.28Ti3.43O8的掺杂或未掺杂的含碳锂钛斜方锰矿氧化物。
背景技术
用于可充电锂电池的阳极材料一般系选自碳族。碳材料在极端条件下可能有安全问题。首先,当在非常快的速率和/或在低温下充电时,Li会沉积于碳表面且因此锂枝晶形成会引起软短路。其次,误用的过度加热引起由电解液溶剂于石墨电位的还原产物所形成的钝化层溶解;且所产生的溶剂连续还原可能是热失控的第一个步骤。
已经做了许多努力以找到替代性电化学活性阳极材料以代替石墨。特别是,锂钛氧化物,如Journal of Electrochemical Society 141(1994)L147中叙述的尖晶石相Li4Ti5O12,或Material Research Bulletin32(1997)993中记载的斜方锰矿相Li2Ti3O7,由于对比于碳的如下数个优点而被提出:即相对于Li的1.5V左右的较高平均电压,其改善循环时的安全性,以及低的不可逆损失和较低的极化度。由于尖晶石到岩盐的相转变该尖晶石结构在两相过程中将锂嵌入,其代表相对于Li平线区为1.55V,且获得175Ah/kg的最大电容量,而该斜方锰矿以平坦S-形充电-放电曲线将锂局部规整地嵌入固态溶液,其对应于相对于Li为1至2V的单相过程。
锂钛氧化物(Li2Ti3O7)由于低制造成本及钛的非毒性而被视为有前途的负极材料。尽管理论电容量为198Ah/kg,事实上可逆电容量对于低电流密度(C/15)为介于120至130Ah/kg之间,在较高电流密度(C)下其仅达到110Ah/kg。结果可逆电容量、锂嵌入后所观察到的极化度及烧制过程所需的高温强烈限制此化合物的应用领域。
可使用陶瓷途径在Li2Ti3O7中使用Fe3+取代小量的Ti4+而达到较低的合成温度以及在低电流密度下的较好的循环性。然而,第一个放电曲线由于Fe3+/Fe2+转变而显示平线区,与Li2Ti3O7相比,其限制了可逆电容量,且其它性能没有改善。根据EP1623473 B1,当所述锂钛氧化物具有斜方锰矿结构时可逆电容量可改善至140Ah/kg,根据通式Li2+VTi3-WFexMyM′zO7-α,是被一或两种如下元素共同取代:Ti3+、Co2+、Co3+、Ni2+、Ni3+、Cu2+、Mg2+、Al3+、In3+、Sn4+、Sb3+、Sb5+。经取代的材料是在降低的合成温度下获得的,其降低了生产成本。
此外,根据PCT/EP2008/009763,当活性材料含有具有通式Li2+V-4CCCTi3-WFexMyM′zO7-α的富含碳的相,且含有如下元素中的两种:Ti3+、Co2+、Co3+、Ni2+、Ni3+、Cu2+、Mg2+、Al3+、In3+、Sn4+、Sb3+、Sb5+时,比可逆电容量提高至190Ah/kg,接近斜方锰矿钛酸锂的理论值。电化学结果显示具有二阶电压分布(two-step voltage profile)的电化学曲线,一个介于2.2至1.6V之间且第二个在1.5V以下。此材料是通过下列方式获得:研磨及混合锂、钛和铁的化合物、C前体化合物及M和M′的化合物,然后使在高温下在中性气氛中的烧结过程。
发明内容
本发明的目的是就高能及高比功率的方面进一步改善性能,同时顾及使用安全性及环境,这都在合理的成本下实现。
该目的通过一种用于锂电池的复合负极活性材料实现,其包含具有通式Li2-4cCcTi3O7的经碳取代的斜方锰矿相,其中0.1<c<0.5,及具有通式Li1+xTi2-xO4的尖晶石相,其中0<x≤0.33,所述活性材料包含多于0.1摩尔%、且优选多于1摩尔%的尖晶石相。在一个实施方式中,该复合负极活性材料包含至少99摩尔%、且优选至少99.9摩尔%的所述经碳取代的斜方锰矿相(其具有通式Li2-4cCcTi3O7)及所述尖晶石相(其具有通式Li1+xTi2-xO4,其中0<x≤0.33)两者。
也请求保护的是所述经碳取代的斜方锰矿相另外包含Fe、M及M′元素,并具有通式Li2+v-4cCcTi3-wFexMyM′zO7-α,其中M及M′为具有介于0.5至
Figure BPA00001443816600031
之间的离子半径并与氧形成八面体结构的金属离子;其中-0.5≤v≤+0.5;y+z>0;x+y+z=w及0<w≤0.3;0.1<c≤(2+v)/4;及α是由关系式2α=-v+4w-3x+ny-n′z所得的M及M′的形式氧化数n及n′,其中n和n′分别为M和M′的形式氧化数。优选M及M′为选自Ti3+、Co2+、Co3+、Ni2+、Ni3+、Cu2+、Mg2+、Al3+、In3+、Sn4+、Sb3+、Sb5+的不同金属;且优选M=Ni2+及M′=Al3+
上述的活性材料优选具有1.0至1.5重量%的碳含量。也优选介于5至16摩尔%之间、且甚至介于8至11摩尔%之间的尖晶石含量。
本发明也涵盖一种具有前述阳极材料的二次可充电电池。
本发明的负极活性材料系由主要含有掺杂或未掺杂的含碳Li2Ti3O7斜方锰矿相及尖晶石型Li1+xTi2-xO4(其中0<x≤0.33)的第二相的复合材料构成。若x=0.33,所述第二相由Li4Ti5O12构成。所述斜方锰矿结构包含由八面体环境中的Ti和Li所组成的晶格以及四面体环境中部分被Li原子占据的通道。结构锂和钛的分布可以用如下通式描述:Li1.722.28)c[Ti3Li0.57]1O8,其中锂原子分布于通道(c)及八面体隙位(1)中,且通道中有2.28个空位在电化学反应期间供锂自由嵌入。被引入该结构的碳能借着在3个氧平面中形成CO3 2-基团而局部取代来自该通道的四面体的锂原子。该斜方锰矿相中的锂缺乏通过形成富含锂的相,Li1+xTi2-xO4,0<x≤0.33,而予以补偿。
可以建立最适碳含量以便提供最大的尖晶石相。此最适值位于1至1.5重量%C,其给出11至16摩尔%的尖晶石含量。最终过多的碳将部分沉积在晶粒间的区段成为涂层。尽管本发明的主要实施方式的活性材料的特别优点是不需要添加掺杂剂至该斜方锰矿相,也不需要用其它元素取代Ti以获得比PCT/EP2008/009763中提到的更高的电容量,特别的理由可能是该斜方锰矿相包含掺杂剂或元素。例如,较低合成温度和在低电流密度下的较好循环性可通过在Li2Ti3O7中使用Fe3+取代小量的Ti4+而达到;且元素M及M′可通过提高可供嵌入锂的隙位数目或通过使现存的空隙位更易于进入从而进一步改善电化学性能。在EP1623473 B1中提及其它潜在优点。
在本发明的另一实施方式中,提供了一种包含所述负极活性材料的可充电锂电池。此电池包含上述的阳极活性材料;能可逆嵌入/释出锂的已知阴极活性材料,如由氧化物中包含嵌入锂的化合物所构成之高电压正极活性材料(例如LiCoO2、LiNi0.33Mn0.33Co0.33O2、LiNi0.80Co0.15Al0.05O2或LiMn2O4)及磷酸盐材料(例如LiFePO4);以及已知的电解液,如下文中将描述的含有LiPF6的溶液。使用该材料作为阳极的可充电锂电池在高的电流密度下显示出提高的电容量,其中平滑电化学曲线在1至2.5V的范围内,且与现有技术的Li-Ti-O斜方锰矿化合物相比在循环之后具有高的电容量保持率。在10A/kg的电流密度下,在上述1至2.5V的范围内获得180至200Ah/kg的理论电容量值。
本发明另外涵盖一种制造上述负极活性材料的方法,其包含如下步骤:藉由球磨研磨及混合锂化合物、钛化合物、碳前体化合物和最终铁化合物与M和M′化合物,然后是在高于950℃的温度下的烧结过程,以及所述经烧结的材料的骤冷步骤,其中所述烧结过程是在包含还原剂的气体气氛中进行。所述还原剂优选为氢、碳氢化合物及一氧化碳中的一种或多种。也优选地,所述包含还原剂的气体气氛由氩气构成。尤其优选由具有1至10体积%H2、且甚至3至10体积%H2的氩-氢混合物构成的气体气氛。此方法快速且其成本低。
附图说明
本发明进一步揭示于如下详细说明及附图中:
图1:本发明(实施例2)的活性复合材料在C/10速率下的恒电流充电/放电曲线(虚线),及其导函数dx/dV(实线)。在此图中x是指嵌入的锂数目且V是指电位。
图2a、2b:以不同碳含量所获得的合成材料的XRD。
图3:含有0%碳(反例1)和1.09重量%碳(实施例3)的合成材料的主峰的XRD峰分布。
图4:所述斜方空间群Pbnm中所精算的晶格参数Δa/a、Δb/b和Δc/c随碳含量的变化。
图5:反例1及实施例2至6在C/10和C速率下以Ah/kg为单位的电容值。
图6:本发明(实施例3)和反例7(通过异位混合(ex-situ mixing)所获得的复合材料)的活性材料在C/10速率下在1至2.5V范围内的恒电流充电/放电曲线。
图7:本发明(实施例8)的活性复合材料在C/10速率下的恒电流充电/放电曲线(虚线),及其导函数dx/dV(实线)。在此图中x是指嵌入的锂数目且V是指电位。
具体实施方式
本发明的负极活性材料是含有两个活性相-斜方锰矿及尖晶石的复合材料,其是通过碳局部取代通道中的锂四面体隙位形成。经修饰的斜方锰矿是主要活性相并起到支撑材料的作用。刚形成的复合材料主要在1至2.5V的范围内将锂局部规整地嵌入固态溶液。所述负极材料提供高重量及体积电容结果(在570至635Ah/m3下,介于180至200Ah/kg之间)并保持了与未掺杂的材料相关的优点:
●低可逆电容量,介于5至15Ah/kg之间;
●优良的循环能力;
●在C/10速率下介于50至90mV之间的低极化度。
可优选使用如下步骤以陶瓷工艺原位制造根据本发明的化合物:
●将包含锂化合物、钛化合物、金属元素化合物(若有的话)及碳化合物的前体混合物在行星式球磨机中反应性机械研磨及混合的步骤;其使用限定的参数条件(容器负载、珠子数目、研磨速度及时间);
●在经控制的气氛之下使用高速温度跃升直到反应温度的一步热处理;
●在反应温度下的平线区;
●快速骤冷步骤直到在经控制的气氛之下达到室温为止。
在此方法中,各金属元素可选自金属氧化物或该金属氧化物的无机或有机固态前体。优选考虑如下氧化物:氧化锂(Li2O)或其前体和氧化钛(锐钛矿TiO2)或两种氧化钛相、锐钛矿和金红石的混合物。在所述前体混合物中的各氧化物的比例对应于所述支撑材料的化学计量比例。
所述碳化合物优选选自含有短链(即蔗糖(sucrose)、蔗糖(saccharose))或长链(即纤维素、淀粉)或环状链(即抗坏血酸)的已知固态烃质化合物。优选为如糖(oses)或其化合物的已知烃质相,例如葡萄糖、果糖、蔗糖、抗坏血酸、聚糖苷(polyosides)(其对应于如淀粉、纤维素及肝醣的糖的缩合)。取决于所用的烃质化合物,将热处理期间碳分解为气流中的CO及CO2列入考虑而计算该复合材料中的碳比例。若是晶粒间区段优选过量可调整该碳比例。晶粒交点处形成及沉积热成碳起到导电涂层的作用,改善该材料的导电性。
在还原气氛下,在高温下,即高于950℃、并优选介于980℃至1050℃之间进行热处理1小时30分钟至2小时,以获得高结晶性及有限的粒径。然后通过骤冷步骤降至室温,其中所产生的相为亚稳的。在该高温步骤的期间以活性碳取代Li2Ti3O7相中(掺杂)的锂(且因而使此结构中可能有最大量的碳),其能产生共价键合以形成Ti-O-C。此连接表现得像在3氧平面中的CO3 2-型基团。该斜方锰矿相中的锂缺乏是通过尖晶石型的富含锂的相,Li1+xTi2-xO4(其中0<x≤0.33)的形成予以补偿。
Ar/H2气体的使用促进仅由两种电化学活性相(即斜方锰矿及尖晶石相)组成的复合物的形成。相信气体混合物中的还原剂H2使混合价数的钛(Ti3+/Ti4+)能以固态溶液形成于该斜方锰矿相中。其它还原剂及载气(如气体混合物N2/H2)提供较不纯的活性相。例如,此外可获得接近TiO2结构的斜方锰矿相及富含锂的相,Li2TiO3,其为非电化学活性的。因而,不排除本发明中存在杂质,但是其可定量限于<1摩尔%或甚至更低。
可归纳为本发明的材料及制法能用于可充电锂电池应用的领域中,
-以改善现有技术的钛基负极材料(经掺杂和未掺杂)的重量和体积电容量及性能;
-以获得安全循环的可能性;及
-以获得在第一个循环下的低不可逆电容量的高可逆性。
如下实施例进一步详细说明本发明:
反例1:
反例1(CE1)涉及未掺杂的Li2Ti3O7材料。通过陶瓷途径进行该合成过程。将前体Li2CO3(0.5489g)、纳米大小TiO2(锐钛矿/金红石)(1.7805g)的化学计量混合物在Fritsch行星球磨型Pulverisette
Figure BPA00001443816600071
7(在速度8下15分钟)中使用玛瑙珠(质量比粉末输入高10倍)进行反应性机械研磨步骤。使用如下一步加热法在Ar/H2(95/5)气氛下在氧化铝盘中进行粉末的热处理:进行7℃/分钟的加热跃升至最终温度步骤980℃维持1小时30分钟,然后是快速冷却步骤,其中使所述材料骤冷直到在经控制的气流下达到室温以稳定所述斜方锰矿结构。
实施例2:
实施例2涉及根据本发明的经碳取代的Li2Ti3O7材料。通过陶瓷途径进行该合成过程。将前体Li2CO3(0.5213g)、纳米大小TiO2(锐钛矿/金红石)(1.6911g)、蔗糖(0.100g)的化学计量混合物在Fritsch行星球磨型Pulverisette7(在速度8下15分钟)中使用玛瑙珠(质量比粉末输入高10倍)进行反应性机械研磨步骤。使用如下一步加热法在Ar/H2(95/5)气氛下在氧化铝盘中进行粉末的热处理:进行7℃/分钟的加热跃升至最终温度步骤980℃维持1小时30分钟,然后是快速冷却步骤,其中使所述材料骤冷直到在经控制的气流下达到室温以稳定所述斜方锰矿结构。最终材料的碳含量也通过材料的燃烧加以分析。碳含量为0.8重量%,其相当于每摩尔最终产物0.18摩尔碳。
由于使用最终产物的X射线衍射图测定斜方锰矿以外的相的存在时的精确度低,所以难以测定有多少尖晶石相存在于实施例2的最终产物中。然而当测量该复合材料的电化学性质时,尖晶石相的存在是不可否认的。以Swagelok构造中的二电极电池进行电化学测量,其中正极包含85重量%根据本发明的复合材料及15重量%的导电碳黑的混合物。负极是用作参考电极的金属锂箔。包括1M的LiPF6的碳酸乙烯酯、碳酸二甲酯及碳酸丙烯酯(1∶3∶1)的混合物溶液用作电解液。在室温下在C/10和C的电流速率下在电位范围相对于Li/Li+为1至2.5V(速率C相当于每摩尔活性材料每小时交换1摩尔Li)中的恒电流模式之下进行充电/放电试验。
图1显示了实施例2的复合物在25℃下及C/10速率下的恒电流充电/放电曲线(虚线),及其导函数dx/dV(实线)。该dx/dV曲线显示出典型峰(图1上的箭头),其为尖晶石相存在的特征,换言之由尖晶石至岩盐相过渡时的1.55V相对于Li平线区所示。
在C/10下的充电-放电试验并未显示任何超过CE1中所得数值的改善(参见下表3),在C的充电-放电试验中电容量值自CE1的110mAh/g提高至实施例2的130mAh/g。最终,如下表2中所示及讨论的,根据碳含量修改该斜方锰矿相的晶格参数。尽管难以定量表示尖晶石的存在,但是例如实施例2其必定有至少0.1摩尔%、且可能1摩尔%左右。
实施例3至6:
实施例3至6涉及使用表1中的前体的化学计量混合物的经碳取代的Li2Ti3O7材料。研磨和烧制步骤与实施例2中所述的相同。
表1:实施例3至6的混合物组成
  Li2CO3   TiO2   蔗糖
 实施例3   0.4939g   1.6022g   0.200g
 实施例4   0.4665g   1.5133g   0.300g
 实施例5   0.4391g   1.4242g   0.400g
 实施例6   0.3842g   1.2461g   0.600g
关于实施例3至6,最终材料的碳含量也通过材料的燃烧加以分析。碳含量在1.09至3.8重量%变化,其相当于每摩尔最终产物0.29至0.93摩尔碳(参见下表3)。
在图2a和2b中,所获得的材料的X射线衍射图主要显示斜方锰矿相。所述斜方锰矿支撑结构中的活性碳的取代,关于碳含量>0.8重量%,是通过具有18.34和43.08°2θ(λCuKα)的特征峰的富含锂的尖晶石相Li4Ti5O12或Li1+xTi2-xO4(0<x≤0.33)的形成予以补偿。X射线衍射图上没探测到其它相,其确认了烧结过程优选在氩-氢气氛中进行的事实。图2b显示了尖晶石峰的放大图。如前文所提及,实施例2中仅新出现了尖晶石相,而其在实施例3至6中更显著。
图3显示了未掺杂的材料(CE1)与实施例3的经碳取代的材料之间的峰分布的半值宽度(FWHM)。这清楚指出合成过程期间的碳贡献调整该斜方锰矿材料的结构性质。
该斜方锰矿相的晶格参数根据碳含量作改变,如表2所示。
表2:斜方锰矿相的晶格参数
Figure BPA00001443816600101
图4中将表2中的实施例2至6的晶格参数对照CE1的数值(Δa/aCE1;Δb/bCE1;Δc/cCE1,其中Δa=a实施例2-6-aCE1;Δb=b实施例2-6-bCE1;Δc=c实施例2-6-cCE1)的相对差异记载为实施例的碳含量的函数。因为碳的离子半径
Figure BPA00001443816600102
小于锂
Figure BPA00001443816600103
合成过程期间引入碳将带来晶格特别是参数a和b的缩小,所述参数a和b是控制该斜方锰矿结构中的通道尺寸的参数。高于1.2重量%碳含量,由于增加在所述通道的四面体隙位中进行取代的碳含量增加使所述晶格膨胀。所述碳取代所造成的锂缺乏是通过富含锂的尖晶石相Li1+xTi2-xO4(0<x≤0.33)的形成予以补偿,其导致斜方锰矿/尖晶石复合物。
如上述的方式测量根据本发明的复合材料的电化学性质,并将结果显示于图5中。负极活性材料显示第一个循环的提高的电容量值,其是在速率C/10和C下获得,碳含量优选高于0.8重量%,产出介于1至16摩尔%之间的尖晶石相(参见图5的实施例2至6)。表3中提供了概要。
表3:斜方锰矿/尖晶石复合物的电容量及组成
Figure BPA00001443816600111
表3显示了当该化合物包含介于1.0至1.5重量%之间的碳时获得最大量的尖晶石,其也造成活性材料最佳的电化学性能。一旦碳含量超过1.5重量%,较高的电化学性能是归因于在该化合物中过多的碳起到导电涂层的作用。
通过X射线衍射图使用Rietveld精算法计算出尖晶石/斜方锰矿比例。假设只有斜方锰矿及尖晶石相存在该材料中计算出碳含量(C摩尔)。此假设是基于如上所讨论的实施例2至6的XRD分析。根据经碳取代的复合物再计算出理论电容量。实施例6中以摩尔表示的碳含量超过c的理论值(0.5)。这意味着晶粒交叉点处有过多碳沉积物起到导电性碳涂层的作用。
反例7:
反例7(CE7)涉及单独形成的Li2Ti3O7斜方锰矿材料(83.5重量%)、Li4Ti5O12尖晶石材料(15重量%)及热解碳(1.5重量%)的物理混合物。两种材料的合成过程是通过陶瓷途径进行。所述斜方锰矿材料是如上述在980℃下获得,且所述尖晶石材料是根据其反应温度在800℃的最终温度下合成。将所述三种材料的物理混合物在电池组中试验并与本发明有关的材料比较,如下文所示。
图6中证明了原位形成的富含锂的尖晶石相的特殊性,其中与反例7(实线)相比,对于实施例3(虚线)在C/10速率下获得高的可逆电容量值(185Ah/kg),其中所述两个活性相和碳以物理方式混在一起,并如前述于锂电池中试验。根据此图低可逆电容量及低极化度也是本发明的有利之处。
实施例8:
实施例8涉及根据通式Li2+v-4cCcTi3-wFexNiyAlzO7-α(其中v=-0.14、w=0.14、x=0.025、y=0.1、z=0.025及0.1≤c≤0.465)的经4-元素取代的斜方锰矿。将Li2CO3(0.4008g)、TiO2(1.3348g)、Fe2O3(0.0116g)、NiO(0.0436g)、Al2O3(0.0072)及蔗糖(0.2000g)的混合物精细研磨并混合,然后进行先前在实施例2至6中所述的烧制过程。最终材料中的碳含量为1.33重量%。其X射线衍射图类似于本发明的实施例,其显示由两个显示12%尖晶石的电化学相所构成的复合物。使用如上述的相同参数进行电化学测量,且显示类似于本发明的高的电容量,分别为190Ah/kg,如图7所示。看起来,该导函数曲线dx/dV显示出典型峰(图7中的箭头),其为尖晶石相存在的特征。
结论是,本发明允许获得包含两种在经控制的气氛下通过降低的合成温度原位形成的电化学活性相的复合材料。在高电流密度下的高可逆电容量及良好的循环性能允许其应用于高功率可充电锂离子电池中。所述负极材料的高工作电位及低毒性允许获得较高安全性且是环境友好的。尽管已经对照优选实施方式详细说明了本发明,但是本领域技术人员将认识到仍可对其进行不同修改及取代而不会背离附属权利要求中设定的本发明的精神及范围。

Claims (14)

1.一种用于锂电池的复合负极活性材料,其包含具有通式Li2-4cCcTi3O7的经碳取代的斜方锰矿相,其中0.1<c<0.5,及具有通式Li1+xTi2-xO4的尖晶石相,其中0<x≤0.33,所述活性材料包含多于0.1摩尔%的尖晶石相。
2.根据权利要求1所述的活性材料,其中所述活性材料包含多于1摩尔%的尖晶石相。
3.一种用于锂电池的复合负极活性材料,其包含具有通式Li2+v-4cCcTi3-wFexMyM'zO7-α的经碳取代的斜方锰矿相,其中M和M'为具有介于0.5与
Figure FDA0000444275310000011
之间的离子半径并与氧形成八面体结构的金属离子;其中-0.5≤v≤+0.5;y+z>0;x+y+z=w及0<w≤0.3;0.1<c≤(2+v)/4;及α是由M及M'的式氧化数n及n'根据关系式2α=-v+4w-3x-ny-n'z得到,其中n及n'分别为M及M'的式氧化数。
4.根据权利要求3所述的活性材料,其中M及M'为选自Ti3+、Co2+、Co3+、Ni2+、Ni3+、Cu2+、Mg2+、Al3+、In3+、Sn4+、Sb3+、Sb5+的不同金属。
5.根据权利要求3所述的活性材料,其中M=Ni2+及M'=Al3+
6.根据权利要求1至5中任一项所述的活性材料,其具有1.0至1.5重量%的碳含量。
7.根据权利要求1至5中任一项所述的活性材料,其具有介于5至16摩尔%之间的尖晶石含量。
8.根据权利要求1至5中任一项所述的活性材料,其具有介于8至11摩尔%之间的尖晶石含量。
9.根据权利要求1所述的复合负极活性材料,其包含至少99摩尔%的两相:具有通式Li2-4cCcTi3O7的所述经碳取代的斜方锰矿相及具有通式Li1+xTi2-xO4的所述尖晶石相,其中0<x≤0.33。
10.一种二次可充电电池,其具有根据权利要求1至9中任一项所述的活性材料。
11.一种制造根据权利要求1至9中任一项所述的活性材料的方法,其包含如下步骤:通过球磨研磨及混合锂化合物、钛化合物、碳前体化合物以及最终铁化合物与M和M'化合物,然后是在高于950℃的温度下的烧结过程,及所述经烧结的材料的骤冷步骤,其特征在于所述烧结过程是在包含还原剂的气体气氛中进行的。
12.根据权利要求11所述的方法,其中所述还原剂是选自氢、碳氢化合物及一氧化碳的一种或多种。
13.根据权利要求11或12所述的方法,其中所述包含还原剂的气体气氛由氩气组成。
14.根据权利要求13所述的方法,其中所述气体气氛由具有1至10体积%H2的氩-氢混合物组成。
CN201080014087.8A 2009-03-30 2010-02-10 用于可充电锂电池的高电压负极活性材料 Expired - Fee Related CN102396090B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP09290231.1 2009-03-30
EP09290231 2009-03-30
US20277709P 2009-04-03 2009-04-03
US61/202,777 2009-04-03
PCT/EP2010/000794 WO2010112103A1 (en) 2009-03-30 2010-02-10 High voltage negative active material for a rechargeable lithium battery

Publications (2)

Publication Number Publication Date
CN102396090A CN102396090A (zh) 2012-03-28
CN102396090B true CN102396090B (zh) 2014-04-09

Family

ID=40911089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080014087.8A Expired - Fee Related CN102396090B (zh) 2009-03-30 2010-02-10 用于可充电锂电池的高电压负极活性材料

Country Status (8)

Country Link
US (1) US8628694B2 (zh)
EP (1) EP2415105B1 (zh)
JP (1) JP5404906B2 (zh)
KR (1) KR101340821B1 (zh)
CN (1) CN102396090B (zh)
CA (1) CA2752859C (zh)
TW (1) TWI450435B (zh)
WO (1) WO2010112103A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5474695B2 (ja) * 2010-07-27 2014-04-16 日本電信電話株式会社 リチウム二次電池用負極材料及びリチウム二次電池
JP5662261B2 (ja) * 2011-06-20 2015-01-28 日本電信電話株式会社 リチウム二次電池用負極材料製造方法及びリチウム二次電池
FR2992955A1 (fr) * 2012-07-06 2014-01-10 Saint Gobain Ct Recherches Produit fondu a base de lithium
FR2992956A1 (fr) * 2012-07-06 2014-01-10 Saint Gobain Ct Recherches Produit fondu a base de lithium
KR101627396B1 (ko) * 2012-10-16 2016-06-03 주식회사 엘지화학 이차전지의 음극 활물질용 규소 산화물
CN105845922B (zh) * 2015-01-30 2018-11-09 株式会社东芝 活性物质、非水电解质电池、电池包及电池组
JP6067902B2 (ja) * 2015-03-13 2017-01-25 株式会社東芝 活物質、非水電解質電池、電池パック、組電池、及び自動車
JP7121734B2 (ja) * 2017-02-21 2022-08-18 インターナショナル アドバンスト リサーチ センター フォー パウダー メタラージ アンド ニュー マテリアルズ(エーアールシーアイ) リチウムイオン電池用途用高性能チタン酸リチウム負極材料を製造する方法
US11456449B2 (en) 2018-08-02 2022-09-27 Kabushiki Kaisha Toshiba Electrode for a secondary battery, secondary battery, battery pack and vehicle
WO2021068033A1 (en) * 2019-10-08 2021-04-15 Griffith University Anode material
CN115557531B (zh) * 2022-10-11 2023-08-04 湖北工业大学 含钠空位的Na2Ti3O7纳米棒的制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359723C (zh) * 2003-05-09 2008-01-02 尤米科尔公司 用于锂电池的负电极
CN101179140A (zh) * 2006-11-10 2008-05-14 株式会社东芝 非水电解质电池、锂钛复合氧化物及电池组

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2068015A1 (en) * 1991-06-17 1992-12-18 Michael M. Thackeray Electrode material
JP3436600B2 (ja) * 1993-12-27 2003-08-11 エヌイーシートーキン栃木株式会社 二次電池
JPH11283624A (ja) * 1998-03-31 1999-10-15 Matsushita Electric Ind Co Ltd リチウム二次電池およびその製造方法
JP4642960B2 (ja) * 2000-01-26 2011-03-02 東邦チタニウム株式会社 チタン酸リチウムの製造方法
JP2001185141A (ja) * 1999-12-22 2001-07-06 Kyocera Corp リチウム電池
JP4296580B2 (ja) * 2000-01-11 2009-07-15 株式会社ジーエス・ユアサコーポレーション 非水電解質リチウム二次電池
JP2001210374A (ja) * 2000-01-25 2001-08-03 Kyocera Corp 固体電解質電池
CA2320661A1 (fr) * 2000-09-26 2002-03-26 Hydro-Quebec Nouveau procede de synthese de materiaux limpo4 a structure olivine
JP2003183030A (ja) * 2001-12-18 2003-07-03 National Institute For Materials Science ラムスデライト型結晶構造を有するリチウムニッケルチタン酸化物、その製造方法、及び該酸化物を用いたリチウム二次電池
JP3931228B2 (ja) * 2002-06-21 2007-06-13 独立行政法人物質・材料研究機構 ラムスデライト型結晶構造を有するリチウムクロムチタン複合酸化物及びその製造方法
JP2005340078A (ja) * 2004-05-28 2005-12-08 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用活物質、その製造方法およびリチウムイオン二次電池
JP4521431B2 (ja) 2007-08-10 2010-08-11 株式会社東芝 電池用活物質、非水電解質電池および電池パック
JP5178111B2 (ja) * 2007-09-26 2013-04-10 株式会社東芝 非水電解質電池およびパック電池
BRPI0821589A2 (pt) * 2007-12-10 2015-09-29 Centre Nat Rech Scient material ativo para um eletrodo de bateria de lítio, método para sintetizar o material sintético, uso, e, célula, acumulador ou bateria de lítio contendo um material ativo

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359723C (zh) * 2003-05-09 2008-01-02 尤米科尔公司 用于锂电池的负电极
CN101179140A (zh) * 2006-11-10 2008-05-14 株式会社东芝 非水电解质电池、锂钛复合氧化物及电池组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特開2001-185141A 2001.07.06

Also Published As

Publication number Publication date
TWI450435B (zh) 2014-08-21
US8628694B2 (en) 2014-01-14
EP2415105B1 (en) 2013-10-23
KR101340821B1 (ko) 2013-12-11
KR20120015293A (ko) 2012-02-21
TW201042806A (en) 2010-12-01
EP2415105A1 (en) 2012-02-08
CA2752859A1 (en) 2010-10-07
US20120097890A1 (en) 2012-04-26
CA2752859C (en) 2013-12-10
WO2010112103A1 (en) 2010-10-07
JP2012522339A (ja) 2012-09-20
CN102396090A (zh) 2012-03-28
JP5404906B2 (ja) 2014-02-05

Similar Documents

Publication Publication Date Title
CN102396090B (zh) 用于可充电锂电池的高电压负极活性材料
US8052955B2 (en) Lithium-based materials and methods of forming the same
Shenouda et al. Electrochemical properties of doped lithium titanate compounds and their performance in lithium rechargeable batteries
Wang et al. Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source
EP3930051B1 (en) Positive electrode material and application thereof
US20070238023A1 (en) Lithium Titanate And Method Of Forming The Same
CN113921773B (zh) 表面包覆改性的锂离子电池正极材料及其制备方法和应用
Zhang et al. Improving the single crystal LiNi0. 8Co0. 1Mn0. 1O2 cathode material performance by fluorine doping
CN107394155A (zh) 一种锂离子电池钴酸锂正极材料的掺杂改性方法
Hou et al. Drastic enhancement in the rate and cyclic behavior of LiMn2O4 electrodes at elevated temperatures by phosphorus doping
Jung et al. Improved electrochemical performances of LiM0. 05Co0. 95O1. 95F0. 05 (M= Mg, Al, Zr) at high voltage
Chudzik et al. Surface modification and carbon coating effect on a high-performance K and S doped LiMn2O4
CN113066978B (zh) 一种Ta表面掺杂的高镍单晶正极材料及制备方法
KR20170133188A (ko) 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
Zheng et al. Bi-functions of titanium and lanthanum co-doping to enhance the electrochemical performance of spinel LiNi0. 5Mn1. 5O4 cathode
KR101545461B1 (ko) 캐소드 활성 물질로서 질소 도핑 및 환원된 산화흑연 블렌딩에 의해 얻은 V2O5-LiBO2, V2O5-NiO-LiBO2 유리 및 그 합성물
CN101918317B (zh) 用于锂离子电池的负极材料
Wang et al. Surface F-doping for stable structure and high electrochemical performance of Li-rich Mn-based cathode materials
Zhang et al. Search for stable host materials as low-voltage anodes for lithium-ion batteries: A mini-review
Parameswaran et al. An integrated study on the ionic migration across the nano lithium lanthanum titanate (LLTO) and lithium iron phosphate-carbon (LFP-C) interface in all-solid-state Li-ion batteries
Kaddami et al. Effect of low Al3+ doping on the structural, electrochemical performances, and thermal stability of the LiNi1/3Co1/3Co1/3O2 electrode material for lithium‐ion batteries
Tian et al. A new lithium‐rich layer‐structured cathode material with improved electrochemical performance and voltage maintenance
JPH11213999A (ja) リチウム電池用正極活物質、これを備えたリチウム電池、及びリチウム電池用正極活物質の製造方法
Deng et al. The enhancement of rate and cycle performance of LiMn 2 O 4 at elevated temperatures by the synergistic roles of porous structure and dual-cation doping
US20220263120A1 (en) Solid electrolyte material, solid electrolyte including the same, all-solid secondary battery including the solid electrolyte, and method of preparing the solid electrolyte material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140409

Termination date: 20180210

CF01 Termination of patent right due to non-payment of annual fee