CN102356172A - 稀土永久磁石及其制造方法 - Google Patents

稀土永久磁石及其制造方法 Download PDF

Info

Publication number
CN102356172A
CN102356172A CN2010800122992A CN201080012299A CN102356172A CN 102356172 A CN102356172 A CN 102356172A CN 2010800122992 A CN2010800122992 A CN 2010800122992A CN 201080012299 A CN201080012299 A CN 201080012299A CN 102356172 A CN102356172 A CN 102356172A
Authority
CN
China
Prior art keywords
rare earth
hfc
alloy
crystal grain
magnetite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800122992A
Other languages
English (en)
Inventor
中泽义行
加藤龙太郎
清水治彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of CN102356172A publication Critical patent/CN102356172A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

在R-Fe-B系合金(R:稀土元素)中,分散有0.2~3.0atom%的、平均粒径为5~100nm的HfC颗粒。通过含有碳化物,可以在不减少磁石成分的情况下对结晶粒进行微细化,由此可以不降低饱和磁化来提高矫顽力。

Description

稀土永久磁石及其制造方法
技术领域
本发明涉及稀土永久磁石及其制造方法,特别涉及对结晶粒进行微细化来提高矫顽力的技术。
背景技术
作为由Nd-Fe-B系合金构成的永久磁石的制造方法,已知有在将单晶的合金粉末填充于模具中的状态下,使磁场取向,然后,进行成型和烧结的粉末冶金法。但是,在粉末冶金法中,存在着若使原料粉末微细化,则由于比表面积增加,而导致用于防止氧化的处置变得复杂这样的不便,在通过对烧结磁石的结晶粒进行微细化来提高矫顽力的方面存在着极限。
作为粉末冶金法以外的制造方法,存在下述方法:对通过将熔液骤冷而得到的合金粉末实施热处理,并与树脂一同固化成型,由此制成各向同性粘结磁石的方法;或利用热压,对通过将熔液骤冷而得到的合金粉末进行热压缩成型,从而得到各向同性块状磁石的方法,等;例如在专利文献1中公开了,通过对该各向同性块状磁石实施热加工,得到各向异性块状磁石的方法。
专利文献1:日本特开昭60-100402号公报
专利文献2:日本特开昭63-196014号公报
专利文献3:日本特开平2-4941号公报
发明内容
发明要解决的问题
如上所述,据认为在使用对熔液骤冷而得到的合金粉末来制造的Nd-Fe-B系合金永久磁石中,微细的结晶粒与矫顽力的体现密切相关,但已知,在制造方法中的例如热塑性加工等施加热的工序中,结晶粒生长,与此相伴矫顽力下降。但是,至今为止,提出了如专利文献2中记载的那样添加Ti、Zr、Hf等过渡金属元素单质、如专利文献3中记载的那样添加HfB2等硼化物,来抑制结晶粒粗大化和使组织均质化的方案,但是并没有报告通过添加碳化物来微细化的方法。其主要理由是由于下述要因:若添加碳化物,则会形成Nd2Fe14C或Nd2C3,或主相Nd2Fe14B的元素被C置换,由此会使磁石成分减少从而饱和磁化降低。
因此,本发明的目的在于提供一种稀土永久磁石及其制作方法,其中,所述稀土永久磁石通过含有碳化物,能够在不使磁石成分减少的情况下将结晶粒微细化,由此可以在不降低饱和磁化的情况下提高矫顽力。
用于解决问题的手段
本发明人对能够以所谓的钉扎效应来抑制结晶粒的生长的化合物反复进行了深入研究。并且,对Nb、Mo、Cr及Hf与B、C及Si形成的化合物进行了探讨,结果着眼于用于碳化物生成反应的能量较低的HfC。推测由于HfC的生成能低,因此形成Nd2Fe14C或Nd2C3或主相Nd2Fe14B的元素被C置换的可能性低,基于这样的推测反复进行实验,结果得到下述见解:若以某一范围含有预定粒径的HfC颗粒,则可以抑制由加热引起的结晶粒的生长,同时不会与主相Nd2Fe14B形成化合物。
本发明的稀土永久磁石是基于上述见解完成的,其特征在于,其为在R-Fe-B系合金(R:稀土元素)中分散有0.2~3.0atom%的、平均粒径为5~100nm的HfC颗粒的稀土永久磁石。
另外,本发明的稀土永久磁石的制作方法的特征在于,该制造方法具备下述工序:对含有0.2~3.0atom%的、平均粒径为5~100nm的HfC颗粒的R-Fe-B系合金(R:稀土元素)的熔液进行骤冷,从而得到非晶质或平均结晶粒径为5μm以下的磁石材料的工序;和将所述磁石材料在受热下进行塑性加工,从而赋予磁各向异性的工序。
以下,将本发明的数值限定的依据与本发明的作用一同进行说明。需要说明的是,在以下的说明中,“%”表示“atom%”。
HfC:0.2~3.0%
HfC的含量小于0.2%时,则钉扎效应不充分,在加热下结晶粒变得容易生长。另一方面,若HfC的含量超过3.0%,则作为磁石成分的主相的比例减少,饱和磁化降低。因此,使HfC的含量为0.2~3.0%。需要说明的是,HfC的含量进一步优选为0.6%以上。
HfC的平均结晶粒径:5~100nm
若HfC的平均结晶粒径小于5nm,则相对于主相的结晶粒过小,因此钉扎效应不充分,其结果导致加热下结晶粒变得容易生长。另一方面,若HfC的平均结晶粒径超过100nm,则HfC的分散不充分,钉扎效应不充分。因此,使HfC的平均粒径为5~100nm。
在本发明的制造方法中,首先通过对熔液进行骤冷,得到非晶质或平均结晶粒径为5μm以下的磁石材料。对于该磁石材料来说,在主相的晶界上,析出并分散有HfC颗粒。作为对熔液进行骤冷的方法,可以采用例如熔液抽取法。熔液抽取法是一边使内侧具备水冷夹套的轧辊旋转,一边将R-Fe-B系合金的熔液从喷嘴供给至轧辊的表面上,进行骤冷以使其凝固的方法。在该熔液抽取法中,供给至轧辊的熔液瞬间冷却固化,能够得到非晶质或微细的结晶粒的薄带。需要说明的是,如此得到的薄带的宽度为0.1~10mm,厚度为1~100μm。
接着,将上述磁石材料在受热下进行塑性加工,从而赋予磁各向异性。在磁石材料的状态下,每个主相的结晶粒的易磁化轴的方向都不同,但通过将磁石材料在受热下进行塑性加工,可以使各结晶粒的易磁化轴统一到接受变形的方向。因此,对由热塑性加工得到的磁石材料在加压方向进行磁化,由此可以得到磁力线朝向加压方向的永久磁石。此情况下,在本发明中,在磁石材料的主相的晶界上分散有HfC颗粒,因此可以抑制伴随着加热的结晶粒的生长。
需要说明的是,在磁石材料为薄带的情况下,若在热塑性加工之前,对薄带进行粉碎而制成粉末,接着在受热下进行成型则是优选的。作为此情况的成型法,可以使用在受热下从全方向给予粉末几乎相等的压力的粉末注射成型(HIP处理)、或在模具的腔室中对粉末进行压缩成型的热压法。经由这样的工序,可以容易地进行热塑性加工。另外,通过在受热下进行成型,使非晶质的组织结晶化。进一步,通过进行热压,可以一定程度地将结晶粒的易磁化轴统一使其朝向加压方向。由此,通过下述的热塑性加工可以进一步提高易磁化轴的取向度,在磁化后能够得到高的磁通密度。
热塑性加工的温度优选为800℃以下,更优选为750℃以下,进一步优选为700℃以下。通过在较低的温度下进行热塑性加工,可以使磁石材料的结晶粒更加微细化。可是,若温度过低,则在热塑性加工时,在磁石材料上会发生龟裂或裂纹,因此优选为600℃以上。
作为稀土元素一般为Nd,但也可以使用如Dy(镝)或Tb(铽)等其他的稀土元素。而且,作为各成分的比例,例如可以为R:5~20%、Fe:65~85%、B:3~10%、HfC:0.2~3.0%。
另外,作为对熔液进行骤冷的方法,并不仅限于熔液抽取法,可以使用各种方法。例如,在连续铸造法中,通过加快在模具中的冷却速度,可以得到与采用熔液抽取法中所得到的薄带同等的坯锭。或者,可以通过雾化法来得到粉末的磁石材料。
利用热塑性加工,主相的结晶粒发生变形,晶界杂乱。若晶界杂乱,则矫顽力下降。因此,优选在热塑性加工后进行热处理以使晶界平滑。此情况下,热处理的温度优选为600~900℃。
由以上工序得到的稀土永久磁石是在R-Fe-B系合金(R:稀土元素)中分散有0.2~3.0atom%的、平均粒径为5~100nm的HfC颗粒的稀土永久磁石。对于该稀土永久磁石,由于HfC的生成能低,因此可以稳定地存在,因此抑制了通过C与其它成分结合或置换而使磁石成分减少的情况,同时利用HfC颗粒的钉扎效应而使结晶粒保持微细的状态,由此可以在不降低饱和磁化的情况下,提高矫顽力。需要说明的是,这种稀土永久磁石的组织的平均粒径优选为10~500nm,HfC颗粒的平均粒径优选为5~20nm。
发明效果
根据本发明,可以得到下述效果:通过含有碳化物,可以在不减少磁石成分的情况下将结晶粒微细化,由此可以在不降低饱和磁化的情况下提高矫顽力,等。
附图说明
图1是表示本发明的实施例中的HfC、Hf、C的添加量和矫顽力的关系的图。
图2是表示本发明的实施例中的稀土永久磁石的平均结晶粒径和矫顽力的关系的图。
图3是本发明的实施例中的稀土磁石的TEM照片,(A)表示没有添加HfC的情况、(B)表示添加有HfC的情况。
具体实施方式
将Nd13.2Fe(80.9-x)B5.9Mx的组成的合金熔解,将熔液从喷嘴供给至轧辊的表面上。其中,M为Hf、C、HfC的任意一种,x在0~0.8的范围内进行各种设定。轧辊是利用内藏的水冷夹套来进行冷却的,其旋转速度(周速度)为17.5m/s。将在轧辊上冷却固化的合金剥离,制作厚度为25μm左右的薄带试样。利用电子显微镜进行观察,其结果为:刚骤冷后的试样为结晶相和非晶质相混在一起的组织,结晶相的粒径为100nm以下。
对于得到的薄带的试样,进行在700℃、750℃、800℃的保持温度下保持10分钟的热处理,使非晶质相结晶化以消除对磁特性的影响,同时观察结晶粒的生长程度。利用振动样品磁强计,对每个试样进行磁化测定。将各元素的添加量和矫顽力的关系示于图1。利用电子显微镜进行试样组织的观察。将由组织观察而算出的平均结晶粒径和矫顽力的关系示于图2。另外,将组织的TEM照片示于图3。
图1表示进行了700℃的热处理的试样的各元素的添加量和矫顽力的关系。由图1可知:随着HfC的添加量的增加,矫顽力增加。与此相对,添加Hf单质时,矫顽力几乎没有变化;添加C单质时,随着C的添加量的增加,矫顽力减少。由此可以推测,同时添加Hf和C时,对于矫顽力的增加是有效果的。
图2表示添加了HfC的试样和没有添加HfC的试样中的结晶粒径和矫顽力的关系。如图2中箭头所示,在相同热处理温度下,与没有添加HfC的试样相比,添加了HfC的试样的一方的结晶粒径小,且矫顽力大。这意味着通过添加HfC,可以抑制结晶粒的生长速度。
图3表示对没有添加HfC的试样和添加了HfC的试样在700℃下进行了热处理后的组织的TEM照片。即使在组织的TEM照片中,也可以确认到添加了HfC的试样的一方的结晶粒微细。另外,对添加了HfC的试样进行元素测绘,结果可以确认到10nm左右的含Hf的微细结晶粒均匀地析出并分散。该析出物抑制主相结晶粒的生长,由此结晶粒微细、矫顽力提高。
工业实用性
本发明通过将结晶粒微细化,能够在不降低饱和磁化的情况下提高矫顽力,因此能够用于发动机等技术领域。

Claims (2)

1.一种稀土永久磁石,其特征在于,其为在R-Fe-B系合金中分散有0.2atom%~3.0atom%的平均粒径为5nm~100nm的HfC颗粒的稀土永久磁石,其中R-Fe-B系合金中的R表示稀土元素。
2.一种稀土永久磁石的制造方法,其特征在于,该制造方法具备:
对含有0.2atom%~3.0atom%的平均粒径为5nm~100nm的HfC颗粒的R-Fe-B系合金的熔液进行骤冷,从而得到非晶质或平均结晶粒径为5μm以下的磁石材料的工序,其中R-Fe-B系合金中的R表示稀土元素;和
将所述磁石材料在受热下进行塑性加工,从而赋予磁各向异性的工序。
CN2010800122992A 2009-03-19 2010-03-05 稀土永久磁石及其制造方法 Pending CN102356172A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009068418A JP2010222601A (ja) 2009-03-19 2009-03-19 希土類永久磁石およびその製造方法
JP2009-068418 2009-03-19
PCT/JP2010/054162 WO2010106964A1 (ja) 2009-03-19 2010-03-05 希土類永久磁石およびその製造方法

Publications (1)

Publication Number Publication Date
CN102356172A true CN102356172A (zh) 2012-02-15

Family

ID=42739624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800122992A Pending CN102356172A (zh) 2009-03-19 2010-03-05 稀土永久磁石及其制造方法

Country Status (5)

Country Link
US (1) US20120048431A1 (zh)
EP (1) EP2410067A4 (zh)
JP (1) JP2010222601A (zh)
CN (1) CN102356172A (zh)
WO (1) WO2010106964A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104376946A (zh) * 2014-12-14 2015-02-25 乔俊擎 一种高强韧烧结钕铁硼磁体及其制备方法
CN105609225A (zh) * 2014-11-13 2016-05-25 本田技研工业株式会社 热加工磁铁及其原料粉末、将该原料粉末成形而成的成形体及它们的制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708242B2 (ja) * 2011-05-24 2015-04-30 トヨタ自動車株式会社 希土類磁石の製造方法
JP6428678B2 (ja) * 2016-02-23 2018-11-28 Jfeスチール株式会社 積層造形方法、積層造形体製造方法
CN107275025B (zh) * 2016-04-08 2019-04-02 沈阳中北通磁科技股份有限公司 一种含铈钕铁硼磁钢及制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181402A (ja) * 1986-02-05 1987-08-08 Hitachi Metals Ltd R−B−Fe系焼結磁石およびその製造方法
CN1210344A (zh) * 1997-08-30 1999-03-10 中国科学院金属研究所 一种钕铁硼纳米永磁材料
JP2002025810A (ja) * 2000-07-06 2002-01-25 Hitachi Metals Ltd 異方性希土類焼結磁石及びその製造方法
JP2002124407A (ja) * 2000-10-16 2002-04-26 Hitachi Metals Ltd 異方性希土類焼結磁石及びその製造方法
EP1675133A2 (en) * 2004-12-27 2006-06-28 Shin-Etsu Chemical Co., Ltd. Nd-Fe-B rare earth permanent magnet material
CN101364465A (zh) * 2008-06-06 2009-02-11 浙江西子富沃德电机有限公司 稀土永磁材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1236381A (en) * 1983-08-04 1988-05-10 Robert W. Lee Iron-rare earth-boron permanent magnets by hot working
JPS6398105A (ja) * 1986-10-15 1988-04-28 Mitsubishi Metal Corp 金属炭化物分散型Fe基焼結合金製永久磁石
JPS63196014A (ja) 1987-02-10 1988-08-15 Hitachi Metals Ltd 磁気異方性磁石及びその製造方法
JPH024941A (ja) 1987-12-18 1990-01-09 Kubota Ltd 二ホウ化ハフニウムを含有した鉄―ネオジム―ホウ素基永久磁石合金及び製法
US5486240A (en) * 1994-04-25 1996-01-23 Iowa State University Research Foundation, Inc. Carbide/nitride grain refined rare earth-iron-boron permanent magnet and method of making
JP3891307B2 (ja) * 2004-12-27 2007-03-14 信越化学工業株式会社 Nd−Fe−B系希土類永久焼結磁石材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181402A (ja) * 1986-02-05 1987-08-08 Hitachi Metals Ltd R−B−Fe系焼結磁石およびその製造方法
CN1210344A (zh) * 1997-08-30 1999-03-10 中国科学院金属研究所 一种钕铁硼纳米永磁材料
JP2002025810A (ja) * 2000-07-06 2002-01-25 Hitachi Metals Ltd 異方性希土類焼結磁石及びその製造方法
JP2002124407A (ja) * 2000-10-16 2002-04-26 Hitachi Metals Ltd 異方性希土類焼結磁石及びその製造方法
EP1675133A2 (en) * 2004-12-27 2006-06-28 Shin-Etsu Chemical Co., Ltd. Nd-Fe-B rare earth permanent magnet material
CN1819075A (zh) * 2004-12-27 2006-08-16 信越化学工业株式会社 Nd-Fe-B稀土永磁材料
CN101364465A (zh) * 2008-06-06 2009-02-11 浙江西子富沃德电机有限公司 稀土永磁材料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609225A (zh) * 2014-11-13 2016-05-25 本田技研工业株式会社 热加工磁铁及其原料粉末、将该原料粉末成形而成的成形体及它们的制造方法
CN105609225B (zh) * 2014-11-13 2019-03-08 本田技研工业株式会社 热加工磁铁及其原料粉末、将该原料粉末成形而成的成形体及它们的制造方法
CN104376946A (zh) * 2014-12-14 2015-02-25 乔俊擎 一种高强韧烧结钕铁硼磁体及其制备方法

Also Published As

Publication number Publication date
EP2410067A4 (en) 2012-08-01
WO2010106964A1 (ja) 2010-09-23
EP2410067A1 (en) 2012-01-25
JP2010222601A (ja) 2010-10-07
US20120048431A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
US5022939A (en) Permanent magnets
CN100590757C (zh) 铁基稀土类系纳米复合磁体及其制造方法
CN101071667B (zh) 含钆的钕铁硼稀土永磁材料及其制造方法
CN102918611B (zh) 稀土类永磁体的制造方法和稀土类永磁体
CN106448986B (zh) 一种各向异性纳米晶稀土永磁体及其制备方法
CN102299000B (zh) 一种钕铁硼永磁材料及其制备方法
CN100507049C (zh) 铁基稀土类纳米复合磁体及其制造方法
CN107134335A (zh) R‑t‑b系永久磁铁
CN101370606B (zh) 稀土类烧结磁体及其制造方法
US6332933B1 (en) Iron-rare earth-boron-refractory metal magnetic nanocomposites
EP1105889A1 (en) High performance iron-rare earth-boron-refractory-cobalt nanocomposites
CN107195414A (zh) 一种(Nd,Y)‑Fe‑B稀土永磁体及其制备方法
CN102356172A (zh) 稀土永久磁石及其制造方法
JP2693601B2 (ja) 永久磁石および永久磁石原料
JPH0366105A (ja) 希土類系異方性粉末および希土類系異方性磁石
WO2003012802A1 (en) Method for producing nanocomposite magnet using atomizing method
US5690752A (en) Permanent magnet containing rare earth metal, boron and iron
JP2006213985A (ja) 磁歪素子の製造方法
KR102605565B1 (ko) 이방성 희토류 벌크자석의 제조방법 및 이로부터 제조된 이방성 희토류 벌크자석
JP4955217B2 (ja) R−t−b系焼結磁石用原料合金及びr−t−b系焼結磁石の製造方法
CN104752048A (zh) 一种烧结钕铁硼永磁体的制作方法
JPH0831386B2 (ja) 異方性希土類永久磁石の製造方法
CN100514512C (zh) 含钛、碳的Re-Fe-B基高性能纳米复合永磁材料
JP3773484B2 (ja) ナノコンポジット磁石
JP4345588B2 (ja) 希土類−遷移金属−窒素系磁石粉末とその製造方法、および得られるボンド磁石

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120215