CN102299168B - 功率用半导体装置 - Google Patents
功率用半导体装置 Download PDFInfo
- Publication number
- CN102299168B CN102299168B CN201110140111.9A CN201110140111A CN102299168B CN 102299168 B CN102299168 B CN 102299168B CN 201110140111 A CN201110140111 A CN 201110140111A CN 102299168 B CN102299168 B CN 102299168B
- Authority
- CN
- China
- Prior art keywords
- type
- contact area
- region
- type contact
- execution mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 43
- 239000003990 capacitor Substances 0.000 claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 238000013459 approach Methods 0.000 claims description 2
- 230000003071 parasitic effect Effects 0.000 description 19
- 239000010410 layer Substances 0.000 description 10
- 238000011084 recovery Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/8611—Planar PN junction diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0611—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
- H01L27/0617—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
- H01L27/0629—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/687—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
- H03K17/6871—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0684—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
- H01L29/0692—Surface layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/0081—Power supply means, e.g. to the switch driver
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Bipolar Integrated Circuits (AREA)
Abstract
本发明得到一种可以降低耗电功率的功率用半导体装置。功率用半导体装置利用高耐压二极管DB对电容器CB充电,以得到高侧驱动电路(10a)的驱动电压,高耐压二极管DB具有:P-型半导体衬底(12);N型负极区域(14),设在P-型半导体衬底(12)的表面;P型正极区域(16),设在N型负极区域(14)内;P+型接触区域(20)和N+型接触区域(22),设在P型正极区域(16)内;负极电极(24),连接于N型负极区域(14);以及正极电极(26),连接于P+型接触区域(20)和N+型接触区域(22)。
Description
技术领域
本发明涉及利用二极管对电容器充电以得到高(电压)侧驱动电路的驱动电压的功率用半导体装置,特别涉及可以降低耗电功率的功率用半导体装置。
背景技术
在半桥电路中,驱动高侧开关元件的高侧驱动电路需要高于主电源的驱动电压。因此,已知利用二极管对电容器充电以得到该驱动电压(例如参照非专利文献1)。
非专利文献1:K.Watabe et al.、“A Half-Bridge Driver IC withNewly Designed High Voltage Diode”、Proc.Of ISPSD2001、pp.279-282.
内置在驱动电路的二极管具有P型半导体衬底、设在衬底表面的N型负极区域、设在N型负极区域内的P型正极区域。这2个半导体区域和半导体衬底构成寄生PNP晶体管。在对电容器充电时在二极管会流过正向电流。由于该正向电流也是寄生PNP晶体管的基极电流,因此寄生PNP晶体管的集电极电流从P型正极区域流向P型半导体衬底。该集电极电流流向GND,成为无助于IC动作的单纯的损耗。以往存在的问题是:损耗较多,耗电功率较大。
发明内容
本发明是为解决如上所述的问题而完成的,其目的在于得到一种可以降低耗电功率的功率用半导体装置。
本发明所涉及的功率用半导体装置包括:高侧开关元件及低(电压)侧开关元件,在高压侧电位与低压侧电位之间从高压侧依次图腾柱连接(totem-pole-connected);高侧驱动电路,驱动所述高侧开关元件;低侧驱动电路,驱动所述低侧开关元件;电容器,一端连接于所述高侧开关元件与所述低侧开关元件的连接点,另一端连接于所述高侧驱动电路的电源端子,向所述高侧驱动电路供给驱动电压;以及二极管,正极连接于电源,负极连接于所述电容器的所述另一端,将来自所述电源的电流供给至所述电容器的所述另一端,所述二极管具有:P型半导体衬底;N型负极区域,设在所述P型半导体衬底的表面;P型正极区域,设在所述N型负极区域内;P型接触区域及N型接触区域,设在所述P型正极区域内;负极电极,连接于所述N型负极区域;以及正极电极,连接于所述P型接触区域及所述N型接触区域。
根据本发明,可以降低耗电功率。
附图说明
图1是实施方式1所涉及的功率用半导体装置的电路图。
图2是表示实施方式1所涉及的高耐压二极管的剖视图。
图3是用于说明实施方式1所涉及的高耐压二极管的充电动作的剖视图。
图4是用于说明实施方式1所涉及的高耐压二极管的恢复(recovery)动作的剖视图。
图5是表示比较例所涉及的高耐压二极管的剖视图。
图6是用于说明比较例所涉及的高耐压二极管的充电动作的剖视图。
图7是表示实施方式2所涉及的高耐压二极管的剖视图。
图8是用于说明实施方式2所涉及的高耐压二极管的恢复动作的剖视图。
图9是表示实施方式3所涉及的高耐压二极管的剖视图。
图10是用于说明实施方式3所涉及的高耐压二极管的充电动作的剖视图。
图11是用于说明实施方式3所涉及的高耐压二极管的恢复动作的剖视图。
图12是表示实施方式4所涉及的高耐压二极管的平面图。
图13是沿着图12的A-A’的剖视图。
图14是沿着图12的B-B’的剖视图。
图15是用于说明实施方式4所涉及的高耐压二极管的恢复动作的平面图。
图16是表示实施方式5所涉及的高耐压二极管的平面图。
图17是沿着图16的A-A’的剖视图。
图18是沿着图16的B-B’的剖视图。
图19是表示实施方式6所涉及的高耐压二极管的剖视图。
图20是表示实施方式7所涉及的高耐压二极管的平面图。
图21是沿着图20的A-A’的剖视图。
图22是沿着图20的B-B’的剖视图。
图23是表示实施方式8所涉及的高耐压二极管的平面图。
图24是沿着图23的A-A’的剖视图。
图25是沿着图23的B-B’的剖视图。
图26是表示实施方式9所涉及的高耐压二极管的平面图。
图27是沿着图26的A-A’的剖视图。
图28是沿着图26的B-B’的剖视图。
标号说明
CB 电容器;DB 高耐压二极管(二极管);Tr1 高侧开关元件;Tr2 低侧开关元件;10a 高侧驱动电路;10b 低侧驱动电路;12 P-型半导体衬底(P型半导体衬底);14 N型负极区域;16P型正极区域;20 P+型接触区域(P型接触区域、第一P型区域);22 N+型接触区域(N型接触区域、第一N型区域);24 负极电极;26 正极电极;28 场氧化膜;54 P+型接触区域(P型接触区域、第二P型区域);56 N+型接触区域(N型接触区域、第二N型区域);58 P-型电压保持区域(P型电压保持区域)。
具体实施方式
参照附图来说明本发明的实施方式所涉及的功率用半导体装置。在相同的构成要素标注相同的标记,有的情况下省略重复的说明。
实施方式1.
图1是实施方式1所涉及的功率用半导体装置的电路图。该功率用半导体装置是适用有HVIC(High Voltage Integrated Circuit,高压集成电路)的半桥电路。
在主电源HV的高压侧电位与低压侧电位之间,高侧开关元件Tr1及低侧开关元件Tr2从高压侧依次图腾柱连接。高侧开关元件Tr1及低侧开关元件Tr2是N型半导体开关元件。在高侧开关元件Tr1及低侧开关元件Tr2分别反并联连接回流二极管D1、D2。
驱动电路10具有:驱动高侧开关元件Tr1的高侧驱动电路10a、驱动低侧开关元件Tr2的低侧驱动电路10b。驱动电路10的VB端子是高侧驱动电路10a的电源端子。VCC端子是低侧驱动电路10b的电源端子,与低侧驱动电源LV连接。COM端子与GND(接地点)连接。经由HO端子从高侧驱动电路10a对高侧开关元件Tr1输出导通/截止(ON/OFF)指令,经由LO端子从低侧驱动电路10b对低侧开关元件Tr2输出导通/截止指令。VS端子连接于高侧开关元件Tr1与低侧开关元件Tr2的连接点。
此处,高侧开关元件Tr1的发射极(VS端子)的电位(VS电位)由于低侧开关元件Tr2的导通/截止状态、或流过负载的电流的回流等,从GND电位在主电源HV的高压侧电位之间变化。因此,高侧驱动电路10a是以VS电位为基准进行动作,相对于GND而言是电位浮动的构造(绝缘)。
另外,为了驱动高侧开关元件Tr1,需要在其栅极施加高于发射极的电位。在高侧开关元件Tr1为导通(ON)的情况下,发射极电位(VS电位)与主电源HV的高压侧电位大致相等。所以,为了将高侧开关元件Tr1持续保持为导通状态,需要在栅极施加高压侧电位+栅极驱动电压。因此,需要使高侧驱动电路10a的动作电压高于主电源HV的电位。
因此,设有电容器CB和高耐压二极管DB。电容器CB的一端与VS端子连接,另一端与VB端子连接。电容器CB经由VB端子向高侧驱动电路10a供给驱动电压。二极管DB的正极与低侧驱动电源LV连接,负极与电容器CB的另一端连接。高耐压二极管DB将来自低侧驱动电源LV的电流供给至电容器CB的另一端,对电容器CB充电。通过将该充电电压加在高侧开关元件Tr1的发射极电位(VS电位),可以得到高侧驱动电路10a的动作电压。
接下来,说明上述功率用半导体装置的动作。在高侧驱动电路10a使高侧开关元件Tr1为截止(OFF),低侧驱动电路10b使低侧开关元件Tr2为导通的情况下,VS电位下降至GND电位附近。在这种情况下,由于高耐压二极管DB正向偏置,因此经由高耐压二极管DB向电容器CB流过充电电流。此时的电压的关系可由下式表达。
VCC=VB+VF (式1)
VB=Q/CB+VS (式2)
VS=Von (式3)
此处,VCC是VCC端子的电位,VB是VB端子的电位,VF是高耐压二极管DB的正向电压[V],Q是被电容器CB充电的总电荷量[C],CB是电容器CB的容量值[F],VS是VS端子的电位,Von是低侧开关元件Tr2的接通电压[V]。
利用上述关系式,电容器CB的电压、即VB端子与VS端子之间的电压如以下所示。
VB-VS=Q/CB=Vcc-VF-Von (式4)
因此,充电时,经由高耐压二极管DB,相当于该电荷量Q的充电电流供给至电容器CB。
另一方面,在高侧驱动电路10a使高侧开关元件Tr1为导通,低侧驱动电路10b使低侧开关元件Tr2为截止的情况下,VS电位上升至HV电位。在这种情况下,由于高耐压二极管DB反向偏置,因此不流过高耐压二极管DB的充电电流。而且,高侧驱动电路10a以电容CB为电源,以VS电位为基准电位进行动作。
图2是表示实施方式1所涉及的高耐压二极管的剖视图。在高耐压二极管DB的负极侧形成高侧驱动电路10a。在P-型半导体衬底12的表面设有N型负极区域14。该N型负极区域14是高耐压二极管DB的负极区域,同时也是高侧驱动电路10a的一部分。此外,也可以在高侧驱动电路10a形成N型的嵌入扩散区域。
在高耐压二极管DB中,在N型负极区域14内设有P型正极区域16和N+型接触层18。在P型正极区域16内设有P+型接触区域20和N+型接触区域22。在N型负极区域14经由N+型接触层18连接有负极电极24,在P+型接触区域20和N+型接触区域22连接有正极电极26。在正极电极26与负极电极24之间,在P-型半导体衬底12上设有场氧化膜28及场板30。此外,尽管高耐压二极管DB的截面构造与DMOS(Double-Diffused MOSFET:双扩散MOSFET)同样,但将相当于栅极电极的低电位侧的场板30与正极电极26连接,不进行MOS动作。
在高侧驱动电路10a,作为PMOS(p-channel MOSFET:p沟道MOSFET),在N型负极区域14内设有P+型源极区域32和P+型漏极区域34,在两者之间设有栅极电极36。在N型负极区域14内设有P型扩散层38。作为NMOS(n-channel MOSFET:n沟道MOSFET),在P型扩散层38内设有N+型漏极区域40和N+型源极区域42,在两者之间设有栅极电极44。P型扩散层38为NMOS的背栅极。
在P+型源极区域32连接有负极电极24,在P+型漏极区域34和N+型漏极区域40连接有电极46,在N+型源极区域42连接有电极48。负极电极24与VB端子连接,电极48与VS端子连接。在两个端子之间连接有电容器CB。
场板30及栅极电极36、44被层间氧化膜50覆盖。负极电极24、正极电极26、以及电极46、48被钝化膜52覆盖。场板30及栅极电极36、44是多晶硅层。负极电极24、正极电极26、以及电极46、48是铝电极。
图3是用于说明实施方式1所涉及的高耐压二极管的充电动作的剖视图。若VS电位下降至GND电位附近,则高耐压二极管DB正向偏置,高耐压二极管DB对于电容器CB进行充电动作。
此时,流过高耐压二极管DB的正向电流Ib也是寄生PNP晶体管的基极电流,该寄生PNP晶体管由P-型半导体衬底12、N型负极区域14和P型正极区域16构成。因此,寄生PNP晶体管的集电极电流Ic从P型正极区域16流向P-型半导体衬底12。该集电极电流Ic流向GND,成为无助于IC动作的单纯的损耗。该损耗Pw可由下式表达。
Pw=Ic×VCC=hFE×Ib×VCC (式5)
此处,hFE是寄生PNP晶体管的电流增益。另外,VCC为固定,通常hFE>1。
另外,电流Ib也是寄生NPN晶体管的基极电流,该寄生NPN晶体管由N型负极区域14、P型正极区域16和N+型接触区域22构成。因此,流过寄生NPN晶体管的集电极电流Icnpn。
Icnpn=hFEn×Ib (式6)
此处,hFEn是寄生NPN晶体管的电流增益。
另外,供给至电容器CB的充电电流Ich可由下式表达。
Ich=Ib+Icnpn=Ib(1+hFEn) (式7)
并且,向电容器CB的供给功率Pb可由下式表达。
Pb=Ich×(VCC-VB-VS-VF) (式8)
图4是用于说明实施方式1所涉及的高耐压二极管的恢复动作的剖视图。若VS电位由于反相器动作成为高电位,则高耐压二极管DB反向偏置,高耐压二极管DB的充电动作完成。然后,注入至N型负极区域14的空穴随着耗尽层的形成,流入GND电位的P-型半导体衬底12和P型正极区域16,产生恢复电流Ir。此时,在位于N+型接触区域22下的P型正极区域16流过电流,由于其寄生电阻成分产生电位差,因此从P型正极区域16向N+型接触区域22流过正向电流。该正向电流是寄生NPN晶体管的基极电流。因此,寄生NPN晶体管的集电极电流从N型负极区域14流向N+型接触区域22。
接下来,与比较例比较,说明实施方式1的效果。图5是表示比较例所涉及的高耐压二极管的剖视图。图6是用于说明比较例所涉及的高耐压二极管的充电动作的剖视图。在比较例中没有N+型接触区域22。因此,由于寄生NPN晶体管不存在,因此充电电流Ich=Ib。所以,由于式5及式8,Pw>Pb,产生向电容器CB的供给功率Pb以上的损耗Pw。
另一方面,在实施方式1中,由于在P型正极区域16内设有N+型接触区域22,由N型负极区域14、P型正极区域16和N+型接触区域22构成寄生NPN晶体管。该寄生NPN晶体管的集电极电流Icnpn为充电电流Ich的一部分,不是寄生PNP晶体管的基极电流。所以,在得到相同充电电流Ich的情况下,与比较例相比可以降低损耗Pw。具体而言,在式7中由于通常hFEn>1,因此在得到相同充电电流Ich的情况下,与比较例相比可以将电流Ib降低1/2以下。所以,式5的损耗Pw也可以降低至1/2以下。因此,在实施方式1中可以降低耗电功率。
实施方式2.
图7是表示实施方式2所涉及的高耐压二极管的剖视图。与实施方式1相比,P+型接触区域20和N+型接触区域22的配置相反。所以,P+型接触区域20与N+型接触区域22相比,接近负极电极24。
图8是用于说明实施方式2所涉及的高耐压二极管的恢复动作的剖视图。在恢复动作时,空穴从N型负极区域14流入P型正极区域16。流入P型正极区域16的空穴经过P+型接触区域20到达正极电极26。因此,与实施方式1不同,由于在位于N+型接触区域22下的P型正极区域16几乎不流过电流,因此可以抑制恢复动作时的寄生NPN晶体管的动作。据此,即使VB电位处于高电位,也可以防止引起2次击穿现象使NPN晶体管毁坏。
实施方式3.
图9是表示实施方式3所涉及的高耐压二极管的剖视图。除了实施方式2的结构,设有与N+型接触区域22相比远离负极电极24的P+型接触区域54。
图10是用于说明实施方式3所涉及的高耐压二极管的充电动作的剖视图。在充电动作时,从P+型接触区域54通过P型正极区域16向N型负极区域14注入空穴,寄生NPN晶体管进行动作。所以,与实施方式2相比可以提高有助于寄生NPN晶体管的充电电流。
图11是用于说明实施方式3所涉及的高耐压二极管的恢复动作的剖视图。在恢复动作时,流入P型正极区域16的空穴经过P+型接触区域20到达正极电极26。因此,与实施方式2同样,可以抑制恢复动作时的寄生NPN晶体管的动作,防止NPN晶体管的毁坏。
实施方式4.
图12是表示实施方式4所涉及的高耐压二极管的平面图。图13是沿着图12的A-A’的剖视图。图14是沿着图12的B-B’的剖视图。在P-型半导体衬底12的表面,沿着与从正极电极26朝向负极电极24的方向垂直的方向,交互配置P+型接触区域20和N+型接触区域22。在与多个P+型接触区域20和多个N+型接触区域22相比远离负极电极24的位置,设有P+型接触区域54。
图15是用于说明实施方式4所涉及的高耐压二极管的恢复动作的平面图。在恢复动作时,空穴从N型负极区域14向P型正极区域16流入。此时,空穴不流过寄生电阻较大的N+型接触区域22下的P型正极区域16,而流过配置在N+型接触区域22的两侧相邻的P+型接触区域20。因此,与实施方式2同样,可以抑制恢复动作时的寄生NPN晶体管的动作,防止NPN晶体管的毁坏。
实施方式5.
图16是表示实施方式5所涉及的高耐压二极管的平面图。图17是沿着图16的A-A’的剖视图。图18是沿着图16的B-B’的剖视图。除了实施方式4的结构,在与多个P+型接触区域20和多个N+型接触区域22相比远离负极电极24的位置,设有N+型接触区域56。P+型接触区域54与N+型接触区域56相比,远离负极电极24。
在充电动作时,从P+型接触区域54通过P型正极区域16向N型负极区域14注入空穴,寄生NPN晶体管进行动作。所以,与实施方式4相比可以提高有助于寄生NPN晶体管的充电电流。
在恢复动作时,空穴从N型负极区域14向P型正极区域16流入。此时,空穴不流过寄生电阻较大的N+型接触区域22下的P型正极区域16,而流过配置在N+型接触区域22的两侧相邻的P+型接触区域20。因此,与实施方式4同样,可以抑制恢复动作时的寄生NPN晶体管的动作,防止NPN晶体管的毁坏。
实施方式6.
图19是表示实施方式6所涉及的高耐压二极管的剖视图。除了实施方式3的结构,设有P-型电压保持区域58,该P-型电压保持区域58设在N型负极区域14内,与P型正极区域16连接,延伸到场氧化膜28下。若在负极电极24施加高电位,则在P-型电压保持区域58从负极侧到正极侧形成有耗尽层,保持高压。同样,在N型负极区域14中,从正极侧到负极侧形成有耗尽层,保持高压。
在恢复动作时,从P型正极区域16或者P-型电压保持区域58向N型负极区域14注入的空穴,随着耗尽层的形成经过P-型电压保持区域58和P+型接触区域20,到达正极电极26。因此,可以抑制恢复动作时的寄生NPN晶体管的动作,防止NPN晶体管的毁坏。
实施方式7.
图20是表示实施方式7所涉及的高耐压二极管的平面图。图21是沿着图20的A-A’的剖视图。图22是沿着图20的B-B’的剖视图。P-型电压保持区域58具有多个条状的区域。该多个条状的区域在P-型半导体衬底12的表面,沿着与从正极电极26朝向负极电极24的方向垂直的方向,以等间隔隔离,互相平行排列。
据此,由于可以改善不能同时兼顾P-型电压保持区域58可以保持的耐压和P-型电压保持区域58的电阻值,有效吸收空穴,因此可以有效抑制恢复动作时的寄生NPN的动作。
实施方式8.
图23是表示实施方式8所涉及的高耐压二极管的平面图。图24是沿着图23的A-A’的剖视图。图25是沿着图23的B-B’的剖视图。除了实施方式4的结构,设有实施方式7的多个条状的P-型电压保持区域58。据此,可以得到实施方式4及实施方式7的效果。
实施方式9.
图26是表示实施方式9所涉及的高耐压二极管的平面图。图27是沿着图26的A-A’的剖视图。图28是沿着图26的B-B’的剖视图。除了实施方式5的结构,设有实施方式7的多个条状的P-型电压保持区域58。据此,可以得到实施方式5及实施方式7的效果。
Claims (1)
1.一种功率用半导体装置,其特征在于,包括:
高侧开关元件及低侧开关元件,在高压侧电位与低压侧电位之间从高压侧依次图腾柱连接;
高侧驱动电路,驱动所述高侧开关元件;
低侧驱动电路,驱动所述低侧开关元件;
电容器,一端连接于所述高侧开关元件与所述低侧开关元件的连接点,另一端连接于所述高侧驱动电路的电源端子,向所述高侧驱动电路供给驱动电压;以及
二极管,正极连接于电源,负极连接于所述电容器的所述另一端,将来自所述电源的电流供给至所述电容器的所述另一端,
所述二极管具有:
P型半导体衬底;
N型负极区域,设在所述P型半导体衬底的表面;
P型正极区域,设在所述N型负极区域内;
P型接触区域及N型接触区域,设在所述P型正极区域内;
负极电极,连接于所述N型负极区域;以及
正极电极,连接于所述P型接触区域及所述N型接触区域。
2. 根据权利要求1所述的功率用半导体装置,其特征在于,
所述P型接触区域具有与所述N型接触区域相比接近所述负极电极的第一P型区域。
3. 根据权利要求2所述的功率用半导体装置,其特征在于,
所述P型接触区域还具有与所述N型接触区域相比远离所述负极电极的第二P型区域。
4. 根据权利要求1所述的功率用半导体装置,其特征在于,
所述P型接触区域具有多个第一P型区域,
所述N型接触区域具有多个第一N型区域,
在所述P型半导体衬底的所述表面,沿着与从所述正极电极朝向所述负极电极的方向垂直的方向,交互配置所述多个第一P型区域和所述多个第一N型区域。
5. 根据权利要求4所述的功率用半导体装置,其特征在于,
所述N型接触区域还具有与所述多个第一P型区域和所述多个第一N型区域相比远离所述负极电极的第二N型区域,
所述P型接触区域还具有与所述第二N型区域相比远离所述负极电极的第二P型区域。
6. 根据权利要求1~5中任一项所述的功率用半导体装置,其特征在于,所述二极管还包括:
场氧化膜,在所述正极电极与所述负极电极之间设在所述P型半导体衬底上;以及
P型电压保持区域,设在所述N型负极区域内,与所述P型正极区域连接,并且延伸到所述场氧化膜下。
7. 根据权利要求6所述的功率用半导体装置,其特征在于,
所述P型电压保持区域具有多个条状的区域,
在所述P型半导体衬底的所述表面,沿着与从所述正极电极朝向所述负极电极的方向垂直的方向,所述多个条状的区域互相平行排列。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-145346 | 2010-06-25 | ||
JP2010145346A JP5488256B2 (ja) | 2010-06-25 | 2010-06-25 | 電力用半導体装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102299168A CN102299168A (zh) | 2011-12-28 |
CN102299168B true CN102299168B (zh) | 2014-01-29 |
Family
ID=45115903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110140111.9A Active CN102299168B (zh) | 2010-06-25 | 2011-05-16 | 功率用半导体装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8362830B2 (zh) |
JP (1) | JP5488256B2 (zh) |
CN (1) | CN102299168B (zh) |
DE (1) | DE102011075367B4 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8941188B2 (en) | 2012-03-26 | 2015-01-27 | Infineon Technologies Austria Ag | Semiconductor arrangement with a superjunction transistor and a further device integrated in a common semiconductor body |
US9040384B2 (en) * | 2012-10-19 | 2015-05-26 | Freescale Semiconductor, Inc. | High voltage diode |
US10002961B2 (en) | 2013-06-14 | 2018-06-19 | Fuji Electric Co., Ltd. | Semiconductor device suppressing current leakage in a bootstrap diode |
JP6244177B2 (ja) * | 2013-11-12 | 2017-12-06 | 日立オートモティブシステムズ株式会社 | 半導体装置 |
US9621058B2 (en) * | 2015-01-20 | 2017-04-11 | Infineon Technologies Austria Ag | Reducing switching losses associated with a synchronous rectification MOSFET |
TWI629785B (zh) * | 2016-12-29 | 2018-07-11 | 新唐科技股份有限公司 | 高電壓積體電路的高電壓終端結構 |
JP6950380B2 (ja) * | 2017-09-05 | 2021-10-13 | 富士電機株式会社 | 半導体集積回路 |
CN110854081B (zh) * | 2019-10-08 | 2022-01-04 | 深圳市稳先微电子有限公司 | 片上系统 |
JP7407590B2 (ja) | 2019-12-25 | 2024-01-04 | 三菱電機株式会社 | 半導体装置および集積回路 |
CN113421922B (zh) * | 2021-06-25 | 2022-05-13 | 电子科技大学 | 一种具备栅极自钳位功能的三维igbt及其制造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1134204A (zh) * | 1994-07-15 | 1996-10-23 | 菲利浦电子有限公司 | 使用自举二极管仿真器的桥式电路的驱动电路 |
US7688052B2 (en) * | 2006-12-05 | 2010-03-30 | Semiconductor Components Industries, Llc | Charge pump circuit and method therefor |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5666280A (en) * | 1993-05-07 | 1997-09-09 | Philips Electronics North America Corporation | High voltage integrated circuit driver for half-bridge circuit employing a jet to emulate a bootstrap diode |
US5373435A (en) * | 1993-05-07 | 1994-12-13 | Philips Electronics North America Corporation | High voltage integrated circuit driver for half-bridge circuit employing a bootstrap diode emulator |
JP3519226B2 (ja) * | 1996-12-16 | 2004-04-12 | 富士電機デバイステクノロジー株式会社 | 半導体装置 |
JPH11205112A (ja) * | 1998-01-20 | 1999-07-30 | Toshiba Microelectronics Corp | 高耐圧パワー集積回路 |
JP3904725B2 (ja) * | 1998-06-02 | 2007-04-11 | 松下電器産業株式会社 | 半導体装置及びその製造方法 |
JP4610786B2 (ja) * | 2001-02-20 | 2011-01-12 | 三菱電機株式会社 | 半導体装置 |
JP4397602B2 (ja) * | 2002-05-24 | 2010-01-13 | 三菱電機株式会社 | 半導体装置 |
KR20060090679A (ko) * | 2003-09-30 | 2006-08-14 | 코닌클리즈케 필립스 일렉트로닉스 엔.브이. | 하향 변환기 |
JP4610941B2 (ja) * | 2004-06-18 | 2011-01-12 | 三菱電機株式会社 | 半導体装置 |
JP4935037B2 (ja) * | 2005-02-28 | 2012-05-23 | 富士電機株式会社 | 半導体装置 |
JP4938307B2 (ja) | 2005-12-28 | 2012-05-23 | パナソニック株式会社 | スイッチ回路、ダイオード |
US7863877B2 (en) * | 2006-12-11 | 2011-01-04 | International Rectifier Corporation | Monolithically integrated III-nitride power converter |
JP5047653B2 (ja) | 2007-03-13 | 2012-10-10 | 三菱電機株式会社 | 半導体装置 |
US7671638B2 (en) * | 2007-06-28 | 2010-03-02 | International Rectifier Corporation | Negative N-epi biasing sensing and high side gate driver output spurious turn-on prevention due to N-epi P-sub diode conduction during N-epi negative transient voltage |
-
2010
- 2010-06-25 JP JP2010145346A patent/JP5488256B2/ja active Active
-
2011
- 2011-02-01 US US13/018,823 patent/US8362830B2/en active Active
- 2011-05-05 DE DE102011075367.2A patent/DE102011075367B4/de active Active
- 2011-05-16 CN CN201110140111.9A patent/CN102299168B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1134204A (zh) * | 1994-07-15 | 1996-10-23 | 菲利浦电子有限公司 | 使用自举二极管仿真器的桥式电路的驱动电路 |
US7688052B2 (en) * | 2006-12-05 | 2010-03-30 | Semiconductor Components Industries, Llc | Charge pump circuit and method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2012009694A (ja) | 2012-01-12 |
US20110316115A1 (en) | 2011-12-29 |
DE102011075367A1 (de) | 2011-12-29 |
US8362830B2 (en) | 2013-01-29 |
DE102011075367B4 (de) | 2019-01-24 |
JP5488256B2 (ja) | 2014-05-14 |
CN102299168A (zh) | 2011-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102299168B (zh) | 功率用半导体装置 | |
US8310007B2 (en) | Integrated power supplies and combined high-side plus low-side switches | |
US9515067B2 (en) | Semiconductor device having switching element and free wheel diode and method for controlling the same | |
CN108475675B (zh) | 半导体装置 | |
KR100965130B1 (ko) | 충전대상 소자에 충전전류를 공급하는 반도체 장치 | |
JP5229288B2 (ja) | 半導体装置およびその制御方法 | |
JP2004047937A5 (zh) | ||
US20060145185A1 (en) | LDMOS gate controlled schottky diode | |
US20150021711A1 (en) | Semiconductor device | |
US20100078694A1 (en) | Semiconductor component having a drift zone and a drift control zone | |
JP4995873B2 (ja) | 半導体装置及び電源回路 | |
CN103038876A (zh) | 高压集成电路设备 | |
US7724064B2 (en) | Circuit arrangement having a transistor component and a freewheeling element | |
US9093523B2 (en) | Switching element and a diode being connected to a power source and an inductive load | |
US20150333748A1 (en) | Semiconductor device | |
US7863707B2 (en) | DC-DC converter | |
CN112865531A (zh) | 降压转换器电路、集成芯片、集成电路及降压转换方法 | |
JP5055740B2 (ja) | 半導体装置 | |
CN112151533A (zh) | 一种双向导电的功率半导体器件结构 | |
Boos et al. | A 30V bidirectional power switch in a CMOS technology using standard gate oxide | |
JP3279281B2 (ja) | 半導体集積回路装置 | |
Ludikhuize | Lateral 10-15 V DMOST with very low 6 mohm. mm/sup 2/on-resistance | |
JP5550681B2 (ja) | 半導体装置 | |
TW201312761A (zh) | 半導體裝置及其驅動方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |