CN102276243A - 基于β-锂霞石和氧化物的陶瓷复合材料,和制造所述复合材料的方法 - Google Patents

基于β-锂霞石和氧化物的陶瓷复合材料,和制造所述复合材料的方法 Download PDF

Info

Publication number
CN102276243A
CN102276243A CN2011101117748A CN201110111774A CN102276243A CN 102276243 A CN102276243 A CN 102276243A CN 2011101117748 A CN2011101117748 A CN 2011101117748A CN 201110111774 A CN201110111774 A CN 201110111774A CN 102276243 A CN102276243 A CN 102276243A
Authority
CN
China
Prior art keywords
eucryptite
beta
matrix material
powder
oxide compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011101117748A
Other languages
English (en)
Inventor
L·布朗沙尔
G·凡托齐
A·佩尔唐
H·勒韦龙
J·舍瓦利耶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Thales SA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Thales SA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of CN102276243A publication Critical patent/CN102276243A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/19Alkali metal aluminosilicates, e.g. spodumene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Abstract

本发明涉及基于β-锂霞石和氧化物的陶瓷复合材料,和制造所述复合材料的方法。本发明涉及具有低于1.3×10-6K-1的热膨胀系数的复合材料,其特征在于所述复合材料是基于氧化物和β-锂霞石晶体的烧结陶瓷,该烧结陶瓷的β-锂霞石含量少于约55重量%(69体积%)。

Description

基于β-锂霞石和氧化物的陶瓷复合材料,和制造所述复合材料的方法
技术领域
本发明的领域是适合于制备用于太空应用的光学组件(如镜子)的复合材料,和光学结构(也称为结构组件)的制备,所述光学结构的功能为定位和支撑光学组件。 
背景技术
太空观测的整体趋势是增加镜子的直径,以为了观测宇宙以及例如从地球静止轨道观测地球的未来科学任务。因此,在不久的将来,将会有对极其稳定的复合材料的需要,所述复合材料允许达到很高程度的照亮,并同时仍是刚性且坚固的,能够制备直径大于2m且每单位面积重量少于25kg/m-2的镜子。为获得尺寸稳定的镜子,寻求在约环境温度和/或低于环境温度时具有很低的CTE(热膨胀系数)的用于低温应用(例如红外观测)的复合材料。 
为了能够保证图像质量,如望远镜结构的光学结构本身在尺寸稳定性方面也受到非常严格的要求。另外,增加它们的尺寸要求复合材料能达到高程度的照亮,并同时仍是刚性且坚固的。 
对此类应用,已知具有良好尺寸稳定性,即小于1.3×10-6K-1的正的热膨胀系数的复合材料。例如,存在称为对应于注册商标的Zerodur的复合材料。Zerodur是广泛用于制备用在地球和太空的镜子的玻璃陶瓷。它在室温下具有非常低的热膨胀系数(2×10-8K-1),优良的光学性质和低密度(d=2.54)。但是,其适度的机械性能严重限制了其发光能力。由 
Figure BSA00000486131000011
制成的镜子的每单位面积最小质量是约35-40kg/m-2。设想Zerodur用于直径大于1.5m的太空镜子有些不切实际。 
发明内容
本发明的一个目的在于提供显示与太空应用相适应的良好尺寸稳 定性和能够制备大型光学组件和结构的良好机械性质的复合材料。 
本发明的另一个目的是提供可从简单的制造方法获得的此类复合材料。 
为此目的,本发明的一个主题是具有小于1.3×10-6K-1的热膨胀系数的复合材料,所述复合材料是基于氧化物和β-锂霞石晶体的烧结陶瓷,其β-锂霞石含量少于约55重量%(约70体积%),所述氧化物能在低于β-锂霞石熔点的温度下烧结,且具有大于100GPa的杨氏模量和大于100MPa的测得的弯曲强度。 
有利地,该β-锂霞石具有大于约6μm的晶粒大小。 
有利地,该β-锂霞石晶粒有微裂纹。 
在第一具体实施方式中,该氧化物是氧化铝。 
有利地,该氧化物由烧结纳米级氧化铝晶体获得。 
在第二具体实施方式中,该氧化物是氧化锆。 
有利地,该氧化锆掺杂四价元素,例如氧化铈。 
本发明的另一个主题是用以太空应用的光学组件,其由本发明的复合材料制成。 
本方面的另一个主题是用以定位和支撑至少一种用以太空应用的光学组件的结构组件,该结构组件由本发明的复合材料制成。 
本发明的另一个主题是包括光学组件和结构组件的光学器件,光学组件和结构组件两者均由本发明的复合材料制成。 
有利地,该光学器件包括光学组件和结构元件,光学组件和结构元件两者均由同样的复合材料制成。 
本发明的另一个主题是制造本发明的复合材料的方法,该方法包括制备第一粉末共混物的步骤,其中将结晶形式的氧化物粉末与结晶形式的β-锂霞石粉末共混,和热处理步骤,该步骤用于加热获自第一共混物的氧化物和β-锂霞石的复合材料以烧结该氧化物。 
有利地,该热处理步骤在于在热处理条件下,将该氧化物和该β-锂霞石的复合材料加热至β-锂霞石熔点以下的烧结温度。 
有利地,该方法包括制造β-锂霞石粉末的步骤,该步骤包括: 
-制备具有合适比例的碳酸锂粉末、氧化铝粉末和二氧化硅粉末的共混物以获得β-锂霞石的步骤; 
-煅烧获自共混物的粉末以获得β-锂霞石的步骤;和 
-热处理步骤以使β-锂霞石晶粒生长并断裂。 
有利地,所述煅烧步骤包括将温度升高到最高温度的步骤,随后在温度达到最高温度之后立即开始降低温度的步骤。 
具体实施方式
采用基于能够在β-锂霞石熔点以下的温度烧结的氧化物(具有正的热膨胀系数)的复合材料,显示与太空应用相适应的尺寸稳定性的复合材料是易于获得的。混合氧化物和β-锂霞石颗粒并将该共混物加热到能使氧化物烧结的温度是足够的。此外,通过选择具有高杨氏模量和高强度的氧化物,获得具有适合于太空领域的光学应用,且更特别地适合于制备直径大于2m的光学组件和适合的光学结构的机械性质的复合材料。 
本发明的复合材料是一种具有小于1.3×10-6K-1的热膨胀系数的复合材料。本发明的复合材料是基于氧化物和结晶β-锂霞石颗粒的烧结陶瓷复合材料。β-钾霞石为铝硅酸锂,通过首字母缩略词LAS来广泛引用,其组成为如下:(Li2O)x(Al2O3)y(SiO2)z,其中x、y和z是氧化锂Li2O、氧化铝Al2O3和二氧化硅SiO2各自的摩尔分数。β-锂霞石的各自的摩尔分数如下:x=1,y=1和z=2。 
结晶形式的β-锂霞石具有的特定特征是具有约-0.4×10-6K-1的稍微负的热膨胀系数,即,当温度升高时它收缩。结晶形式的β-锂霞石的热膨胀系数取决于成分晶粒大小而变化。热膨胀系数的变化起源于β-锂霞石晶粒的断裂。例如,对于约为7μm的晶粒大小可能获得-6.1×10-6K-1的热膨胀系数,对于约为13μm的晶粒大小可能获得-10.9×10-6K-1的热膨胀系数(K相当于开尔文)。无定形形式的β-锂霞石具有比结晶形式时的β-锂霞石更高的热膨胀系数,所以必须避免。在烧结氧化物基体(其热膨胀系数是正数)中包含结晶形式的β-锂霞石的复合材料具有比烧结氧化物基体更低的热膨胀系数。 
选择能够在β-钾霞石熔点以下的温度烧结,且本身具有良好的机械性质的氧化物。 
通过选择能够在β-锂霞石熔点以下的温度烧结的氧化物,有可能 通过非常简单的制造方法获得尺寸稳定性适合于太空领域的光学应用的复合材料。尺寸稳定性适合于太空领域的光学应用的复合材料是一种具有低于1.3×10-6K-1的热膨胀系数的复合材料。 
有利地,采用如下制造方法。 
第一粉末共混物由结晶形式的β-锂霞石粉末和结晶形式的氧化物粉末(具有以上列出的特征)制得。 
按照所需的最终复合材料的热膨胀系数调整β-锂霞石和氧化物的相对比例和晶粒大小。选择这些条件使得最终复合材料的热膨胀系数低于1.3×10-6K-1。所需的热膨胀系数越低,β-锂霞石的比例越高。同样地,所需的热膨胀系数越低,β-锂霞石的晶粒大小越大。如果需要将复合材料用作光学组件,则优选以使得最终复合材料的热膨胀系数低于1.3×10-6K-1且有利地近可能接近零的方式选择该相对比例。 
如果需要将复合材料用作结构组件,则优选以将机械性质最大化,并同时仍然保持热膨胀系数低于1.3×10-6K-1的方式选择该相对比例。 
所获得的复合材料使制备光学器件,例如望远镜成为可能,所述光学器件包括至少一种光学结构和至少一种由同样的材料制得的光学结构支撑的光学组件。这使获得热光学器件成为可能,即一种所有组件以相似方式随温度变形的器件。 
如果需要将复合材料用作在一个且相同的器件内的结构组件(或者基材)和光学组件,有利地将所有组件的热膨胀系数调节至低于1.3×10-6K-1的相同单一值。 
将氧化物与β-锂霞石共混的步骤是,例如,分散步骤,例如采用旋转式球磨机。然后将由此获得的滑脱物(slip)塑模。因此有可能通过选择适合的模具形状而制得各种形状,如管状或者简单板状。 
干燥所获得的复合材料。干燥例如在烘箱内进行。有利地,该干燥步骤在部件脱模后进行。 
作为一个变体,干燥在分散步骤过程中获得的滑脱物(例如通过喷雾干燥和造粒并添加粘合剂和增塑剂),然后使用冷压法或热压法压制。 
作为一个变体,共混物不在溶液中制得,而是通过干燥加工(例如在旋转式球磨机中)制得,然后通过冷压法或热压法压制。 
在此阶段,可以机械制造通过铸造或者冷压获得的部件以提供其复杂的几何形状。例如,有可能在生坯内制造空穴以照亮该部件。 
然后通过进行热处理烧结该复合材料。所述热处理在于任选在气压或者机械压的辅助下,将氧化物和β-锂霞石的复合材料加热至烧结温度。温度的升高也可以通过辐射或电流脉冲或微波加热实现。选择烧结温度以烧结氧化物但是不熔化β-锂霞石。换言之,烧结温度在所选操作条件下(在压力、温度上升速度、电流、在烧结温度下的保持时间方面)在β-锂霞石熔点以下。烧结条件取决于所选的氧化物。例如,在自然烧结条件下β-锂霞石的熔点在约1340℃。烧结温度例如低于1340℃。 
因为可以采用铸造或者压制技术然后自然烧结,所以有可能制备非常大的部件。 
在烧结该氧化物后紧随冷却所得复合材料的步骤。然后可以机械制造、研磨和,在镜子的情况下,抛光所获得的部件。 
在该过程之后获得的复合材料形成可以是光学组件(例如镜子)或者是能够支撑光学组件的光学结构(例如望远镜结构)的部件。所获得的部件的性质取决于采用的模具的形状、达到的任意照亮度、所进行的任选的机械制造和抛光操作,和第一共混物中氧化物和β-锂霞石粉末的相对比例。 
所获得的复合材料是基于氧化物和β-锂霞石的烧结陶瓷复合材料。烧结温度在β-锂霞石的熔点以下。这样保证了在烧结氧化物时β-锂霞石保持为结晶形式,因此有可能获得低于1.3×10-6K-1的热膨胀系数。 
获得了具有适合于太空应用的热膨胀系数,并包含最小含量的β-锂霞石的复合材料。此外,在烧结后不需要提供热处理步骤以结晶β-锂霞石。 
通过选择具有良好机械性质(杨氏模量大于100GPa并优选大于200GPa,和测得的弯曲强度大于100MPa,优选大于500MPa)的氧化物,获得具有适合于太空应用的机械性质,即杨氏模量大于100GPa和测得的弯曲强度大于100MPa的复合材料。β-锂霞石的机械性质和尺寸稳定性对于所需的应用尤其有利。必需具有接近零的热膨胀系数 的光学组件必须基于具有比用于制备结构组件的复合材料更高的β-锂霞石含量的复合材料。这是因为热膨胀系数可以比光学组件的热膨胀系数更高。相反,对机械性质的约束大于结构组件的情况。如今,在氧化物基体中加入更少的β-锂霞石的简单事实改善了其机械性质。 
此外,氧化物易于烧结。因此在烧结之后获得完全致密的复合材料。如今,密度是实现良好机械性质的基本元素。另外,通过获得完全致密的复合材料,能直接抛光部件。这样避免了加入额外层,如常规通过CVD在SiC镜子基材上沉积的SiC层。 
现在将描述可以在本发明的上下文中使用的氧化物的两个例子。这些是,在一方面,氧化铝(Al2O3)和,在另一方面,掺杂至少一种四价元素的氧化物的氧化锆。四价元素的氧化物例如氧化铈(Ce-TZP,也称为铈稳定的氧化锆或者Ce-ZrO2)。可以采用氧化铈的摩尔含量低于或者等于20%的氧化锆。由于在本专利申请中所解释的原因而选择这些材料。 
在β-钾霞石熔点以下的温度下(在自然烧结条件下约1340℃)自然烧结氧化铝和铈稳定的氧化锆的是可能的。由于纳米级氧化铝的熔点更低,有利的是采用其中氧化铝颗粒具有纳米级尺寸的粉末。一般可以采用尺寸低于1μm的氧化铝颗粒。有利地,采用其中结晶β-锂霞石颗粒尺寸大于6μm的β-锂霞石粉末。 
此外,掺杂四价元素的氧化物的氧化铝和氧化锆具有低热膨胀系数,使得有可能获得热膨胀系数低于1.3×10-6K-1的复合材料。氧化铝在室温下的热膨胀系数为约8×10-6K-1。16-Ce-TZP铈稳定的氧化锆的热膨胀系数为约11×10-6K-1。16-Ce-TZP氧化锆是具有16%的氧化铈摩尔含量的铈稳定的氧化锆。 
掺杂四价元素的氧化物的氧化铝和氧化锆具有良好的机械性质。 
氧化铝具有约400GPa的杨氏模量和约400MPa的测得的弯曲强度。氧化铝也有约4MPa/m1/2的韧度。韧度是当材料经受断裂情况时其吸收能量的能力的衡量,对应于导致材料不能传播的断裂。可以获得具有零热膨胀系数,约100Gpa的杨氏模量和约100Mpa的适度强度(弯曲强度)的氧化铝和β-锂霞石陶瓷复合材料。 
16Ce-TZP具有约215GPa的杨氏模量和约600MPa的测得的弯曲 强度。16Ce-TZP氧化锆还具有相对高的韧度,可能高达11MPa/m1/2。 
此外,氧化铝和铈稳定的氧化锆粉末可购得。 
相比之下,例如,掺杂钇的氧化锆,掺杂四价元素的氧化物的氧化锆,和更特别的掺杂氧化铈的氧化锆,具有在湿气的存在下不会被降解的优点。这提高了材料的尺寸稳定性并因此提高了本复合材料的尺寸稳定性。 
在也可采用的至少一种四价元素的氧化物中,可提及氧化钛和钛氧化铈(titanium cerium oxide)。 
现将描述合成β-锂霞石的方法的一个实施例的步骤。当然,β-锂霞石可以通过任何其他合成纳米级或者微米尺寸的β-锂霞石的方法获得。 
碳酸锂Li2CO3、氧化铝Al2O3和二氧化硅SiO2粉末以合适的比例共混以获得β-锂霞石。为此目的,碳酸锂、氧化铝和二氧化硅粉末以这些元素的各自重量比例等于24.96%、34.45%、40.59%共混。 
将所获得的混合物放入水溶液,所述水溶液例如含50重量%的混合物。任选地,在溶液中引入分散剂,例如Darvan C。 
例如,制得一种溶液,其中该溶液的50重量%源自之前获得的共混物,该溶液的0.15重量%相当于分散剂。然后分散该溶液。该分散步骤,例如,通过旋转式球磨机用氧化锆球进行24h。 
然后干燥所获得的滑脱物。该干燥操作例如在110℃下在烘箱内进行。持续此操作直到重量损失为零。 
该过程然后包括煅烧干燥粉末的步骤。该煅烧步骤的作用是产生获得碳酸锂Li2CO3、氧化铝Al2O3和二氧化硅SiO2粉末间的固态反应的条件以获得β-锂霞石。有利地,该煅烧步骤包括将温度升高到最高温度Tmax,随后在达到最高温度时即降低温度的步骤。换言之,在最高温度下的保持时间为零。本申请人发现此方法避免了从致密化或者烧结所获得的β-锂霞石,这不是当粉末在最高温度下保持非零时间时的情况。β-锂霞石晶粒的致密化得以避免以更易碾磨所获得的粉末。作为一个变体,可以在最高温度下保持非零时间而进行所述煅烧。当需要采用较大尺寸的β-锂霞石时这是有利的。干燥粉末例如按照以下方案在熔炉中煅烧:以5℃/min的速度将温度升高至1050℃,然后当达 到此温度时立即以5℃/min的速度冷却至200℃并自然冷却。 
然后碾磨煅烧粉末(在水溶液中或者通过干燥碾磨)以获得纳米级或者微米尺寸的颗粒。例如在磨碎机或者旋转式球磨机中进行碾磨。
例如,获得固含量为40重量%的水溶液。然后在磨碎机中在500rpm下碾磨该水溶液6h。 
然后干燥溶液。 
例如通过旋转式蒸发器在70℃,300mbar的压力下进行干燥。作为一个变体,浇铸获自磨碎机的滑脱物。 
因此,获得固含量为40%的水溶液。然后将该水溶液通过旋转式球磨机采用氧化锆球分散24h。 
然后浇铸所获得的滑脱物。例如在烘箱中在50℃下干燥由此获得的生坯。持续此操作直到重量损失为零。 
然后在1300℃下热处理干燥生坯非零时间。因此,例如,在1300℃下热处理6h之后获得晶粒大小为7μm的β-锂霞石晶粒。另外,这些晶粒显示微裂纹。作为一个变体,获自煅烧的粉末不用磨损而得以碾磨并在1300℃下热处理非零时间。 
最后,碾磨并筛选由此获得的经热处理的β-锂霞石陶瓷。 
有可能例如获得尺寸为7μm和20μm之间,由在1300℃下热处理6h的7μm晶粒所形成的β-锂霞石聚集体。 

Claims (16)

1.一种具有低于1.3×10-6K-1的热膨胀系数的复合材料,其特征在于所述复合材料是基于氧化物和β-锂霞石晶体的烧结陶瓷,并且具有少于约55重量%的β-锂霞石含量。
2.一种复合材料,其β-锂霞石的晶粒大小大于约6μm。
3.一种复合材料,其β-锂霞石晶粒有微裂纹。
4.如权利要求1所述的复合材料,其中所述氧化物是氧化铝。
5.如前述权利要求所述的复合材料,其中所述氧化物是由烧结纳米级氧化铝晶体获得。
6.如权利要求1所述的复合材料,其中所述氧化物是氧化锆。
7.如权利要求6所述的复合材料,其中所述氧化物是掺杂至少一种四价元素的氧化物的氧化锆。
8.如权利要求7所述的复合材料,其中所述氧化锆掺杂氧化铈。
9.一种用以太空应用的光学组件,所述组件由如前述任一项权利要求所述的复合材料制成。
10.一种用以定位和支撑至少一种用以太空应用的光学组件的结构组件,所述结构组件由如权利要求1至8任一项所述的复合材料制成。
11.一种光学器件,其包括如权利要求9所述的光学组件和如权利要求10所述的结构组件。
12.如前述权利要求所述的光学器件,其中所述光学组件和所述结构组件由同样的复合材料制成。
13.一种制造如权利要求1至8任一项所述的复合材料的方法,该方法包括制备第一粉末共混物的步骤,其中将结晶形式的氧化物粉末与结晶形式的β-锂霞石粉末共混,和热处理步骤,该步骤用于加热获自第一共混物的氧化物和β-锂霞石的复合材料以烧结该氧化物。
14.如前述权利要求所述的制造方法,其中所述热处理在于在热处理条件下将所述氧化物和所述β-锂霞石的复合材料加热至β-锂霞石熔点以下的烧结温度。
15.如权利要求13和14任一项所述的制造方法,该方法包括制造β-锂霞石粉末的步骤,所述制造β-锂霞石粉末的步骤包括:
-制备具有合适比例的碳酸锂粉末、氧化铝粉末和二氧化硅粉末的共混物以获得β-锂霞石的步骤;
-煅烧获自共混物的粉末以获得β-锂霞石的步骤;和
-热处理步骤以使β-钾霞石晶粒生长并断裂。
16.如前述权利要求所述的制造方法,其中所述煅烧步骤包括将温度升高至最高温度的步骤,随后在温度达到最高温度之后立即开始降低温度的步骤。
CN2011101117748A 2010-04-30 2011-04-27 基于β-锂霞石和氧化物的陶瓷复合材料,和制造所述复合材料的方法 Pending CN102276243A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1001864 2010-04-30
FR1001864A FR2959506B1 (fr) 2010-04-30 2010-04-30 Materiau composite ceramique a base de beta-eucryptite et d'un oxyde et procede de fabrication dudit materiau.

Publications (1)

Publication Number Publication Date
CN102276243A true CN102276243A (zh) 2011-12-14

Family

ID=43063261

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101117748A Pending CN102276243A (zh) 2010-04-30 2011-04-27 基于β-锂霞石和氧化物的陶瓷复合材料,和制造所述复合材料的方法

Country Status (7)

Country Link
US (1) US20120107585A1 (zh)
EP (1) EP2383240A1 (zh)
JP (1) JP2011236120A (zh)
CN (1) CN102276243A (zh)
FR (1) FR2959506B1 (zh)
IL (1) IL212548A0 (zh)
TW (1) TW201204673A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106379908A (zh) * 2015-10-23 2017-02-08 北京中材人工晶体研究院有限公司 一种β-锂霞石粉体的简捷环保制备方法
CN109153616A (zh) * 2016-07-06 2019-01-04 日本电气硝子株式会社 复合陶瓷粉末、密封材料以及复合陶瓷粉末的制造方法
CN116332627A (zh) * 2023-02-14 2023-06-27 西安航科创星电子科技有限公司 一种低热膨胀系数高温共烧陶瓷(htcc)材料及其制备方法
CN116425520A (zh) * 2023-04-13 2023-07-14 四川美术学院 一种高锂抗热震功能陶瓷制品及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2362533B1 (es) * 2009-12-21 2012-05-17 Consejo Superior De Investigaciones Cientificas (Csic) Material compuesto con coeficiente de expansión térmica controlado con cer�?micas ox�?dicas y su procedimiento de obtención.
FR2985137B1 (fr) * 2011-12-23 2015-12-04 Saint Gobain Ct Recherches Dispositif de communication
US9056794B2 (en) 2012-04-20 2015-06-16 Ivar Reimanis Near zero coefficient of thermal expansion of beta-eucryptite without microcracking
JP6999813B2 (ja) * 2018-07-12 2022-01-19 京セラ株式会社 複合体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1468201A (zh) * 2000-10-02 2004-01-14 �����ɷ� 硅铝酸锂陶瓷
US20070225153A1 (en) * 2006-03-23 2007-09-27 Ivar Reimanis Implementing a Pressure-Induced Phase Transformation in Beta-Eucryptite to Impart Toughening

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997026572A1 (en) * 1996-01-16 1997-07-24 Corning Incorporated Athermal optical device
JP4912544B2 (ja) * 2001-07-11 2012-04-11 太平洋セメント株式会社 低熱伝導高剛性セラミックス
JP2006124228A (ja) * 2004-10-28 2006-05-18 Nippon Electric Glass Co Ltd 多結晶粉末
ES2341081B1 (es) 2008-12-12 2011-05-23 Consejo Superior De Investigaciones Cientificas (Csic) Materiales basados en aluminosilicatos de litio con coeficiente de expansion termica negativos en un amplio intervalo de temperatura, procedimiento de preparacion y uso.
ES2362533B1 (es) 2009-12-21 2012-05-17 Consejo Superior De Investigaciones Cientificas (Csic) Material compuesto con coeficiente de expansión térmica controlado con cer�?micas ox�?dicas y su procedimiento de obtención.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1468201A (zh) * 2000-10-02 2004-01-14 �����ɷ� 硅铝酸锂陶瓷
US20070225153A1 (en) * 2006-03-23 2007-09-27 Ivar Reimanis Implementing a Pressure-Induced Phase Transformation in Beta-Eucryptite to Impart Toughening

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LONG XIA ET AL.: "The effect of aluminum sources on synthesis of low expansion glass–ceramics in lithia–alumina–silica system by sol–gel route", 《JOURNAL OF NON-CRYSTALLINE SOLIDS》 *
T.SHIMADA ET AL.: "Simultaneous fabrication of a composite with low thermal expansion and high strength in the eucryptite—yttria-stabilized PSZ system", 《JOURNAL OF MATERIALS SCIENCE》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106379908A (zh) * 2015-10-23 2017-02-08 北京中材人工晶体研究院有限公司 一种β-锂霞石粉体的简捷环保制备方法
CN109153616A (zh) * 2016-07-06 2019-01-04 日本电气硝子株式会社 复合陶瓷粉末、密封材料以及复合陶瓷粉末的制造方法
CN109153616B (zh) * 2016-07-06 2022-02-18 日本电气硝子株式会社 复合陶瓷粉末、密封材料以及复合陶瓷粉末的制造方法
CN116332627A (zh) * 2023-02-14 2023-06-27 西安航科创星电子科技有限公司 一种低热膨胀系数高温共烧陶瓷(htcc)材料及其制备方法
CN116425520A (zh) * 2023-04-13 2023-07-14 四川美术学院 一种高锂抗热震功能陶瓷制品及其制备方法

Also Published As

Publication number Publication date
IL212548A0 (en) 2011-07-31
JP2011236120A (ja) 2011-11-24
EP2383240A1 (fr) 2011-11-02
TW201204673A (en) 2012-02-01
US20120107585A1 (en) 2012-05-03
FR2959506A1 (fr) 2011-11-04
FR2959506B1 (fr) 2014-01-03

Similar Documents

Publication Publication Date Title
CN102276243A (zh) 基于β-锂霞石和氧化物的陶瓷复合材料,和制造所述复合材料的方法
US20150158760A1 (en) Porous glass ceramic composition and method for manufacturing the same
Chen et al. Synthesis and characterization of CBS glass/ceramic composites for LTCC application
JP2011509232A (ja) 低温同時焼成セラミック粉末及び特別な原料、並びにその使用
CN105198478A (zh) 一种莫来石晶须增强钙长石多孔陶瓷及其制备方法
CN109721340A (zh) 一种高强度低损耗ltcc材料及其制备方法
EP2518037A1 (en) Composite material having controlled coefficient of thermal expansion with oxidic ceramics and procedure for the obtainment thereof
JP3548438B2 (ja) 低熱膨張性セラミックスの製造方法
CN101429009A (zh) 一种低介电常数高品质微波介质陶瓷及其制备方法
CN104276815A (zh) 一种高导热氧化物陶瓷材料及其制备方法
EP2371786B1 (en) Method of preparation of lithium-aluminosilicate-based materials with near zero or negative thermal expansion coefficient in a broad temperature range
CN106430981A (zh) 一种含改性粉煤灰的堇青石基微晶玻璃及其制备工艺
CN103964860A (zh) 一种以纳米硅溶胶为烧结助剂热压制备的氮化硼基透波复合材料及其制备方法
JPH06107456A (ja) 透光性イットリウム−アルミニウム−ガーネット焼結体の製造方法
KR101343806B1 (ko) 경량도자기용 소지 조성물 및 이를 이용한 경량도자기의 제조방법
CN110759733B (zh) 一种Y0.5Dy0.5Ta0.5Nb0.5O4钽系陶瓷材料及其制备方法
JP2002226285A (ja) 軽量セラミックス部材およびその製造方法
KR101174622B1 (ko) 납석을 이용한 뮬라이트 합성방법
KR101343808B1 (ko) 저온소성용 자기 조성물 및 이를 이용한 저온소성 자기의 제조방법
KR101325509B1 (ko) 고가소성과 고강도를 나타내는 도자기의 제조방법
CN102234196A (zh) 制备基于氮化硅和β-锂霞石陶瓷复合材料的方法
JP5928694B2 (ja) アルミナ質焼結体及びその製造方法
Yunus et al. Formation of Bio-based Derived Dicalcium Silicate Ceramics via Mechanochemical Treatment: Physical, XRD, SEM and FTIR Analyses.
KR20120084446A (ko) 뮬라이트의 합성방법
CN113213905A (zh) 一种堇青石基微晶玻璃结合Al2O3-SiO2系统陶瓷材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111214