CN102219373A - 光学玻璃、精密压制成型用预型件、光学元件及其制造方法 - Google Patents

光学玻璃、精密压制成型用预型件、光学元件及其制造方法 Download PDF

Info

Publication number
CN102219373A
CN102219373A CN2011100461409A CN201110046140A CN102219373A CN 102219373 A CN102219373 A CN 102219373A CN 2011100461409 A CN2011100461409 A CN 2011100461409A CN 201110046140 A CN201110046140 A CN 201110046140A CN 102219373 A CN102219373 A CN 102219373A
Authority
CN
China
Prior art keywords
glass
opticglass
cation ratio
preform
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100461409A
Other languages
English (en)
Other versions
CN102219373B (zh
Inventor
根岸智明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Publication of CN102219373A publication Critical patent/CN102219373A/zh
Application granted granted Critical
Publication of CN102219373B publication Critical patent/CN102219373B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • C03C3/155Silica-free oxide glass compositions containing boron containing rare earths containing zirconium, titanium, tantalum or niobium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提供可稳定生产高品质的光学元件的高折射率低分散光学玻璃、由上述光学玻璃形成的精密压制成型用预型件和光学元件、以及上述光学元件的制造方法。对于上述光学玻璃,其折射率nd为1.86以上,阿贝值vd为28~36,液相温度为1000℃以下,以阳离子%表示,含有0~5%的Si4+、25~45%的B3+、0~20%的Li+、0~5%的Na+、0~5%的K+、0~5%的Mg2+、0~5%的Ca2+、0~5%的Sr2+、0~5%的Ba2+、5~40%的Zn2+、5~25%的La3+、1~15%的Gd3+、0~5%的Y3+、0~5%的Yb3+、0~3%的Zr4+、1~15%的Ti4+、0~5%的Nb5+、0~5%的Ta5+、1~30%的W6+、0~5%的Te4+、0~5%的Ge4+、0~5%的Bi3+、0~5%的Al3+。本发明的光学玻璃具有规定的阳离子比。

Description

光学玻璃、精密压制成型用预型件、光学元件及其制造方法
技术领域
本发明涉及折射率nd为1.86以上且阿贝值vd为28~36的光学玻璃、由上述玻璃形成的精密压制成型用预型件和光学元件、以及光学元件的制造方法。
背景技术
高折射率低分散光学玻璃作为各种透镜等光学元件材料的需要较高。例如,通过与高折射率高分散性透镜的组合,能够以小型化构成高功能的色差校正用光学系统。
进一步地,通过将高折射率低分散性透镜的光学功能面非球面化,能够谋求各种光学系统进一步的高功能化、小型化。
作为有效地制造非球面透镜等在磨削、研磨等加工中非常花费劳力和成本的玻璃制光学元件的方法,已知有精密压制成型法。在专利文献1中公开了在这样的精密压制成型法中所使用的高折射率低分散光学玻璃。
在专利文献1中,出于为了以较高生产率供给形状精度高的玻璃制光学元件从而提供高折射率、低分散、且玻璃化转变温度低、具有能够精密压制成型的低温软化性的光学玻璃的目的,公开了含有B2O3、La2O3、Gd2O3、ZnO作为必需成分;折射率(nd)超过1.86且阿贝值(vd)小于35;玻璃化转变温度(Tg)为630℃以下的光学玻璃。
专利文献1:日本特开2005-247613号公报
发明内容
专利文献1中所公开的光学玻璃含有对于高折射率和低分散化有利的La2O3、Gd2O3和Y2O3等稀土类成分,进一步导入有由于高折射率化而有利的ZnO、Ta2O5、TiO2、Nb2O5、WO3等成分。
对于专利文献1所公开的含有较大量的稀土类成分和Nb等赋予高折射率的成分的玻璃,尽管大量含有具有降低液相温度的功能的B3+,但液相温度仍很高,为1020℃以上;另一方面,由于B3+为易于挥发的成分,因而存在易于出现在玻璃成型时挥发多、容易产生条痕(脈理)这样的问题等问题。
本发明是为了解决上述问题而提出的,其目的在于提供一种能够稳定生产高品质的光学元件的高折射率低分散光学玻璃,其第二目的在于提供由上述光学玻璃形成的精密压制成型用预型件和光学元件、以及上述光学元件的制造方法。
本发明如下所述。
[1]一种光学玻璃,以阳离子%表示,其含有:
Si4+    0~5%、
B3+     25~45%、
Li+     0~20%、
Na+     0~5%、
K+      0~5%、
Mg2+    0~5%、
Ca2+    0~5%、
Sr2+    0~5%、
Ba2+    0~5%、
Zn2+    5~40%、
La3+    5~25%、
Gd3+    1~15%、
Y3+     0~5%、
Yb3+    0~5%、
Zr4+    0~3%、
Ti4+    1~15%、
Nb5+    0~5%、
Ta5+    0~5%、
W6+     1~30%、
Te4+    0~5%、
Ge4+    0~5%、
Bi3+    0~5%、
Al3+    0~5%;
该光学玻璃中,
阳离子比(B3+/(B3++Si4+))为0.85~1.00、
阳离子比(B3+/(La3++Gd3++Y3+))为1.0~3.0、
阳离子比(B3+/(Ti4++Nb5++Ta5++W6+))为0.5~4.0、
阳离子比(Zn2+/(Zn2++Mg2++Ca2++Sr2++Ba2+))为0.8~1.0、
阳离子比((La3++Gd3++Y3+)/(Ti4++Nb5++Ta5++W6+))为0.3~2.5、
阳离子比Ti4+/W6+为0.1~1.5、
阳离子比((Ti4++W6+)/(Ti4++Nb5++Ta5++W6+))为0.8~1.0;
该光学玻璃的折射率nd为1.86以上,阿贝值vd为28~36,液相温度为1000℃以下。
[2]如[1]中所记载的光学玻璃,其中,所述光学玻璃的玻璃化转变温度小于590℃。
[3]如[1]中所记载的光学玻璃,其中,所述光学玻璃的玻璃化转变温度大于550℃小于590℃;
以阳离子%表示,所述光学玻璃含有:
Si4+    0~1.5%、
B3+     29~40%、
Li+     0~3%、
Na+     0%、
K+      0%、
Mg2+    0%、
Ca2+    0%、
Sr2+    0%、
Ba2+    0%、
Zn2+    22~30%、
La3+    12~18%、
Gd3+    3~8%、
Y3+     0%、
Yb3+    0%、
Zr4+    0~0.8%、
Ti4+    5~9%、
Nb5+    0%、
Ta5+    0%、
W6+     6~18%、
Te4+    0%、
Ge4+    0%、
Bi3+    0%、
Al3+    0%;
该光学玻璃中,
阳离子比(B3+/(B3++Si4+))为0.92~1.00、
阳离子比(B3+/(La3++Gd3++Y3+))为1.5~2.0、
阳离子比(B3+/(Ti4++Nb5++Ta5++W6+))为1.40~2.62、
阳离子比(Zn2+/(Zn2++Mg2++Ca2++Sr2++Ba2+))为1.00、
阳离子比((La3++Gd3++Y3+)/(Ti4++Nb5++Ta5++W6+))为0.8~1.5、
阳离子比Ti4+/W6+为0.2~0.95、
阳离子比((Ti4++W6+)/(Ti4++Nb5++Ta5++W6+))为1.00。
[4]如[1]中所记载的光学玻璃,其中,所述光学玻璃的玻璃化转变温度为490℃~550℃;
以阳离子%表示,所述光学玻璃含有:
Si4+    0~2%、
B3+     28~40%、
Li+     1~15%、
Na+     0%、
K+      0%、
Mg2+    0%、
Ca2+    0%、
Sr2+    0%、
Ba2+    0%、
Zn2+    10~27%、
La3+    11~15%、
Gd3+    3~8%、
Y3+     0%、
Yb3+    0%、
Zr4+    0~0.8%、
Ti4+    3~8%、
Nb5+    0%、
Ta5+    0%、
W6+     7~22%、
Te4+    0%、
Ge4+    0%、
Bi3+    0%、
Al3+    0%;
该光学玻璃中,
阳离子比(B3+/(B3++Si4+))为0.92~1.00、
阳离子比(B3+/(La3++Gd3++Y3+))为1.5~2.0、
阳离子比(B3+/(Ti4++Nb5++Ta5++W6+))为1.00~3.00、
阳离子比(Zn2+/(Zn2++Mg2++Ca2++Sr2++Ba2+))为1.00、
阳离子比((La3++Gd3++Y3+)/(Ti4++Nb5++Ta5++W6+))为0.6~1.7、
阳离子比Ti4+/W6+为0.2~0.95、
阳离子比((Ti4++W6+)/(Ti4++Nb5++Ta5++W6+))为1.00。
[5]如[1]~[4]的任一项所述的光学玻璃,其中,所述光学玻璃的部分色散比Pg,F为0.57~0.62。
[6]一种精密压制成型用预型件,其由[1]~[5]的任一项所述的光学玻璃形成。
[7]一种光学元件,其由[1]~[5]的任一项所述的光学玻璃形成。
[8]一种光学元件的制造方法,在该制造方法中,对[6]中所记载的精密压制成型用预型件进行加热,使用压制成型模具进行精密压制成型。
根据本发明,可以提供能够通过精密压制成型等稳定地生产高品质的光学元件的高折射率低分散光学玻璃,可以提供由上述光学玻璃形成的精密压制成型用预型件和光学元件、以及上述光学元件的制造方法。特别地,本发明的光学玻璃能够在将作为易挥发成分的B3+抑制为少量的同时将液相温度保持为较低值(1000℃以下),因而能够提供在玻璃成型时挥发少、不易产生条痕的高折射率玻璃。进一步地,在1300℃以下的温度下,玻璃原料也能够熔解。
具体实施方式
下面对本发明的光学玻璃进行详细说明。在下文中,只要没有特别说明,各阳离子成分的含量、总含量以阳离子%表示,上述含量的比以阳离子比表示。
Si4+发挥出提高玻璃的粘性、提高玻璃的热稳定性的作用,其提高玻璃成型性。但是,若过量导入,则折射率会降低,同时精密压制成型时的温度会上升。Si4+的含量若超过5%,则由于折射率降低、玻璃化转变温度上升,因而精密压制成型时的温度会上升。因而,Si4+的含量处于0~5%的范围。
B3+具有提高玻璃的热稳定性的同时还降低液相温度的作用,但其也是易挥发的成分。因而,若过量导入,则折射率会降低,同时在玻璃成型时挥发量增加,易于产生条痕。因而,B3+的含量处于25~45%的范围。
Li+的降低玻璃化转变温度的效果较强,但若过量导入,则折射率降低的同时,玻璃的热稳定性也降低。另外,在碱金属成分中,其是在维持高折射率特性方面最有利的成分。但是,若Li+的含量超过20%,则显示出折射率降低、同时玻璃的热稳定性也降低的倾向。因而,Li+的含量处于0~20%的范围。
Na+和K+具有降低玻璃化转变温度的效果,但若过量导入,则折射率降低的同时玻璃稳定性降低。Na+、K+各成分的含量若超过5%,则显示出折射率降低、玻璃的热稳定性也降低的倾向。因而,Na+、K+各成分的含量均处于0~5%的范围。
Mg2+、Ca2+、Sr2+、Ba2+均具有改善熔融性的效果,但若过量导入,则玻璃稳定性降低。因而,Mg2+、Ca2+、Sr2+、Ba2+各成分的含量均处于0~5%的范围。
Zn2+起到维持高折射率的同时降低玻璃化转变温度的作用,其还是起到改善熔融性的作用的成分,但若过量导入,则玻璃的热稳定性会降低。Zn2+的含量若不足5%,则难以得到上述效果;若超过40%,则显示出玻璃的热稳定性降低的倾向。因而,Zn2+的含量处于5~40%的范围。
La3+是起到维持低分散性的同时提高折射率的作用的成分,但若过量导入,则显示出玻璃的稳定性降低、玻璃化转变温度提高的倾向。La3+的含量若不足5%,则难以得到上述效果;若超过25%,则显示出玻璃的稳定性降低、玻璃化转变温度上升的倾向。因而,La3+的含量处于5~25%的范围。
Gd3+是起到维持低分散性的同时提高折射率的作用的成分。若过量导入,则显示出玻璃的稳定性降低、玻璃化转变温度升高的倾向。Gd3+的含量不足1%时,不能得到上述的低分散化和高折射率化;若超过15%,则显示出玻璃的稳定性降低、玻璃化转变温度升高的倾向。Gd3+的含量处于1~15%的范围。
Y3+是起到维持低分散性的同时提高折射率的作用的成分。若过量导入,则显示出玻璃的热稳定性降低、玻璃化转变温度升高的倾向。因此,Y3+的含量处于0~5%的范围。
Yb3+是起到维持低分散性的同时提高折射率的作用的成分。若过量导入,则显示出玻璃的热稳定性降低、玻璃化转变温度升高的倾向。因此,Yb3+的含量处于0~5%的范围。
Zr4+是起到提高折射率的作用的成分。Zr4+的含量若超过3%,则显示出玻璃的稳定性降低、液相温度升高的倾向。因而,Zr4+的含量处于0~3%的范围。
Ti4+是提高折射率的成分,但若过量导入,则玻璃稳定性降低、同时玻璃发生着色。因而,Ti4+的含量处于1~15%的范围。
Nb5+相比于作为提高折射率的成分的W6+可以进一步提高折射率。但是,若过量导入,则热稳定性降低、液相温度也上升。因而,Nb5+的含量处于0~5%。
Ta5+是提高折射率的成分,其相比于同样作为提高折射率的成分的Ti4+、W6+显示出低分散性。但是,若过量导入,则热稳定性降低、液相温度也上升。因而,Ta5+的含量处于0~5%的范围。
W6+是起到提高折射率、改善玻璃的热稳定性、降低液相温度的作用的成分,但若过量导入,则显示出玻璃的热稳定性降低的倾向,同时显示出玻璃发生着色的倾向。因而,W6+的含量处于1~30%的范围。
Te4+是起到提高折射率的同时提高玻璃的热稳定性的作用的成分,但若过量导入,则玻璃的热稳定性降低。对于Te4+,从考虑到对环境的负荷的方面出发,优选削减其用量。因而,Te4+的含量处于0~5%的范围。
Ge4+是起到提高折射率的同时提高玻璃的热稳定性的作用的成分,但若过量导入,则玻璃的热稳定性降低。在作为玻璃成分而使用的物质中,Ge4+是特别昂贵的成分,从抑制制造成本的增加的方面考虑,优选减少其用量。因而,Ge4+的含量处于0~5%的范围。
Bi3+是起到提高折射率的同时提高玻璃的热稳定性的作用的成分,但若过量导入,则显示出玻璃的热稳定性降低的同时玻璃发生着色的倾向。因而,Bi3+的含量处于0~5%的范围。
Al3+是起到改善玻璃的热稳定性、化学耐久性的作用的成分,但若过量导入,则显示出折射率降低、同时玻璃的热稳定性降低的倾向。因而,Al3+的含量处于0~5%的范围。
B3+相对于B3+、Si4+的总量的阳离子比(B3+/(B3++Si4+))处于0.85~1.00。若低于上述比例的下限,则难以满足所需要的光学特性,液相温度升高。
B3+相对于La3+、Gd3+、Y3+的总量的阳离子比(B3+/(La3++Gd3++Y3+))若不足1.0,则玻璃的热稳定性降低的同时液相温度也上升;若超过3.0,则难以维持所需要的光学特性,因而阳离子比(B3+/(La3++Gd3++Y3+))处于1.0~3.0。
B3+相对于Ti4+、Nb5+、Ta5+、W6+的总量的阳离子比(B3+/(Ti4++Nb5++Ta5++W6+))处于0.5~4.0。若低于上述比例的下限,则玻璃的热稳定性降低,同时液相温度也上升。若超过上述比例的上限,则难以满足所需要的光学特性,同时由于B3+过量,因而玻璃成型时挥发量增加,易于产生条痕。
在2价金属成分Zn2+、Mg2+、Ca2+、Sr2+和Ba2+中,Zn2+是在维持高折射率特性的同时降低玻璃化转变温度的作用方面优异的成分,因而Zn2+的含量相对于Zn2+、Mg2+、Ca2+、Sr2+和Ba2+的总含量的阳离子比(Zn2+/(Zn2++Mg2++Ca2++Sr2++Ba2+))处于0.8~1.0的范围。
La3+、Gd3+、Y3+的总量相对于Ti4+、Nb5+、Ta5+、W6+的总量的阳离子比((La3++Gd3++Y3+)/(Ti4++Nb5++Ta5++W6+))处于0.3~2.5。若低于上述比例的下限,则难以满足所需要的光学特性、即低分散性。若超过上述比例的上限,则玻璃的热稳定性降低,同时液相温度升高。
阳离子比Ti4+/W6+处于0.1~1.5。若低于该范围的下限,则难以满足所需要的光学特性。若高于上述范围的上限,则热稳定性降低、同时液相温度升高。
Ti4+、W6+的总量相对于Ti4+、Nb5+、Ta5+、W6+的总量的阳离子比((Ti4++W6+)/(Ti4++Nb5++Ta5++W6+))处于0.8~1.0。若低于上述比例的下限,则玻璃的热稳定性变差,同时液相温度升高。
[折射率·分散]
本发明的光学玻璃的折射率nd为1.86以上、阿贝值vd为28~36。通过使折射率nd为1.86以上,可以使用本发明的光学玻璃来对摄像光学系统或投影仪等投射光学系统等的光学系统进行小型化。并且还可以增大光学系统的变焦比。进一步地,由于折射率高,因而可以减小用于得到所需要的聚焦力的透镜的光学功能面的曲率绝对值。由于可以减小光学功能面的曲率绝对值,因而易于进行精密压制成型中所用的压制成型模具的成型面的加工。也能够减少在精密压制成型时在玻璃与压制成型模具之间关入气氛气体(通常称为气阱(gas trap))、向模具的转印精度降低这样的麻烦。在对光学功能面进行磨削、研磨的情况下也易于加工。另外,由于能够减小光学功能面的曲率绝对值,能够增大透镜的有效径。
另外,本发明的光学玻璃尽管是高折射率玻璃,但由于其阿贝值vd为28以上,因而通过与高折射率高分散玻璃制透镜的组合,可有效作为能够良好地进行色差校正的透镜材料。
另外,通过使阿贝值vd处于28以上,能够对Ti4+、Nb5+、W6+这样的高折射率高分散赋予成分的含量进行限制,因而也能够间接地提高玻璃的精密压制成型性。
另一方面,若折射率nd保持在1.86以上同时阿贝值vd大于36,则玻璃的热稳定性降低、玻璃化转变温度升高。若玻璃化转变温度升高,则需要将精密压制成型时的温度设定得较高,从而助长玻璃与压制成型模具间的氧化还原反应,易于引起玻璃与压制成型模具的熔合、玻璃表面发生模糊等麻烦,精密压制成型性降低。
基于上述理由,将本发明的光学玻璃的折射率nd设于1.86以上、阿贝值vd设于28~36。
[液相温度]
本发明的光学玻璃的热稳定性优异,液相温度为1000℃以下。因此,可以在1300℃以下、优选在1200℃以下进行玻璃原料的熔解,可以抑制由进行熔解的坩锅的玻璃所致的侵蚀。其结果,能够避免构成坩锅的铂等物质由于侵蚀而混入玻璃中成为异物、以离子的形式熔入而引起玻璃的着色等问题。
进一步地,通过使液相温度为1000℃以下,熔融玻璃的温度降低、挥发性得到抑制,从而还可降低、抑制挥发所致的条痕发生、光学特性的变动。能够降低熔融玻璃的温度还具有能够使流出、成型时的玻璃的粘性处于适于成型的范围的优点。在本发明中,液相温度优选为995℃以下、更优选为990℃以下、进一步优选为985℃以下、更进一步优选为980℃以下、还进一步优选为975℃以下。
对于液相温度如上述那样低这一点,其在使熔融玻璃流出的同时由流出的玻璃分离出所需要量的熔融玻璃块、利用在玻璃块固化的过程中成型为精密压制成型用预型件的方法方面是非常有利的。另外,关于上述预型件的成型法将在下文进行叙述。
[玻璃化转变温度]
关于对与高折射率低分散化相伴随的玻璃化转变温度的上升进行抑制,其在抑制压制成型温度的上升、不会助长压制成型模具与玻璃间的化学反应方面是非常重要的。本发明的光学玻璃的优选方式中,优选玻璃化转变温度低于590℃、更优选为580℃以下。若玻璃化转变温度为低于590℃的温度,则在精密压制成型方面是优选的。
在玻璃化转变温度为大于550℃小于590℃的范围的情况下,优选下述组成范围。
对于Si4+,如上所述,其起到提高玻璃的粘性、提高玻璃的热稳定性的作用,但若过量导入,则折射率降低的同时精密压制成型时的温度会升高。Si4+的含量优选为0~2.5%、更优选为0~2.0%、进一步优选为0~1.5%。
对于B3+,如上所述,其具有提高玻璃的热稳定性的同时降低液相温度的效果,但其也是易挥发的成分。因而,若过量导入,则折射率会降低,同时在玻璃成型时挥发量增加,易于产生条痕。B3+的含量的上限优选为45%以下、更优选为43%以下、进一步优选为41%以下、更进一步优选为40%以下。B3+的含量的下限优选为26%以上、更优选为27%以上、进一步优选为28%以上、更进一步优选为29%以上。
Li+的降低玻璃化转变温度的效果较强,但若过量导入,则折射率降低。Li+的含量优选为0~10%、更优选为0~6%、进一步优选为0~3%。
对于Na+、K+,如上所述,其具有降低玻璃化转变温度的效果,但若过量导入,则折射率降低的同时玻璃稳定性降低。Na+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。K+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
对于Mg2+、Ca2+、Sr2+、Ba2+,如上所述,其具有改善熔融性的效果,但若过量导入,则玻璃稳定性降低。Mg2+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。Ca2+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。Sr2+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。Ba2+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
对于Zn2+,如上所述,其是起到维持高折射率并降低玻璃化转变温度的作用、同时起到改善熔融性的作用的成分,但若过量导入,则玻璃的热稳定性会降低。Zn2+的含量的上限优选为36%以下、更优选为34%以下、进一步优选为32%以下、更进一步优选为30%以下。Zn2+的含量的下限优选为14%以上、更优选为18%以上、进一步优选为21%以上、更进一步优选为22%以上。
对于La3+,如上所述,其是起到维持低分散性的同时提高折射率的作用的成分。若过量导入,则显示出玻璃的稳定性降低、玻璃化转变温度升高的倾向。La3+的含量的上限优选为25%以下、更优选为22%以下、进一步优选为20%以下、更进一步优选为18%以下。La3+的含量的下限优选为6%以上、更优选为8%以上、进一步优选为10%以上、更进一步优选为12%以上。
对于Gd3+,如上所述,其是起到维持低分散性的同时提高折射率的作用的成分。若过量导入,则显示出玻璃的热稳定性降低、玻璃化转变温度升高的倾向。Gd3+的含量的上限优选为13%以下、更优选为10%以下、进一步优选为9%以下、更进一步优选为8%以下。Gd3+的含量的下限优选为2%以上、更优选为3%以上。
对于Y3+,如上所述,其是起到维持低分散性的同时提高折射率的作用的成分。若过量导入,则显示出玻璃的热稳定性降低、玻璃化转变温度升高的倾向。Y3+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
对于Yb3+,如上所述,其是起到维持低分散性的同时提高折射率的作用的成分。若过量导入,则显示出玻璃的热稳定性降低、玻璃化转变温度升高的倾向。Yb3+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
对于Zr4+,如上所述,其是起到提高折射率的作用的成分。若过量导入,则显示出玻璃的热稳定性降低、液相温度升高的倾向。Zr4+的含量优选为0~1.5%、更优选为0~1.0%、进一步优选为0~0.8%。
对于Ti4+,如上所述,其是提高折射率的成分,但若过量导入,则玻璃稳定性降低、同时玻璃发生着色。Ti4+的含量的上限优选为13%以下、更优选为11%以下、进一步优选为9%以下。Ti4+的含量的下限优选为2%以上、更优选为3%以上、进一步优选为5%以上。
对于Nb5+,如上所述,其是提高折射率的成分,但若过量导入,则热稳定性降低、液相温度也上升。Nb5+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
对于Ta5+,如上所述,其是提高折射率的成分,但若过量导入,则热稳定性降低、液相温度也上升。Ta5+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
对于W6+,如上所述,其是起到提高折射率、改善玻璃的热稳定性、降低液相温度的作用的成分,但若过量导入,则显示出玻璃的热稳定性降低的倾向,同时显示出玻璃发生着色的倾向。W6+的含量的上限优选为25%以下、更优选为22%以下、进一步优选为18%以下。W6+的含量的下限优选为3%以上、更优选为4%以上、进一步优选为6%以上。
对于Te4+,如上所述,其是起到提高折射率的同时提高玻璃的热稳定性的作用的成分,但若过量导入,则玻璃的热稳定性降低。对于Te4+,从考虑到对环境的负荷的方面出发,优选削减其用量。Te4+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
对于Ge4+,如上所述,其是起到提高折射率的同时提高玻璃的热稳定性的作用的成分,但若过量导入,则玻璃的热稳定性降低。在作为玻璃成分而使用的物质中,Ge4+是特别昂贵的成分,从抑制制造成本的增加的方面考虑,优选减少其用量。Ge4+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
对于Bi3+,如上所述,其是起到提高折射率的同时提高玻璃的热稳定性的作用的成分,但若过量导入,则显示出玻璃的热稳定性降低的同时玻璃发生着色的倾向。Bi3+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
对于Al3+,如上所述,其是起到改善玻璃的热稳定性、化学耐久性的作用的成分,但若过量导入,则显示出折射率降低、同时玻璃的热稳定性降低的倾向。Al3+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
为了高折射率化及将液相温度保持在低值,B3+量相对于Si4+与B3+的总量的阳离子比(B3+/(Si4++B3+))优选为0.90~1.00、更优选为0.92~1.00。
对于B3+量相对于La3+、Gd3+、Y3+的总量的阳离子比(B3+/(La3++Gd3++Y3+)),若低于其下限,则玻璃的热稳定性降低的同时液相温度也上升。若超过上述比例的上限,则难以满足所需要的光学特性(同时由于B3+过量,因而在玻璃成型时挥发量增加,易于产生条痕)。阳离子比(B3+/(La3++Gd3++Y3+))的上限优选为2.70以下、更优选为2.30以下、进一步优选为2.10以下、更进一步优选为2.00以下。下限优选为1.20以上、更优选为1.30以上、进一步优选为1.40以上、更进一步优选为1.50以上。
对于B3+量相对于Ti4+、Nb5+、Ta5+、W6+的总量的阳离子比(B3+/(Ti4++Nb5++Ta5++W6+)),若低于其下限,则玻璃的热稳定性降低,同时液相温度也上升。若超过上述比例的上限,则难以满足所需要的光学特性(同时由于B3+过量,因而在玻璃成型时挥发量增加,易于产生条痕)。阳离子比(B3+/(Ti4++Nb5++Ta5++W6+))的上限优选为2.90以下、更优选为2.80以下、进一步优选为2.70以下、更进一步优选为2.62以下。下限优选为1.20以上、更优选为1.30以上、进一步优选为1.40以上。
Zn2+与Mg2+、Ca2+、Sr2+、Ba2+相比能维持高折射率且降低玻璃化转变温度。因而,Zn2+量相对于Mg2+、Ca2+、Sr2+、Ba2+、Zn2+的总量的阳离子比(Zn2+/(Mg2++Ca2++Sr2++Ba2++Zn2+))优选为0.85~1.00、更优选为0.90~1.00、进一步优选为0.95~1.00、更进一步优选为1.00。
对于La3+、Gd3+、Y3+的总量相对于Ti4+、Nb5+、Ta5+、W6+的总量的阳离子比((La3++Gd3++Y3+)/(Ti4++Nb5++Ta5++W6+)),若低于其下限,则难以显示出所需要的光学特性也即低分散性。若超过上述比例的上限,则玻璃的热稳定性降低的同时液相温度升高。阳离子比((La3++Gd3++Y3+)/(Ti4++Nb5++Ta5++W6+))的上限优选为2.0以下、更优选为1.8以下、进一步优选为1.7以下、更进一步优选为1.6以下、再进一步优选为1.5以下。下限优选为0.5以上、更优选为0.6以上、进一步优选为0.7以上、更进一步优选为0.8以上。
对于阳离子比Ti4+/W6+,若低于其下限,则难以满足所需要的光学特性,基于该理由,下限优选为0.10以上、更优选为0.20以上。另一方面,若超过上限则液相温度会升高,基于这样的理由,上限优选为1.30以下、更优选为1.20以下、进一步优选为110以下、更进一步优选为1.00以下、再进一步优选为0.95以下。
对于Ti4+、W6+的总量相对于Ti4+、Nb5+、Ta5+、W6+的总量的阳离子比(Ti4++W6+)/(Ti4++Nb5++Ta5++W6+),若低于其下限,则液相温度上升、热稳定性也变差。因而,阳离子比(Ti4++W6+)/(Ti4++Nb5++Ta5++W6+)优选为0.85~1.00、更优选为0.90~1.00、进一步优选为0.95~1.00、更进一步优选为1.00。
在玻璃化转变温度Tg为大于550℃小于590℃的范围的情况下,最优选以下的组成范围。
以阳离子%表示,该光学玻璃含有:
Si4+    0~1.5%、
B3+     29~40%、
Li+     0~3%、
Na+     0%、
K+      0%、
Mg2+    0%、
Ca2+    0%、
Sr2+    0%、
Ba2+    0%、
Zn2+    22~30%、
La3+    12~18%、
Gd3+    3~8%、
Y3+     0%、
Yb3+    0%、
Zr4+    0~0.8%、
Ti4+    5~9%、
Nb5+    0%、
Ta5+    0%、
W6+     6~18%、
Te4+    0%、
Ge4+    0%、
Bi3+    0%、
Al3+    0%;
该光学玻璃中,
阳离子比(B3+/(B3++Si4+))为0.92~1.00、
阳离子比(B3+/(La3++Gd3++Y3+))为1.5~2.0、
阳离子比(B3+/(Ti4++Nb5++Ta5++W6+))为1.40~2.62、
阳离子比(Zn2+/(Zn2++Mg2++Ca2++Sr2++Ba2+))为1.00、
阳离子比((La3++Gd3++Y3+)/(Ti4++Nb5++Ta5++W6+))为0.8~1.5、
阳离子比Ti4+/W6+为0.2~0.95、
阳离子比((Ti4++W6+)/(Ti4++Nb5++Ta5++W6+))为1.00。
玻璃化转变温度为大于550℃小于590℃的范围的情况下的光学特性的优选范围如下所示。
nd的上限优选为nd≤-0.01vd+2.248(1式)、更优选为nd≤-0.01vd+2.242(2式)、进一步优选为nd≤-0.01vd+2.236(3式)、更进一步优选为nd≤-0.01vd+2.230(4式)。
对于nd的下限,
优选的是,在vd≥29.2的范围nd≥1.896、在vd≤29.2的范围nd≥-0.01vd+2.188;
更优选的是,在vd≥29.2的范围nd≥1.900、在vd≤292的范围nd≥-0.01vd+2.192;
进一步优选的是,在vd≥29.6的范围nd≥1.900、在vd≤29.6的范围nd≥-0.01vd+2.196;
更进一步优选的是,在vd≥30的范围nd≥1.900、在vd≤30的范围nd≥-0.01vd+2.200。
vd的上限优选为vd≤34.2(11式)、更优选为vd≤33.6(12式)、进一步优选为vd≤33.0(13式)、更进一步优选为vd≤32.4(14式)。
vd的下限优选为vd≥28.2(15式)、更优选为vd≥28.4(16式)、进一步优选为vd≥28.6(17式)、更进一步优选为vd≥28.8(18式)。
在玻璃化转变温度为550℃以下的范围的情况下,优选为以下的组成范围。Tg若降低过多,则玻璃的热稳定性会降低,因而Tg的下限优选为480℃以上、更优选为490℃以上。另外,对于优选各数值范围的理由,只要没有特别记载,就与上述玻璃化转变温度为大于550℃小于590℃的范围的情况是同样的。
Si4+的含量优选为0~4%、更优选为0~3%、进一步优选为0~2%。
B3+的含量的上限优选为45%以下、更优选为44%以下、进一步优选为42%以下、更进一步优选为40%以下。B3+的含量的下限优选为22%以上、更优选为24%以上、进一步优选为26%以上、更进一步优选为28%以上。
Li+的含量优选为1~17%、更优选为1~16%、进一步优选为1~15%。对于Li+,由于其降低玻璃化转变温度的效果较强,因而若低于上述下限,则不能维持所需要的玻璃化转变温度。若为了谋求玻璃化转变温度的降低而导入大量Li+,则折射率会降低,因而在含有大量Li+的情况下,有必要增加作为提高折射率的成分的Ti4+或W6+。进一步地,为了将液相温度保持在1000℃以下,相对于增加Ti4+的量,增加W6+的量是有效的。然而,若超过上述上限,则玻璃的热稳定性降低。
Na+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
K+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
Mg2+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
Ca2+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
Sr2+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
Ba2+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
Zn2+的含量的上限优选为41%以下、更优选为33%以下、进一步优选为30%以下、更进一步优选为27%以下。Zn2+的含量的下限优选为7%以上、更优选为8%以上、进一步优选为9%以上、更进一步优选为10%以上。
La3+的含量的上限优选为21%以下、更优选为19%以下、进一步优选为17%以下、更进一步优选为15%以下。La3+的含量的下限优选为8%以上、更优选为9%以上、进一步优选为10%以上、更进一步优选为11%以上。
Gd3+的含量的上限优选为13%以下、更优选为10%以下、进一步优选为9%以下、更进一步优选为8%以下。Gd3+的含量的下限优选为2%以上、更优选为3%以上。
Y3+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
Yb3+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
Zr4+的含量优选为0~1.5%、更优选为0~1.0%、进一步优选为0~0.8%。
Ti4+的含量的上限优选为12%以下、更优选为10%以下、进一步优选为9%以下、更进一步优选为8%以下。Ti4+的含量的下限优选为1%以上、更优选为2%以上、进一步优选为3%以上。
Nb5+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
Ta5+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
W6+的含量的上限优选为25%以下、更优选为24%以下、进一步优选为23%以下、更进一步优选为22%以下。W6+的含量的下限优选为5%以上、更优选为6%以上、进一步优选为6.5%以上、更进一步优选为7%以上。
Te4+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
Ge4+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
Te4+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
Bi3+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
Al3+的含量优选为0~4%、更优选为0~3%、进一步优选不导入。
B3+量相对于Si4+与B3+的总量的阳离子比(B3+/(Si4++B3+))优选为0.90~1.00、更优选为0.92~1.00。
B3+量相对于La3+、Gd3+、Y3+的总量的阳离子比(B3+/(La3++Gd3++Y3+))的上限优选为2.60以下、更优选为2.40以下、进一步优选为2.20以下、更进一步优选为2.00以下。下限优选为1.20以上、更优选为1.30以上、进一步优选为1.40以上、更进一步优选为1.50以上。
B3+量相对于Ti4+、Nb5+、Ta5+、W6+的总量的阳离子比(B3+/(Ti4++Nb5++Ta5++W6+))的上限优选为3.90以下、更优选为3.60以下、进一步优选为3.30以下、更进一步优选为3.00以下。下限优选为0.80以上、更优选为0.90以上、进一步优选为1.00以上。
Zn2+量相对于Mg2+、Ca2+、Sr2+、Ba2+、Zn2+的总量的阳离子比(Zn2+/(Mg2++Ca2++Sr2++Ba2++Zn2+))优选为0.85~1.00、更优选为0.90~1.00、进一步优选为0.95~1.00、更进一步优选为1.00。
La3+、Gd3+、Y3+的总量相对于Ti4+、Nb5+、Ta5+、W6+的总量的阳离子比((La3++Gd3++Y3+)/(Ti4++Nb5++Ta5++W6+))的上限优选为2.1以下、更优选为2.0以下、进一步优选为1.9以下、更进一步优选为1.8以下、再进一步优选为1.7以下。下限优选为0.4以上、更优选为0.5以上、进一步优选为0.6以上,若低于上述比例的下限,则难以显示出所需要的光学特性即低分散性。若超过上述比例的上限,则玻璃的热稳定性降低、同时液相温度升高。
对于阳离子比Ti4+/W6+,若低于其下限,则难以满足所需要的光学特性,因而下限优选为0.10以上、更优选为0.20以上。对于上述比例,若上限提高则液相温度升高,因而上限优选为1.30以下、更优选为1.20以下、进一步优选为110以下、更进一步优选为1.00以、再进一步优选为0.95以下。
Ti4+、W6+的总量相对于Ti4+、Nb5+、Ta5+、W6+的总量的阳离子比(Ti4++W6+)/(Ti4++Nb5++Ta5++W6+)优选为0.85~1.00、更优选为0.90~1.00、进一步优选为0.95~1.00、更进一步优选为1.00。
在玻璃化转变温度为490℃以上、550℃以下的范围的情况下,最优选为以下的组成范围。
以阳离子%表示,该光学玻璃含有:
Si4+    0~2%、
B3+     28~40%、
Li+     1~15%、
Na+     0%、
K+      0%、
Mg2+    0%、
Ca2+    0%、
Sr2+    0%、
Ba2+    0%、
Zn2+    10~27%、
La3+    11~15%、
Gd3+    3~8%、
Y3+     0%、
Yb3+    0%、
Zr4+    0~0.8%、
Ti4+    3~8%、
Nb5+    0%、
Ta5+    0%、
W6+     7~22%、
Te4+    0%、
Ge4+    0%、
Bi3+    0%、
Al3+    0%;
该光学玻璃中,
阳离子比(B3+/(B3++Si4+))为0.92~1.00、
阳离子比(B3+/(La3++Gd3++Y3+))为1.5~2.0、
阳离子比(B3+/(Ti4++Nb5++Ta5++W6+))为1.00~3.00、
阳离子比(Zn2+/(Zn2++Mg2++Ca2++Sr2++Ba2+))为1.00、
阳离子比((La3++Gd3++Y3+)/(Ti4++Nb5++Ta5++W6+))为0.6~1.7、
阳离子比Ti4+/W6+为0.2~0.95、
阳离子比((Ti4++W6+)/(Ti4++Nb5++Ta5++W6+))为1.00。
在玻璃化转变温度为550℃以下的范围的情况下,光学特性的优选范围如下所示。
nd的上限优选为nd≤-0.01vd+2.248(2-1式)、更优选为nd≤-0.01vd+2.242(2-2式)、进一步优选为nd≤-0.01vd+2.236(2-3式)、更进一步优选为nd≤-0.01vd+2.230(2-4式)。
对于nd的下限,
优选的是,nd≥-0.01vd+2.192(2-5式);
更优选的是,nd≥-0.01vd+2.198(2-6式);
进一步优选的是,在vd≥31.8的范围nd≥1.880(2-7式)、在vd≤31.8的范围nd≥-0.01vd+2.198(2-6式);
更进一步优选的是,在vd≥30.8的范围nd≥1.890(2-8式)、在vd≤30.8的范围nd≥-0.01vd+2.198(2-6式)。
vd的上限优选为vd≤35.0(2-9式)、更优选为vd≤34.0(2-10式)、进一步优选为vd≤33.2(2-11式)、更进一步优选为vd≤32.4(2-12式)。
vd的下限优选为vd≥28.2(2-13式)、更优选为vd≥28.4(2-14式)、进一步优选为vd≥28.6(2-15式)、更进一步优选为vd≥28.8(2-16式)。
本发明的光学玻璃中,主要的阴离子成分为O2-,其基本上为氧化物玻璃。作为O2-以外的阴离子成分,也可以少量导入F-、Cl-等卤素成分。但是,在对抑制熔融玻璃的挥发性、使之更易于成型的方面有所重视的情况下,优选抑制具有挥发性的F-成分的导入量、即优选不导入F-成分。另外,也可以添加并非为玻璃成分而作为澄清剂使用的极少量的卤素(例如F、Cl),使玻璃熔融。
作为澄清剂,还可以少量添加Sb2O3、碳酸盐、硫酸盐、硝酸盐等。但是,在添加Sb2O3的情况下,由于Sb的氧化力强,为了不助长与压制成型模具的成型面的氧化还原反应,更优选基于玻璃成分总量的Sb2O3的额外添加量处于0~1质量%的范围,该添加量更优选为0~0.5质量%的范围。
另外,对于Fe、Cr、Co、Cu,由于会使玻璃发生着色,因而优选不添加。
并且,对于Pb、Cd、Tl、As等担心会对环境有不良影响的成分,也优选不导入。
对于Lu、Ga,在无损于本发明目的的范围可以少量导入,但由于这些成分非常昂贵,即使不使用也能够达成本发明的目的,因而为了抑制成本上升,优选在玻璃中不导入Lu、Ga。
在上述组成范围中,从维持所需要的光学特性、同时使玻璃的热稳定性更为良好、降低玻璃化转变温度、使精密压制成型性更为良好的方面出发,Si4+、B3+、Li+、Na+、K+、Mg2+、Ca2+、Sr2+、Ba2+、Zn2+、La3+、Gd3+、Y3+、Yb3+、Zr4+、Ti4+、Nb5+、Ta5+、W6+、Te4+、Ge4+、Bi3+和Al3+的总含量优选为95%以上、更优选为98%以上、进一步优选为99%以上、再优选为99.5%以上、再进一步优选为100%。
进一步地,Si4+、B3+、Li+、Na+、K+、Mg2+、Ca2+、Sr2+、Ba2+、Zn2+、La3+、Gd3+、Y3+、Yb3+、Zr4+、Ti4+、Nb5+、Ta5+和W6+的总含量优选为95%以上、更优选为98%以上、进一步优选为99%以上、再优选为99.5%以上、再进一步优选为100%。
更优选的是,Si4+、B3+、Li+、Zn2+、La3+、Gd3+、Zr4+、Ti4+、和W6+的总含量优选为95%以上、更优选为98%以上、进一步优选为99%以上、再优选为99.5%以上、再进一步优选为100%。
[部分分散特性]
在摄像光学系统、投射光学系统等中,为进行高级的色差校正,将低分散玻璃制透镜与高分散玻璃制透镜进行组合是有效的。作为低分散玻璃,部分色散比小的低分散玻璃在高级色差校正方面更有效果。本发明的光学玻璃作为高折射率低分散玻璃其部分色散比小,Pg,F的值为0.57~0.62。对于Pg,F,其使用g线、F线、c线中的各折射率ng、nF、nc,以Pg,F=(ng-nF)/(nF-nc)来表示。
在部分色散比Pg,F-阿贝值vd图中,若作为正常部分分散玻璃的基准的法线(normal line)上的部分色散比以Pg,F(0)表示,则Pg,F使用阿贝值vd,
Pg,F(0)=0.6483-(0.0018×vd)
ΔPg,F为距离上述法线的部分色散比Pg,F的差,以下式表示。
ΔPg,F=Pg,F-Pg,F(0)
=Pg,F+(0.0018×vd)-0.6483
对于本发明的光学玻璃中的优选方式,其偏差ΔPg,F为0.02以下,作为高级色差校正用的光学元件材料是适当的。本发明中ΔPg,F的优选范围为0.01以下、更优选范围为0.008以下、更优选范围为0.006以下、进一步优选范围为0.005以下。
[着色]
本发明的光学玻璃着色极少,在可见光区域的广泛范围显示出高透光性。光学玻璃的着色程度利用着色度λ70、λ5等表示。对于着色度,在具备一对经光学研磨的平行平面、平面间的距离(厚度)为10mm±0.1mm的玻璃上,相对于上述平面由垂直方向入射测定光,将透过了玻璃的光的强度Iout除以入射光强度Iin所得的外部透过率(也包括玻璃表面的反射损失)在280nm~700nm的波段为70%的波长设为λ70、将在上述波段的外部透过率为5%的波长设为λ5。
在本发明中,λ70的优选范围为470nm以下,更优选的范围为450nm以下,进一步优选的范围为430nm以下,更进一步优选的范围为410nm以下。另外,λ5的优选范围为370nm以下,更优选的范围为365nm以下,进一步优选范围为360nm以下,更进一步优选的范围为355nm以下,再更进一步优选的范围为350nm以下。
[光学玻璃的制造]
本发明的光学玻璃可以如下得到:按照获得目的玻璃组成的方式来称量作为原料的氧化物、碳酸盐、硫酸盐、硝酸盐、氢氧化物等并调合,充分混合制成混合批料,在熔融容器内进行加热、熔融、脱泡、搅拌,制作均质且不含气泡的熔融玻璃,通过对其进行成型来得到本发明的光学玻璃。具体可使用公知的熔融法来制作。
[精密压制成型用预型件]
接下来对本发明的精密压制成型用预型件进行说明。
本发明的精密压制成型用预型件的特征在于其由上述本发明的光学玻璃形成。
上述精密压制成型用预型件(下文称为预型件)表示的是供于精密压制成型的玻璃块,其为相当于精密压制成型品的质量的玻璃成型体。
下面对预型件进行详细说明。
预型件表示进行加热供于精密压制成型的玻璃预成型体,此处所说精密压制成型也如公知那样被称为光学模铸(モ一ルドオプテイクス)成型,其是通过将压制成型模具的成型面转印来形成光学元件的光学功能面的方法。另外,所谓光学功能面意味着在光学元件中对控制对象的光进行折射、反射、衍射、入射、出射的面,透镜中的透镜面等相当于该光学功能面。
为了在精密压制成型时防止玻璃与压制成型模具成型面的反应、熔合,同时使玻璃沿着成型面的延伸良好,优选在预型件的表面被覆脱模膜。作为脱模膜的种类,可以举出:
贵金属(铂、铂合金)、
氧化物(Si、Al、Zr、La、Y的氧化物等)、
氮化物(B、Si、Al的氮化物等)、
含碳膜。
作为含碳膜,优选以碳为主成分的含碳膜(在以原子%来表示膜中的元素含量时,碳含量多于其他元素的含量)。具体地说,可以示例出碳膜、烃膜等。作为含碳膜的成膜法,可以利用使用碳原料的真空蒸镀法、溅射法、离子镀法等公知的方法;使用烃等材料气体的热分解等公知的方法。对于其他的膜,可以使用蒸镀法、溅射法、离子镀法、溶胶凝胶法等进行成膜。
预型件经由如下工序制作:对玻璃原料进行加热、熔融,制作熔融玻璃,对上述熔融玻璃进行成型。
预型件的第1制作例是如下方法:由熔融玻璃分离出预定重量的熔融玻璃块,进行冷却,成型为与该熔融玻璃块具有相等质量的预型件。例如,准备将玻璃原料熔融、澄清、均质化而成的均质的熔融玻璃,由进行了温度调整的铂或铂合金制造的流出喷嘴或者流出管中流出。在对小型的预型件或球状的预型件进行成型的情况下,将熔融玻璃由流出喷嘴以所期望质量的熔融玻璃滴的形式进行滴加,将其利用预型件成型模具进行承接,成型为预型件。或者,同样将所期望质量的熔融玻璃滴由流出喷嘴滴加至液氮等中成型为预型件。在制作大中型的预型件的情况下,使熔融玻璃流由流出管流下,利用预型件成型模具承接熔融玻璃流的前端部,在熔融玻璃流的喷嘴与预型件成型模具之间形成缩颈部后,使预型件成型模具向正下方急速下降,利用熔融玻璃的表面张力在缩颈部分离熔融玻璃流,使所期望质量的熔融玻璃块经承接部件进行承接而成型为预型件。或者,也可以将玻璃块在处于软化状态的期间在预型件成型模具上进行压制,从而成型为具有与欲通过精密压制成型得到的光学元件的形状相近似的形状、表面光滑的预型件。
为了制造具有不含有瑕疵、污垢、皱痕、表面变质等的光滑的表面(例如自由表面)的预型件,使用下述方法:一边在预型件成型模具等的上面向熔融玻璃块施加风压使之上浮一边成型为预型件;在液氮等常温、常压下使气体物质冷却而成为液体的介质中加入熔融玻璃滴而成型为预型件;等等。
在一边使熔融玻璃块上浮一边成型为预型件的情况下,向熔融玻璃块喷射气体(称为上浮气体)而施加向上的风压。此时,若熔融玻璃块的粘度过分降低,则上浮气体进入到玻璃中,在预型件中以气泡形式残留。但是,通过使熔融玻璃块的粘度为3~60dPa·s,则上浮气体不会进入到玻璃,玻璃块可以上浮。
作为向预型件喷射上浮气体时所用的气体,可以举出例如空气、N2气体、O2气体、Ar气体、He气体、水蒸气等。另外,对于风压,只要预型件能够上浮而不与成型模具表面等固体接触,就没有特别限制。
利用预型件制造出的精密压制成型品(例如光学元件)多为透镜那样的具有旋转对称轴的成型品,因而优选预型件的形状也具有旋转对称轴的形状。
在预型件的第2制作例中,在使均质的熔融玻璃在铸模中进行熔铸成型后,通过退火除去成型体的变形,进行切断或割断,分割为预定的尺寸、形状,制作2个以上的玻璃片,对玻璃片进行研磨使表面光滑,同时形成由预定质量的玻璃构成的预型件。优选在如此制作的预型件的表面也被覆含碳膜后使用。
[光学元件]
下面对本发明的光学元件进行说明。本发明的光学元件的特征在于由上述本发明的光学玻璃形成。具体地说,可以示例出非球面透镜、球面透镜;或平凹透镜、平凸透镜、两凹透镜、两凸透镜、凸弯月形透镜、凹弯月形透镜等透镜;微透镜、透镜阵列、带衍射光栅的透镜、光学棱镜、具有透镜功能的光学棱镜等。在表面可以根据需要设置防反射膜或具有波长选择性的部分反射膜等。
对于本发明的光学元件,由于其由具有高折射率低分散性的、ΔPg,F小的玻璃所构成,因而通过与由其他玻璃所构成的光学元件相组合,可以进行高级色差校正。另外,本发明的光学元件由于由高折射率玻璃构成,因而通过用于摄像光学系统、投射光学系统等中可以使光学系统小型化。
[光学元件的制造方法]
下面对本发明的光学元件的制造方法进行说明。
本发明的光学元件的制造方法的特征在于具备如下步骤:对上述本发明的精密压制成型用预型件进行加热,使用压制成型模具进行精密压制成型。
对于压制成型模具以及预型件的加热和压制工序,为了防止压制成型模具的成型面或者设于上述成型面上的脱模膜的氧化,优选在氮气、或者氮气与氢气的混合气体等的非氧化性气体气氛中进行。在非氧化性气体气氛中,即使是用于被覆预型件表面的含碳膜也不会氧化,而残存在精密压制成型的成型品的表面。该膜是最终应除去的膜,为了比较容易且完全地除去含碳膜,可以在氧化性气氛、例如在大气中对精密压制成型品进行加热来进行。对于含碳膜的氧化、除去,应在精密压制成型品不会受热而变形的温度进行。具体地说,优选在小于玻璃的转变温度的温度范围来进行。
在精密压制成型中,使用预先将成型面高精度地加工为所期望的形状的压制成型模具,但也可以在成型面上,在压制成型时形成用于改善针对玻璃的光滑性的膜。作为这样的膜,可以举出含碳膜、氮化物膜、贵金属膜,作为含碳膜优选烃膜、碳膜等。在精密压制成型中,在将预型件供给至对成型面进行了精密形状加工的一对相向的上部模具和下部模具之间后,在不超过相当于玻璃粘度为105~109dPa·s的温度的温度对成型模具和预型件这两者进行加热使预型件软化,对其进行加压成型,从而将成型模具的成型面精密转印至玻璃。
另外,可以向对成型面进行了精密形状加工的一对相向的上部模具和下部模具之间供给预先升温至相当于玻璃的粘度为104~108dPa·s的温度的预型件,对其进行加压成型,从而将成型模具的成型面精密转印至玻璃。
加压时的压力和时间可以考虑玻璃的粘度等来适当确定,例如,可以使压制压力为约5~15MPa、压制时间为10~300秒。压制时间、压制压力等压制条件可以结合成型品的形状、尺寸在公知的范围进行适当设定。
其后,将成型模具和精密压制成型品进行冷却,优选在变形点以下的温度进行脱模,取出精密压制成型品。另外,为了使光学特性与所期望的值精密吻合,可以适当调整冷却时成型品的退火处理条件、例如退火速度等。
上述的光学元件的制造方法可以大致区分为以下的2种方法。第1方法为将预型件导入至压制成型模具中、将该成型模具和玻璃材料一起进行加热的光学元件的制造方法,在注重面精度、偏心精度等成型精度的提高的情况下,该方法为推荐的方法。第2方法为对预型件进行加热、导入至预热的压制成型模具中进行精密压制成型的光学元件的制造方法,在注重生产率的提高的情况下,该方法为推荐的方法。
另外,对于本发明的光学元件,即使不经过压制成型工序也能够进行制作。例如,可以如下获得本发明的光学元件:使均质的熔融玻璃在铸模中进行熔铸,成型为玻璃块(glass block),进行退火除去变形,同时调整退火条件以使玻璃的折射率成为所期望的值,进行光学特性的调整后,接下来将玻璃块切断或割断,制成玻璃片,进一步进行磨削、研磨,加工为光学元件。
实施例
下面通过实施例进一步具体地对本发明进行说明,但本发明并不被这些实施例所限定。
(实施例1)
按照表1所示的玻璃组成,使用与作为用于导入各成分的原料分别相当的氧化物、碳酸盐、硫酸盐、硝酸盐、氢氧化物等,称量原料,进行充分混合制成调合原料,将其加入至铂坩锅中,进行加热、熔融。熔融后,使熔融玻璃流入铸模中,自然冷却至玻璃化转变温度附近后立即投入退火炉中,在玻璃的转变温度范围内进行约1小时的退火处理后,在炉内自然冷却至室温,从而得到表1所示的光学玻璃No.1~48(氧化物玻璃)。
在所得到的光学玻璃中,并未析出可经显微镜观察到的结晶。
如此得到的光学玻璃的各种特性也列于表1。
表2为针对光学玻璃No.1~48的各玻璃进行氧化物换算时将组成以质量%表示的结果。
【表1】
Figure BDA0000047982060000261
Figure BDA0000047982060000281
Figure BDA0000047982060000311
Figure BDA0000047982060000321
Figure BDA0000047982060000331
Figure BDA0000047982060000341
Figure BDA0000047982060000351
【表2】
  No.   1   2   3   4   5   6   7
  SiO2(wt.%)   0.62   0.62   0.00   0.00   0.00   0.64   0.00
  B2O3(wt.%)   13.82   13.55   14.20   14.10   14.07   13.89   14.42
  Li2O(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Na2O(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  K2O(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  MgO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  CaO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  SrO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  BaO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  ZnO(wt.%)   18.47   20.26   20.44   21.27   21.66   21.87   23.00
  La2O3(wt%)   26.89   27.04   26.50   29.38   25.91   26.01   24.55
  Gd2O3(wt.%)   13.09   11.28   11.38   7.62   11.42   11.57   11.71
  Y2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Yb2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  ZrO2(wt.%)   0.64   0.64   0.64   0.65   0.00   0.33   0.33
  TiO2(wt.%)   4.94   4.97   5.01   5.04   5.03   5.95   6.02
  Nb2O5(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Ta2O5(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00
  WO3(wt.%)   21.53   21.64   21.83   21.94   21.91   19.74   19.97
  TeO2(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  GeO2(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Bi2O3(wt%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Al2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  合计   100.00   100.00   100.00   100.00   100.00   100.00   100.00
  No.   8   9   10   11   12   13   14
  SiO2(wt.%)   0.00   0.00   0.64   0.00   0.00   0.64   0.64
  B2O3(wt.%)   14.27   14.15   13.80   14.40   14.39   13.55   13.81
  Li2O(wt.%)   0.00   0.00   0.00   0.00   0.32   0.16   0.63
  Na2O(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  K2O(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  MgO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  CaO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  SrO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  BaO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  ZnO(wt.%)   23.92   24.89   21.75   22.95   22.92   21.92   21.73
  La2O3(wt.%)   23.72   24.69   25.86   22.75   24.47   26.06   25.84
  Gd2O3(wt.%)   11.73   9.81   11.51   13.63   11.67   11.60   11.50
  Y2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Yb2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  ZrO2(wt.%)   0.33   0.33   0.33   0.33   0.33   0.33   0.33
  TiO2(wt.%)   6.03   6.05   5.07   6.01   6.00   5.96   5.91
  Nb2O5(wt.%)   0.00   0.00   1.41   0.00   0.00   0.00   0.00
  Ta2O5(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  WO3(wt.%)   20.00   20.08   19.63   19.93   19.90   19.78   19.61
  TeO2(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  GeO2(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Bi2O3(wt.%)   000   0.00   0.00   0.00   0.00   0.00   0.00
  Al2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  合计   100.00   100.00   100.00   100.00   100.00   100.00   100.00
  No.   15   16   17   18   19   20   21
  SiO2(wt.%)   0.63   0.33   0.00   0.00   0.62   0.61   0.60
  B2O3(wt.%)   13.77   14.00   14.23   14.44   13.55   13.29   13.03
  Li2O(wt.%)   0.94   0.40   0.32   0.00   0.93   1.07   1.37
  Na2O(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  K2O(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  MgO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  CaO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  SrO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  BaO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  ZnO(wt.%)   21.67   22.91   23.84   24.23   20.41   19.17   17.92
  La2O3(wt%)   25.76   24.47   23.64   22.25   25.33   24.88   24.40
  Gd2O3(wt.%)   11.46   11.66   11.69   9.90   11.27   11.07   10.85
  Y2O3(wt.%)   0.00   0.00   0.00   2.47   0.00   0.00   0.00
  Yb2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  ZrO2(wt.%)   0.32   0.34   0.33   0.34   0.32   0.32   0.32
  TiO2(wt.%)   5.89   6.00   6.01   6.11   5.79   5.69   5.58
  Nb2O5(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Ta2O5(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  WO3(wt.%)   19.56   19.89   19.94   20.26   21.78   23.90   25.93
  TeO2(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  GeO2(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Bi2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Al2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  合计   100.00   100.00   100.00   100.00   100.00   100.00   100.00
  No.   22   23   24   25   26   27   28
  SiO2(wt.%)   0.61   0.58   0.57   0.53   0.62   0.62   0.63
  B2O3(wt.%)   12.80   12.79   12.55   11.54   14.19   15.10   14.44
  Li2O(wt.%)   1.08   1.66   1.95   2.24   1.08   1.09   1.10
  Na2O(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  K2O(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  MgO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  CaO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  SrO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  BaO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  ZnO(wt.%)   19.28   16.71   15.54   10.21   19.35   19.55   19.68
  La2O3(wt.%)   25.02   23.94   23.48   21.60   25.13   25.38   25.55
  Gd2O3(wt.%)   11.13   10.64   10.44   9.61   11.17   11.29   11.36
  Y2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Yb2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  ZrO2(wt.%)   0.32   0.32   0.31   0.28   0.33   0.33   0.33
  TiO2(wt.%)   5.72   5.47   5.36   4.93   3.98   2.25   4.95
  Nb2O5(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Ta2O5(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  WO3(wt.%)   24.04   27.89   29.80   39.06   24.15   24.39   21.96
  TeO2(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  GeO2(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Bi2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Al2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  合计   100.00   100.00   100.00   100.00   100.00   100.00   100.00
  No.   29   30   31   32   33   34   35
  SiO2(wt.%)   0.57   0.57   0.62   0.00   0.00   0.58   0.59
  B2O3(wt.%)   12.63   12.66   13.49   14.18   14.35   12.75   13.10
  Li2O(wt.%)   1.79   1.79   0.71   0.00   0.00   1.81   1.86
  Na2O(wt.%)   0.00   0.00   0.00   0.66   0.00   0.00   0.00
  K2O(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  MgO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  CaO(wt.%)   0.00   0.00   0.00   0.00   1.22   0.00   0.00
  SrO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  BaO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  ZnO(wt.%)   15.55   15.57   20.08   23.76   22.29   14.80   12.47
  La2O3(wt.%)   23.86   23.52   25.26   23.56   23.85   24.07   24.73
  Gd2O3(wt.%)   10.45   10.46   11.24   11.65   11.79   10.54   10.83
  Y2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Yb2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  ZrO2(wt.%)   0.31   0.57   0.32   0.33   0.33   0.31   0.32
  TiO2(wt.%)   5.02   5.02   5.78   5.99   6.06   5.06   5.20
  Nb2O5(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Ta2O5(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  WO3(wt.%)   29.82   29.84   22.50   19.87   20.11   30.08   30.90
  TeO2(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  GeO2(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Bi2O3(wt.%)   000   0.00   0.00   0.00   0.00   0.00   0.00
  Al2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  合计   100.00   100.00   100.00   100.00   100.00   100.00   100.00
  No.   36   37   38   39   40   41   42
  SiO2(wt.%)   0.00   0.00   0.00   0.52   0.57   0.00   0.00
  B2O3(wt.%)   12.96   11.81   13.28   10.45   11.81   14.52   11.66
  Li2O(wt.%)   0.00   0.00   0.00   1.49   1.61   0.00   0.00
  Na2O(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  K2O(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  MgO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  CaO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  SrO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  BaO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  ZnO(wt.%)   21.39   19.14   21.91   12.59   14.88   22.56   18.08
  La2O3(wt.%)   22.46   21.32   22.99   21.78   23.50   24.14   2101
  Gd2O3(wt.%)   11.10   10.54   11.37   9.54   10.29   11.94   10.39
  Y2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Yb2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  ZrO2(wt.%)   0.31   0.30   0.32   0.28   0.31   0.34   0.29
  TiO2(wt.%)   5.74   5.42   7.10   4.74   6.38   6.14   5.34
  Nb2O5(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Ta2O5(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  WO3(wt.%)   26.04   31.47   23.03   38.61   30.65   20.36   33.23
  TeO2(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  GeO2(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Bi2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  Al2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00   0.00
  合计   100.00   100.00   100.00   100.00   100.00   100.00   100.00
  No.   43   44   45   46   47   48
  SiO2(wt.%)   0.00   0.00   0.50   0.51   0.49   0.53
  B2O3(wt.%)   11.48   11.32   9.45   10.14   9.86   11.71
  Li2O(wt.%)   0.00   0.00   1.42   1.45   1.41   2.40
  Na2O(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00
  K2O(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00
  MgO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00
  CaO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00
  SrO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00
  BaO(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00
  ZnO(wt.%)   17.06   16.06   10.84   10.69   8.89   9.55
  La2O3(wt.%)   20.72   20.43   20.72   21.15   20.57   22.09
  Gd2O3(wt.%)   10.24   10.10   9.08   9.27   9.01   9.68
  Y2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00
  Yb2O3(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00
  ZrO2(wt.%)   0.29   0.29   0.27   0.28   0.27   0.28
  TiO2(wt.%)   5.27   5.19   4.51   4.61   4.48   4.65
  Nb2O5(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00
  Ta2O5(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00
  WO3(wt.%)   34.94   36.61   43.21   4190   45.02   39.11
  TeO2(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00
  GeO2(wt.%)   0.00   0.00   0.00   0.00   0.00   0.00
  Bi2O3(wt%)   0.00   0.00   0.00   0.00   0.00   0.00
  Al2O3(wt%)   0.00   0.00   0.00   0.00   0.00   0.00
  合计   100.00   100.00   100.00   100.00   100.00   100.00
另外,光学玻璃的各种特性利用如下所示的方法进行测定。
(1)折射率nd、ng、nF、nc和阿贝值vd
对于以-30℃/小时的降温速度进行降温所得到的玻璃,利用日本光学玻璃工业会标准的折射率测定法,对折射率nd、ng、nF、nc、阿贝值vd进行测定。
(2)液相温度LT
将玻璃加入至被加热到预定温度的炉内保持2小时,冷却后,利用100倍的光学显微镜对玻璃内部进行观察,由结晶的有无来确定液相温度。
(3)玻璃化转变温度Tg、屈服点Ts
使用株式会社Rigaku制造的热机械分析装置,将升温速度设为4℃/分钟进行测定。
(4)部分色散比Pg,F
由折射率ng、nF、nc来计算。
(5)部分色散比距离法线的差ΔPg,F
通过部分色散比Pg,F和由阿贝值vd计算出的法线上的部分色散比Pg,F(0)来计算。
(6)比重
使用阿基米德法进行测定。
(7)λ70、λ5
使用分光光度计,对分光透过率进行测定来求得。
(实施例2)
将按照获得实施例1中制作的各光学玻璃的方式调合的玻璃原料熔融、澄清、均质化,制成熔融玻璃,由铂制喷嘴滴加熔融玻璃滴,利用预型件成型模具进行承接,一边施加风压使之上浮一边成型为由上述各种玻璃构成的球状的预型件。
另外,使上述熔融玻璃由铂制管中连续流出,利用预型件成型模具承接其下端部,在熔融玻璃流上制作缩颈部后,使预型件成型模具向正下方急速下降,在缩颈部切断熔融玻璃流,在预型件成型模具上承接分离出的熔融玻璃块,一边施加风压使之上浮一边成型为由上述各种玻璃构成的预型件。所得到的预型件为光学均质的高品质预型件。
另外,也可以对预型件成型模具上的玻璃块进行压制,从而成型为与欲通过精密压制成型而制作的光学元件的形状相近似的形状的预型件。利用该方法得到的预型件的表面为光滑的面。
(实施例3)
使实施例2中准备的熔融玻璃连续流出,浇铸到铸模中,成型为玻璃块之后,进行退火、切断,得到2个以上的玻璃片。对这些玻璃片进行磨削、研磨,制作由上述各种玻璃构成的预型件。所得到的预型件为光学均质的高品质预型件。
(实施例4)
根据需要在实施例2、3中制作的预型件的表面实施涂布,导入至在成型面上设有碳系脱模膜的含有SiC制造的上下模具和中间模具的压制成型模具内,在氮气气氛中对成型模具与预型件一起进行加热使预型件软化,进行精密压制成型,制作由上述各种玻璃构成的非球面凸弯月形透镜、非球面凹弯月形透镜、非球面两凸透镜、非球面两凹透镜的各种透镜。另外,精密压制成型的各条件在上述范围内进行调整。
对如此制作的各种透镜进行观察时,在透镜表面完全没有确认到伤痕、模糊、破损。
反复进行该工序来进行各种透镜的量产试验时,高精度地生产出了表面和内部均为高品质的透镜而没有产生玻璃与压制成型模具的熔合等不利情况。也可以在如此得到的透镜的表面涂覆防反射膜。
接下来,对与上述预型件同样的预型件进行加热、软化,导入至另行预热的压制成型模具中,进行精密压制成型,制作由上述各种玻璃构成的非球面凸弯月形透镜、非球面凹弯月形透镜、非球面两凸透镜、非球面两凹透镜的各种透镜。另外,精密压制成型的各条件在上述范围内进行调整。
在对如此制作的各种透镜进行观察时,并未确认到分相所致的浑浊等,在透镜表面完全没有确认到伤痕、模糊、破损。
反复进行该工序来进行各种透镜的量产试验时,高精度地生产出了表面和内部均为高品质的透镜而没有产生玻璃与压制成型模具的熔合等不利情况。也可以在如此得到的透镜的表面涂覆防反射膜。
也可以适当变更压制成型模具的成型面的形状来制作光学棱镜、微透镜、透镜阵列等各种光学元件。
(实施例5)
使用实施例4中制作的各透镜,制作各种内置有各透镜的单反照相机用的交换透镜。
进一步使用实施例4中制作的各透镜,来制作紧凑型数字照相机的各种光学系统,进行组件化。进一步在这些光学系统中安装CCD或者CMOS等影像传感器进行组件化。
通过如此使用实施例4中制作的各种透镜,可以得到高功能、小型的光学系统、交换透镜、透镜模块、摄像装置。通过将实施例4中制作的透镜与高折射率高分散光学玻璃制透镜相组合,可以得到进行了高级色差校正的各种光学系统以及具备该光学系统的摄像装置。
工业实用性
本发明的光学玻璃具有高折射率低分散特性、优异的精密压制成型性,玻璃化转变温度低,是适于精密压制成型的光学玻璃。另外,本发明的光学玻璃是适于高级色差校正的光学玻璃,可适当地用于制作精密压制成型用预型件、光学元件。

Claims (8)

1.一种光学玻璃,以阳离子%表示,其含有:
Si4+    0~5%、
B3+     25~45%、
Li+     0~20%、
Na+     0~5%、
K+      0~5%、
Mg2+    0~5%、
Ca2+    0~5%、
Sr2+    0~5%、
Ba2+    0~5%、
Zn2+    5~40%、
La3+    5~25%、
Gd3+    1~15%、
Y3+     0~5%、
Yb3+    0~5%、
Zr4+    0~3%、
Ti4+    1~15%、
Nb5+    0~5%、
Ta5+    0~5%、
W6+     1~30%、
Te4+    0~5%、
Ge4+    0~5%、
Bi3+    0~5%、
Al3+    0~5%;
该光学玻璃中,
B3+/(B3++Si4+)的阳离子比为0.85~1.00、
B3+/(La3++Gd3++Y3+)的阳离子比为1.0~3.0、
B3+/(Ti4++Nb5++Ta5++W6+)的阳离子比为0.5~4.0、
Zn2+/(Zn2++Mg2++Ca2++Sr2++Ba2+)的阳离子比为0.8~1.0、
(La3++Gd3++Y3+)/(Ti4++Nb5++Ta5++W6+)的阳离子比为0.3~2.5、
Ti4+/W6+的阳离子比为0.1~1.5、
(Ti4++W6+)/(Ti4++Nb5++Ta5++W6+)的阳离子比为0.8~1.0;
该光学玻璃的折射率nd为1.86以上,阿贝值vd为28~36,液相温度为1000℃以下。
2.如权利要求1所述的光学玻璃,其中,所述光学玻璃的玻璃化转变温度小于590℃。
3.如权利要求1所述的光学玻璃,其中,所述光学玻璃的玻璃化转变温度大于550℃小于590℃;
以阳离子%表示,所述光学玻璃含有:
Si4+    0~1.5%、
B3+     29~40%、
Li+     0~3%、
Na+     0%、
K+      0%、
Mg2+    0%、
Ca2+    0%、
Sr2+    0%、
Ba2+    0%、
Zn2+    22~30%、
La3+    12~18%、
Gd3+    3~8%、
Y3+     0%、
Yb3+    0%、
Zr4+    0~0.8%、
Ti4+    5~9%、
Nb5+    0%、
Ta5+    0%、
W6+     6~18%、
Te4+    0%、
Ge4+    0%、
Bi3+    0%、
Al3+    0%;
该光学玻璃中,
B3+/(B3++Si4+)的阳离子比为0.92~1.00、
B3+/(La3++Gd3++Y3+)的阳离子比为1.5~2.0、
B3+/(Ti4++Nb5++Ta5++W6+)的阳离子比为1.40~2.62、
Zn2+/(Zn2++Mg2++Ca2++Sr2++Ba2+)的阳离子比为1.00、
(La3++Gd3++Y3+)/(Ti4++Nb5++Ta5++W6+)的阳离子比为0.8~1.5、
Ti4+/W6+的阳离子比为0.2~0.95、
(Ti4++W6+)/(Ti4++Nb5++Ta5++W6+)的阳离子比为1.00。
4.如权利要求1所述的光学玻璃,其中,所述光学玻璃的玻璃化转变温度为490℃~550℃;
以阳离子%表示,所述光学玻璃含有:
Si4+    0~2%、
B3+     28~40%、
Li+     1~15%、
Na+     0%、
K+      0%、
Mg2+    0%、
Ca2+    0%、
Sr2+    0%、
Ba2+    0%、
Zn2+    10~27%、
La3+    11~15%、
Gd3+    3~8%、
Y3+     0%、
Yb3+    0%、
Zr4+    0~0.8%、
Ti4+    3~8%、
Nb5+    0%、
Ta5+    0%、
W6+     7~22%、
Te4+    0%、
Ge4+    0%、
Bi3+    0%、
Al3+    0%;
该光学玻璃中,
B3+/(B3++Si4+)的阳离子比为0.92~1.00、
B3+/(La3++Gd3++Y3+)的阳离子比为1.5~2.0、
B3+/(Ti4++Nb5++Ta5++W6+)的阳离子比为1.00~3.00、
Zn2+/(Zn2++Mg2++Ca2++Sr2++Ba2+)的阳离子比为1.00、
(La3++Gd3++Y3+)/(Ti4++Nb5++Ta5++W6+)的阳离子比为0.6~1.7、
Ti4+/W6+的阳离子比为0.2~0.95、
(Ti4++W6+)/(Ti4++Nb5++Ta5++W6+)的阳离子比为1.00。
5.如权利要求1~4的任一项所述的光学玻璃,其中,所述光学玻璃的部分色散比Pg,F为0.57~0.62。
6.一种精密压制成型用预型件,其由权利要求1~5的任一项所述的光学玻璃形成。
7.一种光学元件,其由权利要求1~5的任一项所述的光学玻璃形成。
8.一种光学元件的制造方法,在该制造方法中,对权利要求6所述的精密压制成型用预型件进行加热,使用压制成型模具进行精密压制成型。
CN201110046140.9A 2010-04-15 2011-02-25 光学玻璃、精密压制成型用预型件、光学元件及其制造方法 Active CN102219373B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-094364 2010-04-15
JP2010094364A JP5695336B2 (ja) 2010-04-15 2010-04-15 光学ガラス、精密プレス成形用プリフォーム、光学素子とその製造方法

Publications (2)

Publication Number Publication Date
CN102219373A true CN102219373A (zh) 2011-10-19
CN102219373B CN102219373B (zh) 2015-10-28

Family

ID=44265501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110046140.9A Active CN102219373B (zh) 2010-04-15 2011-02-25 光学玻璃、精密压制成型用预型件、光学元件及其制造方法

Country Status (4)

Country Link
US (1) US8609560B2 (zh)
EP (1) EP2377827A1 (zh)
JP (1) JP5695336B2 (zh)
CN (1) CN102219373B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104271522A (zh) * 2012-04-26 2015-01-07 Hoya株式会社 光学玻璃、精密压制成形用预制件、及光学元件及其制造方法
CN104271522B (zh) * 2012-04-26 2016-11-30 Hoya株式会社 光学玻璃、精密压制成形用预制件、及光学元件及其制造方法
CN107601855A (zh) * 2017-09-27 2018-01-19 湖北新华光信息材料有限公司 光学玻璃及其制备方法和光学元件以及应用
CN109704568A (zh) * 2017-10-25 2019-05-03 佳能株式会社 光学玻璃、光学元件、光学仪器和制造光学玻璃的方法
CN111233318A (zh) * 2014-11-07 2020-06-05 Hoya株式会社 玻璃、压制成型用玻璃材料、光学元件坯件及光学元件
CN114956548A (zh) * 2018-09-27 2022-08-30 成都光明光电股份有限公司 光学玻璃及由其制成的玻璃预制件、光学元件和光学仪器

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948569B2 (ja) * 2008-06-27 2012-06-06 Hoya株式会社 光学ガラス
JP5723542B2 (ja) * 2010-04-15 2015-05-27 Hoya株式会社 光学ガラス、精密プレス成形用プリフォーム、光学素子とその製造方法
JP2012229148A (ja) * 2011-04-27 2012-11-22 Ohara Inc 光学ガラス及び光学素子
US9604872B2 (en) * 2012-06-22 2017-03-28 Hoya Corporation Glass and optical element production method
JP6088938B2 (ja) * 2013-08-23 2017-03-01 Hoya株式会社 光学ガラスおよびその利用
US10110036B2 (en) 2016-12-15 2018-10-23 StoreDot Ltd. Supercapacitor-emulating fast-charging batteries and devices
US10549650B2 (en) 2014-04-08 2020-02-04 StoreDot Ltd. Internally adjustable modular single battery systems for power systems
US10293704B2 (en) 2014-04-08 2019-05-21 StoreDot Ltd. Electric vehicles with adaptive fast-charging, utilizing supercapacitor-emulating batteries
US11128152B2 (en) 2014-04-08 2021-09-21 StoreDot Ltd. Systems and methods for adaptive fast-charging for mobile devices and devices having sporadic power-source connection
US10199646B2 (en) 2014-07-30 2019-02-05 StoreDot Ltd. Anodes for lithium-ion devices
US9472804B2 (en) 2014-11-18 2016-10-18 StoreDot Ltd. Anodes comprising germanium for lithium-ion devices
US10367191B2 (en) 2016-04-07 2019-07-30 StoreDot Ltd. Tin silicon anode active material
US10916811B2 (en) 2016-04-07 2021-02-09 StoreDot Ltd. Semi-solid electrolytes with flexible particle coatings
US11594757B2 (en) 2016-04-07 2023-02-28 StoreDot Ltd. Partly immobilized ionic liquid electrolyte additives for lithium ion batteries
US10355271B2 (en) 2016-04-07 2019-07-16 StoreDot Ltd. Lithium borates and phosphates coatings
US11205796B2 (en) 2016-04-07 2021-12-21 StoreDot Ltd. Electrolyte additives in lithium-ion batteries
US10818919B2 (en) 2016-04-07 2020-10-27 StoreDot Ltd. Polymer coatings and anode material pre-lithiation
US10367192B2 (en) 2016-04-07 2019-07-30 StoreDot Ltd. Aluminum anode active material
JP2019511103A (ja) 2016-04-07 2019-04-18 ストアドット リミテッド リチウムイオンセルおよびそのためのアノード
US10680289B2 (en) 2016-04-07 2020-06-09 StoreDot Ltd. Buffering zone for preventing lithium metallization on the anode of lithium ion batteries
US10454101B2 (en) 2017-01-25 2019-10-22 StoreDot Ltd. Composite anode material made of core-shell particles
US10199677B2 (en) 2016-04-07 2019-02-05 StoreDot Ltd. Electrolytes for lithium ion batteries
JP7394523B2 (ja) * 2018-10-11 2023-12-08 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
JP7433764B2 (ja) * 2019-01-18 2024-02-20 Hoya株式会社 ガラスの透過率の改善を促進させる方法、及びガラスの製造方法及びガラス
US10608463B1 (en) 2019-01-23 2020-03-31 StoreDot Ltd. Direct charging of battery cell stacks
US11831012B2 (en) 2019-04-25 2023-11-28 StoreDot Ltd. Passivated silicon-based anode material particles
NL2028260B1 (en) 2021-03-19 2022-09-29 Corning Inc High-Index Borate Glasses
US20220306517A1 (en) 2021-03-19 2022-09-29 Corning Incorporated High-Index Borate Glasses

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070049483A1 (en) * 2005-08-31 2007-03-01 Hoya Corporation Optical glass, precision press-molding preform, process for the production thereof, optical element and process for the production of the element
WO2007119565A1 (ja) * 2006-03-31 2007-10-25 Hoya Corporation ガラス光学素子の製造方法
US20080167172A1 (en) * 2004-03-02 2008-07-10 Hoya Corporation Optical glass, precision press-molding preform, process for production thereof, optical element and process for the production thereof
CN101239780A (zh) * 2007-01-24 2008-08-13 Hoya株式会社 光学玻璃、精密模压成形用预成形件、光学元件以及它们的制造方法
CN101274814A (zh) * 2007-03-23 2008-10-01 Hoya株式会社 玻璃的制造方法、精密模压成形用预成形件和光学元件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057925A (ja) * 2003-08-06 2005-03-03 Sony Corp スイッチング電源回路
JP4218804B2 (ja) * 2004-03-19 2009-02-04 Hoya株式会社 光学ガラス、精密プレス成形用プリフォームとその製造方法および光学素子とその製造方法
JP4948569B2 (ja) * 2008-06-27 2012-06-06 Hoya株式会社 光学ガラス
JP5669256B2 (ja) * 2009-09-30 2015-02-12 Hoya株式会社 光学ガラス、精密プレス成形用プリフォーム、光学素子とその製造方法
JP5723542B2 (ja) * 2010-04-15 2015-05-27 Hoya株式会社 光学ガラス、精密プレス成形用プリフォーム、光学素子とその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080167172A1 (en) * 2004-03-02 2008-07-10 Hoya Corporation Optical glass, precision press-molding preform, process for production thereof, optical element and process for the production thereof
US20100035744A1 (en) * 2004-03-02 2010-02-11 Hoya Corporation Optical glass, precision press-molding preform, process for production thereof, optical element and process for the production thereof
US20070049483A1 (en) * 2005-08-31 2007-03-01 Hoya Corporation Optical glass, precision press-molding preform, process for the production thereof, optical element and process for the production of the element
WO2007119565A1 (ja) * 2006-03-31 2007-10-25 Hoya Corporation ガラス光学素子の製造方法
CN101437765A (zh) * 2006-03-31 2009-05-20 Hoya株式会社 玻璃光学元件的制造方法
CN101239780A (zh) * 2007-01-24 2008-08-13 Hoya株式会社 光学玻璃、精密模压成形用预成形件、光学元件以及它们的制造方法
US20080293556A1 (en) * 2007-01-24 2008-11-27 Hoya Corporation Optical glass, preform for precision press-molding, optical element, and methods for manufacturing the same
CN101274814A (zh) * 2007-03-23 2008-10-01 Hoya株式会社 玻璃的制造方法、精密模压成形用预成形件和光学元件

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104271522A (zh) * 2012-04-26 2015-01-07 Hoya株式会社 光学玻璃、精密压制成形用预制件、及光学元件及其制造方法
CN104271522B (zh) * 2012-04-26 2016-11-30 Hoya株式会社 光学玻璃、精密压制成形用预制件、及光学元件及其制造方法
CN111233318A (zh) * 2014-11-07 2020-06-05 Hoya株式会社 玻璃、压制成型用玻璃材料、光学元件坯件及光学元件
CN107601855A (zh) * 2017-09-27 2018-01-19 湖北新华光信息材料有限公司 光学玻璃及其制备方法和光学元件以及应用
CN107601855B (zh) * 2017-09-27 2020-11-27 湖北新华光信息材料有限公司 光学玻璃及其制备方法和光学元件以及应用
CN109704568A (zh) * 2017-10-25 2019-05-03 佳能株式会社 光学玻璃、光学元件、光学仪器和制造光学玻璃的方法
US11254602B2 (en) 2017-10-25 2022-02-22 Canon Kabushiki Kaisha Optical glass, optical element, optical instrument, and method for manufacturing optical glass
CN114956548A (zh) * 2018-09-27 2022-08-30 成都光明光电股份有限公司 光学玻璃及由其制成的玻璃预制件、光学元件和光学仪器

Also Published As

Publication number Publication date
EP2377827A8 (en) 2011-12-14
JP5695336B2 (ja) 2015-04-01
US20110257001A1 (en) 2011-10-20
CN102219373B (zh) 2015-10-28
EP2377827A1 (en) 2011-10-19
JP2011225384A (ja) 2011-11-10
US8609560B2 (en) 2013-12-17

Similar Documents

Publication Publication Date Title
CN102219373B (zh) 光学玻璃、精密压制成型用预型件、光学元件及其制造方法
CN102219374B (zh) 光学玻璃、精密压制成型用预型件、光学元件及其制造方法
CN101932532B (zh) 光学玻璃
CN102030473B (zh) 光学玻璃、精密模压成形用预成形件、光学元件及其制造方法
CN101555099B (zh) 氟磷酸玻璃、模压成形用玻璃素材、光学元件坯料、光学元件以及它们的制造方法
CN101062833B (zh) 光学玻璃、精密模压成形用预成形件、光学元件及它们的制造方法
CN102249538B (zh) 光学玻璃、精密模压成型用预型体、光学元件、它们的制造方法以及摄像装置
CN101274814B (zh) 玻璃的制造方法、精密模压成形用预成形件和光学元件
CN102300822B (zh) 光学玻璃、精密模压成型用预塑形坯、光学元件
CN104203852A (zh) 光学玻璃及其利用
JP5116616B2 (ja) フツリン酸ガラス、プレス成形用ガラス素材、光学素子ブランク、光学素子およびそれらの製造方法
JP5734587B2 (ja) 光学ガラス、精密プレス成形用プリフォーム、光学素子とそれら製造方法、ならびに撮像装置
WO2013161889A1 (ja) 光学ガラス、精密プレス成形用プリフォーム、および光学素子とその製造方法
CN102300823A (zh) 氟磷酸盐玻璃、模压成型用玻璃材料、光学元件坯料、光学元件及其制造方法和玻璃成型体的制造方法
JP5443415B2 (ja) フツリン酸ガラス、プレス成形用ガラス素材、光学素子ブランク、光学素子およびそれらの製造方法
JP5658599B2 (ja) フツリン酸ガラス、プレス成形用ガラス素材、光学素子ブランク、光学素子とそれぞれの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant