CN102203303A - 超高强度管线管用钢板及钢管的制造方法 - Google Patents

超高强度管线管用钢板及钢管的制造方法 Download PDF

Info

Publication number
CN102203303A
CN102203303A CN2009801439738A CN200980143973A CN102203303A CN 102203303 A CN102203303 A CN 102203303A CN 2009801439738 A CN2009801439738 A CN 2009801439738A CN 200980143973 A CN200980143973 A CN 200980143973A CN 102203303 A CN102203303 A CN 102203303A
Authority
CN
China
Prior art keywords
steel plate
steel
line
superstrength
manufacture method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801439738A
Other languages
English (en)
Other versions
CN102203303B (zh
Inventor
原卓也
藤城泰志
寺田好男
篠原康浩
清水笃史
内田悠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of CN102203303A publication Critical patent/CN102203303A/zh
Application granted granted Critical
Publication of CN102203303B publication Critical patent/CN102203303B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Heat Treatment Of Steel (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

在本发明的超高强度管线管用钢板的制造方法中,将下述钢熔炼,所述钢以质量%计含有C:0.03~0.06%、Si:0.01~0.50%、Mn:1.5~2.5%、P:0.01%以下、S:0.0030%以下、Nb:0.0001~0.20%、Al:0.0005~0.03%、Ti:0.003~0.030%、B:0.0003~0.0030%、N:0.0010~0.0050%、O:0.0050%以下,余量包含铁及不可避免的杂质;对该钢进行铸造而形成钢坯;对该钢坯实施热轧而形成钢板;将在水冷至比MS点高的规定温度后进行回热的处理至少重复1次以上,使所述钢板的表面冷却;进行最终水冷,将所述钢板的表面冷却到MS点以下的温度。

Description

超高强度管线管用钢板及钢管的制造方法
技术领域
本发明涉及钢管的周向的抗拉强度(TS)达到915MPa以上的变形能力及低温韧性优良的超高强度管线管用钢板的制造方法及采用该钢板制得的超高强度管线管用钢管的制造方法。通过本发明的制造方法得到的钢管尤其能广泛地用作天然气、原油输送用管线管。
本申请基于2008年11月7日提出的日本专利申请第2008-287054号公报并主张其优先权,这里引用其内容。
背景技术
近年来,作为原油、天然气的长距离输送方法,管线管的重要性越来越高。目前,作为长距离输送用的干线管线管,美国石油协会(API)规格X65成为设计的基本,X65的管线管的实际使用量也压倒性地多。可是,为了(1)通过高压化来提高输送效率、及(2)通过减小管线管的外径、重量来提高现场施工效率,期望更高强度的管线管。至今为止,X120(抗拉强度为915MPa以上)为止的管线管已实用化。
另一方面,近年来,管线管的设计思路在变化。以往,是使应力一定的管线管的设计(“stress based design”)。但是,最近,采用即使对管线管施加应变,钢管的圆周焊接部也不发生破坏或钢管本身也不发生压曲的设计(“strain based design”)。至今为止,关于X80以上的高强度管线管,研究了用于确保母材的低温韧性、焊接热影响部的韧性的化学成分和制造条件。但是,在“strain based design”的情况下,还要求母材的变形能力或钢管的涂装后的变形能力。如果不解决这些有关韧性和变形能力的课题,则“strain based design”用的X80以上的管线管用钢管的制造是不可能的。在管线管的超高强度化中,需要用于边确保母材的强度与低温韧性的平衡、焊接金属韧性及焊接热影响部(HAZ)韧性、现场焊接性、耐接头软化性、破裂试验中的耐管体断裂性等、边制造母材的变形能力优良的钢管的制造条件。因此,一直期望开发满足这些钢管特性的X80以上、特别是X120以上的超高强度厚壁管线管。
至今为止,关于管线管用钢管的制造方法,为了改善上述钢管特性,例如,提出了以下的方法。在专利文献1及专利文献2中,为了提高钢管的变形能力,提出了都在到500~600℃为止的前段对钢板进行缓冷,在其后的后段以比前段快的冷却速度进行冷却的方法。在该方法中,能够控制钢板及钢管的显微组织。进而,在专利文献3及专利文献4中,为了改善钢管的耐压曲性,都以15℃/s以上的一定的冷却速度进行冷却,制造16mm厚的钢板。
现有技术文献
专利文献
专利文献1:日本特开2004-131799号公报
专利文献2:日本特开2003-293089号公报
专利文献3:日本特开平11-279700号公报
专利文献4:日本特开2000-178689号公报
发明内容
发明要解决的课题
但是,在专利文献1及专利文献2中公开的方法中,因钢板的水冷停止温度的偏差大,存在钢板材质的偏差大的问题。此外,在专利文献3及专利文献4中公开的方法中,也因钢板的水冷停止温度的偏差大,除了钢板的强度的偏差大以外,在确保钢板的变形能力的方面也成为大的问题。
本发明提供母材的强度、低温韧性及变形能力优良、且现场焊接容易的抗拉强度为915MPa以上(API规格X120以上)的超高强度管线管用钢板及钢管的制造方法。
用于解决课题的方法
本发明者们就用于得到抗拉强度为915MPa以上、且低温韧性优良的超高强度钢板及钢管的钢板及钢管的制造条件进行了深入研究。其结果是,发明了超高强度管线管用钢板及超高强度管线管用钢管的新的制造方法。本发明的要旨如下。
(1)在超高强度管线管用钢板的制造方法中,将下述钢熔炼,所述钢以质量%计含有C:0.03~0.06%、Si:0.01~0.50%、Mn:1.5~2.5%、P:0.01%以下、S:0.0030%以下、Nb:0.0001~0.20%、Al:0.0005~0.03%、Ti:0.003~0.030%、B:0.0003~0.0030%、N:0.0010~0.0050%、O:0.0050%以下,余量包含铁及不可避免的杂质;对该钢进行铸造而形成钢坯;对该钢坯实施热轧而形成钢板;将在水冷至比MS点高的规定温度后进行回热的处理至少重复1次以上,使所述钢板的表面冷却;进行最终水冷,将所述钢板的表面冷却到MS点以下的温度。
这里,
MS=545-330[C]+2[Al]-14[Cr]-13[Cu]-23[Mn]-5[Mo]-4[Nb]-13[Ni]-7[Si]+3[Ti]+4[V]
其中,[C]、[Al]、[Cr]、[Cu]、[Mn]、[Mo]、[Nb]、[Ni]、[Si]、[Ti]、[V]分别为C、Al、Cr、Cu、Mn、Mo、Nb、Ni、Si、Ti、V的含量(%)。
(2)在上述(1)所述的超高强度管线管用钢板的制造方法中,所述钢以质量%计还可以含有Mo:0.01~1.0%、Cu:0.01~1.5%、Ni:0.01~5.0%、Cr:0.01~1.5%、V:0.01~0.10%、W:0.01~1.0%、Zr:0.0001~0.050%、Ta:0.0001~0.050%中的至少1种。
(3)在上述(1)所述的超高强度管线管用钢板的制造方法中,所述钢以质量%计还可以含有Mg:0.0001~0.010%、Ca:0.0001~0.005%、REM:0.0001~0.005%、Y:0.0001~0.005%、Hf:0.0001~0.005%、Re:0.0001~0.005%中的至少1种。
(4)在上述(1)所述的超高强度管线管用钢板的制造方法中,从最初的水冷到钢板表面达到马氏体相变开始温度(MS点)为止的平均冷却速度(℃/s)也可以为VC90以下。
这里,
MS=545-330[C]+2[Al]-14[Cr]-13[Cu]-23[Mn]-5[Mo]-4[Nb]-13[Ni]-7[Si]+3[Ti]+4[V]
VC90=10(2.94-0.75β)
β=2.7[C]+0.4[Si]+[Mn]+0.45([Ni]+[Cu])+0.8[Cr]+2[Mo]
其中,[C]、[Al]、[Cr]、[Cu]、[Mn]、[Mo]、[Nb]、[Ni]、[Si]、[Ti]、[V]分别为C、Al、Cr、Cu、Mn、Mo、Nb、Ni、Si、Ti、V的含量(%)。
(5)在上述(1)所述的超高强度管线管用钢板的制造方法中,所述水冷及所述最终水冷的速度也可以为VC90以上。
(6)在上述(1)所述的超高强度管线管用钢板的制造方法中,在所述热轧中,所述钢坯的再加热温度也可以为950℃以上,所述钢坯在未再结晶温度区的压下比也可以为3以上。
(7)在上述(1)所述的超高强度管线管用钢板的制造方法中,也可以从850℃以下的冷却开始温度开始进行冷却。
(8)在超高强度管线管用钢管的制造方法中,将用上述(1)所述的制造方法制造的超高强度管线管用钢板通过UO造管成形成管状,从内外面使用焊丝和烧成型或熔融型焊剂对所述超高强度管线管用钢板的对接部进行埋弧焊,然后进行扩管。
(9)在上述(8)所述的超高强度管线管用钢管的制造方法中,也可以在进行了所述埋弧焊后且在进行扩管之前,对焊接部进行热处理。
(10)在上述(8)所述的超高强度管线管用钢管的制造方法中,也可以在200℃以上且500℃以下的温度下对所述焊接部进行热处理。
发明效果
根据本发明,在将限定了化学成分的钢板热轧后,通过一边对水冷和回热进行重复一边进行冷却,可减小钢板及钢管的强度偏差,改善应变时效前后的钢板及钢管的变形能力。其结果是,对于管线管的安全性大幅度提高。
附图说明
图1A是制造的钢板的板厚方向的硬度分布的概略图。
图1B是冷却中的钢板的板厚方向的温度分布的概略图。
图2是表示钢板表面的冷却图形和钢的相变线图的关系的一例的概略图。
具体实施方式
以下,对本发明的内容进行详细说明。
本发明是涉及具有915MPa以上的抗拉强度(TS)且低温韧性优良的超高强度管线管的发明。该强度水准的超高强度管线管与以往主流的X65相比较,可耐受大约2.0倍的压力,因此可用与以往相同的尺寸输送更多的气体。在以更高的压力使用X65时,需要加厚管线管的壁厚。因此,材料费、输送费、现场焊接施工费提高,管线管铺设费大幅度上升。所以,为了削减管线管铺设费,需要具有915MPa以上的抗拉强度(TS)且低温韧性优良的超高强度管线管。另一方面,在所要求的钢管的强度增加的同时,钢管的制造变得非常困难。特别是,在要求“strain based design”时,需要得到不仅包含母材的强度与低温韧性的平衡及缝焊部的韧性、还包含应变时效后的变形能力的目标特性。但是,满足所有的这些特性是非常困难的。
在要求“strain based design”的管线管中,连接管线管间的焊接金属的强度(圆周焊接部的强度)必须高于母材(钢板或钢管的钢板的部分)的长度方向(管线管的管轴方向)的强度。在使用管线管的环境中,有时夏季冻土溶化、或冬季再次生成冻土。在这种情况下,管线管产生应变,从圆周焊接部开始断裂。特别是在圆周焊接部的强度低于母材强度的情况下,以更小的应变断裂。因此,需要使母材的长度方向的强度低于圆周焊接部的强度,根据圆周焊接部的强度对母材的长度方向的强度设定上限。特别是由于在管线管的各等级中具有强度范围,因此根据该上限将用于制造管线管的母材的强度限制在狭窄的范围内。所以,要求稳定地制造抑制了强度偏差的管线管的母材。
为了将管线管的母材的抗拉强度限制在915MPa以上、且限制在狭窄的范围内,发明者们进行了深入研究。其结果是,弄清楚作为钢板采用添加低C、B的钢,使钢板的热轧时的冷却条件适当是非常重要的。例如,如果C量超过0.06%,则淬火性过高,因而在钢板的中心部和表面,强度变化大。因此,作为钢板,采用添加低C、B的钢。此外,例如,即使C量为0.06%以下,如果完全不限制钢板表面的冷却条件地进行冷却,则根据钢板表面的冷却方法生成马氏体、或不生成。此时,在钢板表面和钢板的厚度方向中心部(钢板内部)之间产生硬度差,或在一块钢板内或制造的钢板间产生强度偏差,因此不能制造具有狭窄范围的强度的管线管。
采用图1A及图1B对上述强度的偏差进行说明。图1A是制造的钢板的板厚方向的硬度分布的概略图,图1B是冷却中的钢板的板厚方向的温度分布的概略图。在图1A及图1B中,虚线表示钢板的中心,点划线(a)表示利用水冷的单纯冷却(例如图2中的虚线(i)表示的冷却条件)的结果,实线(b)表示采用本发明的冷却条件的结果。如图1A的点划线(a)所示,在完全不限制钢板表面的冷却条件地进行冷却(单纯冷却)的情况下,在钢板表面与钢板的板厚方向中心部(钢板内部)之间产生硬度差。该硬度差起因于图1B所示的冷却中的钢板的板厚方向的温度分布。水冷时钢板表面直接与水接触,因此容易被冷却。但是,在钢板内部,因冷却速度受传热支配,因此钢板内部与钢板表面相比不容易被冷却。因此,在钢板表面和钢板内部,可分别得到硬度不同的组织。所以,在单纯冷却中,根据冷却中的钢板内的温度分布,在制造的钢板内产生硬度分布。这样的硬度分布不局限于板厚方向,可根据冷却的水量的不均等不均匀性而产生在钢板内的任意的地方。在应力集中发生于钢板表面的钢管的制造时成为皱纹或裂纹等表面缺陷的原因的方面,这样的钢板内的强度偏差成为问题。此外,在单纯冷却中,有时停止钢板水冷的温度在每一制造批次中发生变化,因此在制造的钢板间容易产生强度偏差。
为了抑制这样的强度的偏差,通过不一次使钢板表面冷却地一边重复水冷和后述的回热一边进行冷却,从而成功地抑制了一块钢板内及制造的钢板间的强度的偏差。所谓回热,指的是通过将水冷停止规定时间,使热从钢板内部传到钢板表面(从高温部向低温部的传热),从而使钢板表面(低温部)的温度相比刚水冷后提高的处理。通过该回热,钢板内部与钢板表面的温度差减小,钢板内的温度分布变得均匀。此外,即使是不同的制造批次,也能够均匀地控制温度过程。但是,在本发明中,为了得到贝氏体组织或贝氏体/铁素体混合组织,最重要的是,将在将钢板表面水冷至比马氏体相变开始温度(MS点)高的规定温度后进行回热的处理至少重复一次以上进行冷却。进而,如果将从水冷开始(最初的水冷)至钢板表面达到马氏体相变开始温度(MS点)为止的钢板表面的平均冷却速度设定为得到90%马氏体组织的临界的冷却速度以下,则可进一步抑制强度的偏差。另外,也可以通过调节冷却的水量(例如减少水量)来进行回热。此外,也可以在进行了最终水冷后进行回热。在这种情况下,有时水冷停止温度超过MS点。
以下,对限定本发明的钢板(母材)成分的理由进行说明。再有,关于本发明的化学成分,%表示质量%。
C作为提高母材强度的基本的元素是不可缺的。因此,需要添加0.03%以上的C。如果超过0.06%地过剩添加C,则钢材的焊接性或韧性降低。因此,将C的添加量的上限规定为0.06%。
Si作为炼钢时的脱氧元素是必要的。为了脱氧,需要在钢中添加0.01%以上的Si。但是,如果超过0.50%地添加Si,则钢材的HAZ韧性降低。因此,将Si的添加量的上限规定为0.50%。
Mn对于确保母材的强度及韧性是必要的元素。但是,如果Mn量超过2.5%,则母材的HAZ韧性显著降低。在Mn量低于1.5%时,母材的强度确保变得困难,因此将Mn量的范围规定为1.5~2.5%。
P是对钢的韧性产生影响的元素。如果P量超过0.01%,不仅母材的韧性,HAZ的韧性也显著降低。因此,将P量的上限规定为0.01%。
S如果超过0.0030%地过剩添加,则生成粗大的硫化物。该粗大的硫化物使韧性降低,因此将S量的上限规定为0.0030%。
Nb是具有通过形成碳化物、氮化物来提高强度的效果的元素。但是,在添加0.0001%以下的Nb时,没有其效果。此外,在添加超过0.20%的Nb时,导致韧性降低。因此,将Nb量的范围规定为0.0001~0.20%。
Al通常作为脱氧材料添加。在本发明中,如果超过0.03%地添加Al,则不生成Ti主体的氧化物。因此,将Al量的上限规定为0.03%。此外,为了降低钢水中的氧量,需要添加0.0005%以上的Al。因此,将Al量的下限规定为0.0005%。
Ti是作为脱氧材料、进而作为氮化物形成元素在晶粒的微细化中发挥效果的元素。但是,大量的Ti的添加导致由碳化物形成造成的显著的韧性降低,因此需要将Ti量的上限规定在0.030%。但是,为了得到规定的效果,需要添加0.003%以上的Ti。所以,将Ti量的范围规定为0.003~0.030%。
B是一般通过固溶在钢中使淬火性增加的元素。特别是,通过添加0.0003%以上的B,可得到其效果。但是,过剩的B添加导致韧性的降低,所以将B量的上限规定为0.0030%。
N使TiN微细地析出,对于使奥氏体粒径微细化是必要的。在N量为0.0010%时,微细化不充分,因此将N量的下限规定为0.0010%。此外,如果N量超过0.0050%,则固溶N量增加,使母材的低温韧性劣化,因此将N量的上限规定为0.0050%。
O如果超过0.0050%地过剩添加,则生成粗大的氧化物,使母材的韧性降低。因此,将O量的上限规定为0.0050%。
含有以上元素、余量包含铁(Fe)及不可避免的杂质的钢是本发明的钢板及钢管所采用的优选的基本组成。
另外,在本发明中,可根据需要添加Mo、Cu、Ni、Cr、V、Zr、Ta中的至少1种元素作为改善强度及韧性的元素。
Mo是在提高淬火性的同时,形成碳化物及氮化物而改善强度的元素。为了得到其效果,需要添加0.01%以上的Mo。但是,超过1.0%的大量的Mo的添加使母材的强度增加到所需以上,同时使韧性显著降低。因此,将Mo量的范围规定为0.01~1.0%。
Cu对于在不降低韧性的情况下增加强度是有效的元素。但是,在Cu量低于0.01%时没有其效果,如果Cu量超过1.5%,则在钢坯加热时或焊接时容易发生裂纹。所以,将Cu量的含量规定为0.01~1.5%。
Ni对于改善韧性及强度是有效的元素。为了得到其效果,需要添加0.01%以上的Ni。但是,在超过5.0%地添加Ni的情况下,焊接性降低。因此,将Ni量的上限规定为5.0%。
Cr是通过析出强化而使钢的强度提高的元素。因此,需要添加0.01%以上的Cr。但是,如果大量地添加Cr,则因淬火性增加而生成马氏体组织,使韧性降低。因此,将Cr量的上限规定为1.5%。
V是具有通过形成碳化物及氮化物提高强度的效果的元素。但是,添加0.01%以下的V时,则没有其效果。此外,在添加超过0.10%的V时,导致韧性降低。因此,将V量的范围规定为0.01~0.10%。
W是在提高淬火性的同时,形成碳化物及氮化物而改善强度的元素。为了得到其效果,需要添加0.01%以上的W。但是,超过1.0%的大量的W的添加使母材的强度增加到所需以上,而且使韧性显著降低。因此,将W量的范围规定为0.01~1.0%。
Zr及Ta也与Nb同样,是具有通过形成碳化物及氮化物而提高强度的效果的元素。但是,在0.0001%以下添加时,没有其效果。此外,在添加超过0.050%的Zr或Ta时,导致韧性降低。因此将Zr或Ta的量的范围规定为0.0001~0.050%。
此外,在本发明中,根据需要,为了提高氧化物的钉扎效果或耐层状撕裂性,可以添加Mg、Ca、REM、Y、Hf、Re中的至少1种元素。
Mg主要作为脱氧材料添加。但是,如果超过0.010%地添加Mg,则容易生成粗大的氧化物,母材及HAZ韧性降低。此外,在添加低于0.0001%的Mg时,不能充分期待晶内相变和作为钉扎粒子所需要的氧化物的生成。因此,将Mg的添加范围规定为0.0001~0.010%。
Ca及REM、Y、Hf、Re通过生成硫化物来抑制容易向轧制方向伸长的MnS的生成,改善钢材的板厚方向的特性、特别是耐层状撕裂性。在Ca及REM、Y、Hf、Re都低于0.0001%时,不能得到此效果。因此,将Ca及REM、Y、Hf、Re的量的下限规定为0.0001%。相反,如果Ca及REM、Y、Hf、Re都超过0.0050%,则Ca及REM、Y、Hf、Re的氧化物的个数增加,超微细的含Mg氧化物的个数降低。因此,将Ca及REM、Y、Hf、Re的量的上限规定为0.0050%。
在通过炼钢工序将含有上述成分的钢熔炼后,通过连续铸造等进行铸造而形成钢坯(铸坯)。对该钢坯实施热轧(在将钢坯加热后轧制)而形成钢板。此时,将该钢坯加热到AC3点以上的温度(再加热温度),按照再结晶温度区的压下比为2以上、未再结晶温度区的压下比为3以上的方式进行轧制。其结果是,得到的钢板的平均原奥氏体粒径为20μm以下。
上述钢坯(铸坯)的再加热温度优选为950℃以上。此外,如果再加热温度过高,则在加热时γ晶粒粗大化,因此优选将再加热温度规定为1250℃以下。
关于再结晶温度区的压下比,如果压下比低于2,则不能充分产生再结晶,因此优选将压下比规定为2以上。
如果将未再结晶温度区的压下比规定为3以上,则钢板的平均原奥氏体粒径可达到20μm以下。因此,优选将未再结晶温度区的压下比规定为3以上。更优选的是,未再结晶温度区的压下比为4以上。在此种情况下,能够使钢板的平均原奥氏体粒径在10μm以下。
关于开始水冷的温度(水冷开始温度),优选从850℃以下的水冷开始温度开始对钢板进行水冷。也就是说,从Ae3点以下开始钢板的冷却。在此种情况下,通过发生铁素体相变来降低钢板的屈服比,因此钢板的变形能力良好。
关于冷却方法,最重要的是通过将水冷和回热重复至钢板表面达到马氏体相变开始温度为止,由此将钢板表面冷却。通过该冷却方法,能够抑制上述钢板的强度偏差。进而,如果将从水冷开始(最初的水冷)至钢板表面达到马氏体相变开始温度(MS点)为止的钢板表面的平均冷却速度(℃/s)设为得到90%马氏体组织的临界的冷却速度VC90(℃/s)以下,则可进一步抑制强度偏差。另外,下记式(1)和式(2)及式(3)中分别示出MS点和VC90的计算式。
MS=545-330[C]+2[Al]-14[Cr]-13[Cu]-23[Mn]-5[Mo]-4[Nb]-13[Ni]-7[Si]+3[Ti]+4[V]      (1)
VC90=10(2.94-0.75β)    (2)
β=2.7[C]+0.4[Si]+[Mn]+0.45([Ni]+[Cu])+0.8[Cr]+2[Mo]    (3)
其中,上述式(1)~式(3)中的[C]、[Al]、[Cr]、[Cu]、[Mn]、[Mo]、[Nb]、[Ni]、[Si]、[Ti]、[V]分别为C、Al、Cr、Cu、Mn、Mo、Nb、Ni、Si、Ti、V的含量(%)。
另外,关于钢板表面的温度,测定钢板的宽度方向的中央部。
对本发明中的回热进行说明。本发明中的回热为下述操作:在冷却钢板时,在通过一次水冷将钢板表面冷却到比MS点高的规定温度后,将水冷停止一定时间,使钢板表面的温度相比刚水冷后提高。也就是说,将在进行水冷直到达到比MS点高的规定温度后进行回热的处理至少重复1次以上,使钢板表面冷却。然后,进行最后的水冷(最终水冷),将钢板表面冷却到MS点以下的温度。也可以在该最终水冷后再次进行回热。在进行该回热时,最终冷却温度为最后的回热后的温度。另外,为了防止钢板内的强度的偏差,最终水冷前的钢板的回热次数优选为2次以上。此外,为了确保生产率,水冷及最终水冷的速度优选为VC90以上。在本发明的冷却装置中,能够以水量密度达到相同的方式进行控制的喷嘴集中的地方(称为区域)有若干个。在本发明中,例如,将这些区域分为进行水冷的水冷区域和不进行水冷的回热区域。也就是说,在第一区域(水冷区域)中进行水冷、在第二区域(回热区域)中不进行水冷时,关于钢板的表面温度,第二区域的出口的温度高于第一区域的出口的温度。进而,如果在第三区域(水冷区域)中进行水冷,则钢板的表面温度下降。这样,通过重复水冷区域和回热区域来逐渐降低钢板的表面温度。不进行水冷的区域(回热区域)可通过察看钢板的冷却状况等任意决定。最终,钢板表面在最后的水冷区域中被冷却到MS点以下的温度。
以下参照图2对在上述冷却条件下进行冷却的理由进行具体地说明。图2是表示钢板表面的冷却图形和钢的相变线图的关系的一例。图2的虚线(i)表示以冷却速度MC90将钢板冷却时的冷却图形。在该冷却图形中,钢板的大约90%成为马氏体组织。如图2的点线(ii)所示,在钢板表面的平均冷却速度大于冷却速度MC90的情况下,钢板表面大致成为马氏体组织。因此,即使在进行钢板表面的回热时,钢板表面的韧性也显著降低,在制造钢管时有时在钢板上产生表面裂纹等表面缺陷。另一方面,如图2的实线(iii)及(iv)所示,在钢板表面的平均冷却速度小于冷却速度MC90的情况下,钢板成为本发明的贝氏体组织或贝氏体/铁素体混合组织。而且,通过对钢板表面进行回热,钢板内部的组织变得均匀,能够制造强度偏差小的钢板。
关于冷却停止温度,如果在200℃以下停止最后的水冷(最终水冷),则在钢板的板厚中心部生成被认为起因于氢的缺陷。因此,优选将冷却停止温度的下限规定为200℃。
接着,对采用由上述制造方法制造的超高强度管线管用钢板通过UO工艺(UO造管)制造管线管的方法进行说明。在制造了板厚为12~25mm的钢板后,通过UO造管(C压制、U压制、O压制)而成形成管状。然后,分别将成形成管状的钢板的端部对接,进行定位焊。在该定位焊中,采用MAG焊接或MIG焊接。在定位焊后,从内外面对成形成管状的钢板的对接部进行埋弧焊。在该埋弧焊中,采用焊丝和烧成型或熔融型焊剂。最后,进行扩管,制造钢管。
在本发明的超高强度管线管用钢管的制造方法中,优选在进行了上述的内外面的埋弧焊后且在进行扩管前对焊接部(缝焊接部)实施热处理。此外,作为该钢管的热处理条件,优选在200℃以上且500℃以下的温度下对焊接部实施热处理。通过该热处理,能够减少产生于焊接部(焊接金属)的对韧性有害的MA(奥氏体和马氏体的混合组织)。如果在200℃以上且500℃以下的温度下对焊接部进行加热,则沿着原奥氏体晶界生成的粗大的MA分解成微细的渗碳体。但是,当在低于200℃时对焊接部实施热处理的情况下,粗大的MA不分解成渗碳体。因此,焊接部的热处理温度的下限为200℃。此外,如果超过500℃地对焊接部进行热处理,则焊接部的韧性劣化。因此,焊接部的热处理温度的上限为500℃。
实施例
接着,对本发明的实施例进行说明。
在将具有表1的化学成分的厚度为240mm的钢坯加热到1000~1210℃后,在950℃以上的再结晶温度区进行热轧,直到钢坯的厚度(移送厚度)达到70~100mm。进而,在880~750℃的范围的未再结晶温度区进行热轧,直到钢坯的厚度(板厚)达到12~25mm。然后,从650~810℃的温度开始钢板的冷却(最初的水冷),将在进行水冷到比MS点高的规定温度后进行回热的处理至少重复1次以上,进行冷却。然后,在250~450℃的温度停止冷却(最终水冷)。另外,表1中,作为参考,还示出了碳当量Ceq及焊接裂纹敏感性指数Pcm
为了对制造的各钢板的屈服强度和抗拉强度进行评价,从各钢板采取根据API5L规格的总厚试验片,在常温下进行拉伸试验。关于采取方向,以总厚试验片的长度方向与钢板的宽度方向一致的方式采取这些总厚试验片。此外,总厚试验片的采取位置是在钢板的长度方向上离钢板顶端部及钢板末端部1m的位置。从这些位置上的钢板的板宽中心部在两侧采取2个总厚试验片。
接着,在通过UO造管将该钢板成形后,通过二氧化碳气体弧焊对钢板的对接部进行定位焊。然后,采用焊丝和熔融焊剂,从钢板的对接部的内外面进行利用埋弧焊的缝焊,形成钢管。缝焊的平均线能量为2.0~4.0kJ/mm。另外,对部分钢管,对缝焊部实施250~450℃的热处理。钢板及钢管的制造条件见表2。
为了对制造的各钢板的屈服强度和抗拉强度进行评价,从各钢管采取API试验片,进行拉伸试验。关于采取方向,以API试验片的长度方向与钢管的管轴方向一致的方式采取这些API试验片。此外,关于采取位置,在与管轴垂直的切断面中,以离各钢管的缝焊部1/4周的位置为中心在其两侧各采取2个API试验片。此外,作为参考,为了评价应变时效后的变形能力,在210℃下对这些钢管进行热处理(保持5分钟后进行空气冷却),从与上述同样的位置各采取2个API试验片,进行拉伸试验。拉伸试验按照API规格2000进行。此外,为了评价钢管的韧性,实施了-30℃时的夏氏试验和DWT试验。夏氏试验和DWT试验也按照API规格2000进行。关于夏氏试验片和DWT试验片,以试验片的长度方向与钢管的圆周方向一致的方式,在与管轴垂直的切断面中从离各钢管的缝焊部1/2周的位置采取。关于DWT试验片,从各钢管各采取2个,作为夏氏试验片,从各钢管的壁厚中心部各采取3个。
进而,对制造的各钢管的HAZ韧性进行了评价。关于用于评价HAZ韧性的试验片,从钢管的缝焊部附近的焊接热影响部(HAZ)采取,在FL+1mm(在HAZ部侧的离HAZ部与缝焊部的边界1mm的位置)处形成缺口。作为这些试验片,从各钢管各采取3个。对这些试验片都通过-30℃时的夏氏试验进行了评价。
这些试验的结果见表3。另外,表3中作为参考不仅示出抗拉强度,而且还示出了屈服强度及屈服比。
钢1~22为本发明的实施例。如表3所示,这些钢管具有X120以上的抗拉强度,且钢板及钢管内的强度偏差被抑制在60MPa以下。此外,钢管的夏氏能为200J以上,DWTT塑性断口率为85%以上,焊接热影响部的夏氏吸收能(HAZ韧性)超过50J。这样,本发明的实施例中的钢管具有高的韧性。钢23~35为未满足本发明的制造条件的比较例。也就是说,在钢23中,钢中的C量小于本发明的范围,因此抗拉强度不足。在钢24~29中,基本成分及选择元素内的至少1种元素超过本发明范围地添加到钢中,因此HAZ韧性不足。另一方面,在钢30~35中,由于不进行回热地对钢板表面进行冷却,因此钢板及钢管的强度的偏差大到100MPa以上。
Figure BDA0000059081080000141
Figure BDA0000059081080000161
产业上的利用可能性
根据本发明,能够提供母材的强度、低温韧性及变形能力优良的、且现场焊接容易的抗拉强度为915MPa以上(API规格X120以上)的超高强度管线管用钢板及钢管的制造方法。

Claims (10)

1.一种超高强度管线管用钢板的制造方法,其特征在于,
将下述钢熔炼,所述钢以质量%计含有C:0.03~0.06%、Si:0.01~0.50%、Mn:1.5~2.5%、P:0.01%以下、S:0.0030%以下、Nb:0.0001~0.20%、Al:0.0005~0.03%、Ti:0.003~0.030%、B:0.0003~0.0030%、N:0.0010~0.0050%、O:0.0050%以下,余量包含铁及不可避免的杂质;
对该钢进行铸造而形成钢坯;
对该钢坯实施热轧而形成钢板;
将在水冷至比MS点高的规定温度后进行回热的处理至少重复1次以上,使所述钢板的表面冷却;
进行最终水冷,将所述钢板的表面冷却到MS点以下的温度,
MS=545-330[C]+2[Al]-14[Cr]-13[Cu]-23[Mn]-5[Mo]-4[Nb]-13[Ni]-7[Si]+3[Ti]+4[V]
其中,[C]、[Al]、[Cr]、[Cu]、[Mn]、[Mo]、[Nb]、[Ni]、[Si]、[Ti]、[V]分别为C、Al、Cr、Cu、Mn、Mo、Nb、Ni、Si、Ti、V的百分比含量。
2.根据权利要求1所述的超高强度管线管用钢板的制造方法,其特征在于,所述钢以质量%计还含有以下元素中的至少1种:
Mo:0.01~1.0%、
Cu:0.01~1.5%、
Ni:0.01~5.0%、
Cr:0.01~1.5%、
V:0.01~0.10%、
W:0.01~1.0%、
Zr:0.0001~0.050%、
Ta:0.0001~0.050%。
3.根据权利要求1所述的超高强度管线管用钢板的制造方法,其特征在于,所述钢以质量%计还含有以下元素中的至少1种:
Mg:0.0001~0.010%、
Ca:0.0001~0.005%、
REM:0.0001~0.005%、
Y:0.0001~0.005%、
Hf:0.0001~0.005%、
Re:0.0001~0.005%。
4.根据权利要求1所述的超高强度管线管用钢板的制造方法,其特征在于,从最初的水冷到钢板表面达到马氏体相变开始温度即MS点为止的平均冷却速度为MC90以下,所述平均冷却速度的单位为℃/s,
MS=545-330[C]+2[Al]-14[Cr]-13[Cu]-23[Mn]-5[Mo]-4[Nb]-13[Ni]-7[Si]+3[Ti]+4[V]
MC90=10(2.94-0.75β)
β=2.7[C]+0.4[Si]+[Mn]+0.45([Ni]+[Cu])+0.8[Cr]+2[Mo]
其中,[C]、[Al]、[Cr]、[Cu]、[Mn]、[Mo]、[Nb]、[Ni]、[Si]、[Ti]、[V]分别为C、Al、Cr、Cu、Mn、Mo、Nb、Ni、Si、Ti、V的百分比含量。
5.根据权利要求1所述的超高强度管线管用钢板的制造方法,其特征在于,所述水冷及所述最终水冷的速度为VC90以上。
6.根据权利要求1所述的超高强度管线管用钢板的制造方法,其特征在于,在所述热轧中,所述钢坯的再加热温度为950℃以上,所述钢坯在未再结晶温度区的压下比为3以上。
7.根据权利要求1所述的超高强度管线管用钢板的制造方法,其特征在于,从850℃以下的冷却开始温度开始进行冷却。
8.一种超高强度管线管用钢管的制造方法,其特征在于,
将用权利要求1所述的制造方法制造的超高强度管线管用钢板通过UO造管成形成管状;
从内外面使用焊丝和烧成型或熔融型焊剂对所述超高强度管线管用钢板的对接部进行埋弧焊;
然后进行扩管。
9.根据权利要求8所述的超高强度管线管用钢管的制造方法,其特征在于,在进行了所述埋弧焊后且在进行所述扩管之前,对焊接部进行热处理。
10.根据权利要求9所述的超高强度管线管用钢管的制造方法,其特征在于,在200℃以上且500℃以下的温度下对所述焊接部进行热处理。
CN2009801439738A 2008-11-07 2009-11-06 超高强度管线管用钢板及钢管的制造方法 Expired - Fee Related CN102203303B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008287054 2008-11-07
JP2008-287054 2008-11-07
PCT/JP2009/005931 WO2010052928A1 (ja) 2008-11-07 2009-11-06 超高強度ラインパイプ用鋼板および鋼管の製造方法

Publications (2)

Publication Number Publication Date
CN102203303A true CN102203303A (zh) 2011-09-28
CN102203303B CN102203303B (zh) 2013-06-12

Family

ID=42152741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801439738A Expired - Fee Related CN102203303B (zh) 2008-11-07 2009-11-06 超高强度管线管用钢板及钢管的制造方法

Country Status (5)

Country Link
JP (1) JP4819186B2 (zh)
CN (1) CN102203303B (zh)
BR (1) BRPI0921260B1 (zh)
RU (1) RU2459875C1 (zh)
WO (1) WO2010052928A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952639A (zh) * 2014-04-04 2014-07-30 日照钢铁控股集团有限公司 具有优异抗延展性破坏的管线钢及其制备方法
CN104024461A (zh) * 2012-03-30 2014-09-03 新日铁住金株式会社 抗氢诱发裂纹性优良的高强度管道用钢管和其所使用的高强度管道用钢板、以及它们的制造方法
CN104024453A (zh) * 2011-12-28 2014-09-03 新日铁住金株式会社 变形性能和低温韧性优异的高强度钢管、高强度钢板、以及前述钢板的制造方法
CN107406948A (zh) * 2015-03-26 2017-11-28 杰富意钢铁株式会社 结构管用厚壁钢板、结构管用厚壁钢板的制造方法和结构管
CN108103410A (zh) * 2018-03-05 2018-06-01 石英楠 一种屈服强度≥910MPa的管线钢及其制备方法
CN108396256A (zh) * 2018-03-05 2018-08-14 石英楠 高强度石油用管线钢及其制备方法
CN108456834A (zh) * 2018-03-05 2018-08-28 石英楠 一种具有含Ti析出物的高强度管线钢及其制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102380694B (zh) * 2011-09-15 2013-07-24 南京钢铁股份有限公司 一种高强管线钢埋弧焊纵焊缝的焊接工艺
CN102363864A (zh) * 2011-10-10 2012-02-29 刘群联 一种制造马氏体不锈钢钢管的方法
JP5857693B2 (ja) * 2011-12-05 2016-02-10 Jfeスチール株式会社 大入熱用鋼板およびその製造方法
JP6191268B2 (ja) * 2013-06-19 2017-09-06 新日鐵住金株式会社 コイル幅方向の強度ばらつきが少なく靭性に優れた高降伏比高強度熱延鋼板およびその製造方法
CA2920757C (en) 2013-10-09 2017-12-05 Nippon Steel & Sumitomo Metal Corporation Structural member for automotive body
JP6248545B2 (ja) * 2013-10-30 2017-12-20 新日鐵住金株式会社 鋼板およびそれを用いた鋼床版ならびにそれらの製造方法
RU2544326C1 (ru) * 2014-01-09 2015-03-20 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства толстых листов из низколегированной стали с повышенной коррозионной стойкостью
JP6642118B2 (ja) * 2016-03-02 2020-02-05 日本製鉄株式会社 耐サワー鋼板
CH715726B1 (fr) * 2019-01-11 2022-10-14 Richemont Int Sa Procédé d'obtention d'un composant fonctionnel pour mouvement horloger.
JP7469617B2 (ja) 2020-03-17 2024-04-17 日本製鉄株式会社 油井用電縫鋼管およびその製造方法
JP7469616B2 (ja) 2020-03-17 2024-04-17 日本製鉄株式会社 油井用電縫鋼管およびその製造方法
CN112342461B (zh) * 2020-09-09 2021-11-19 河钢股份有限公司承德分公司 一种含钛气保焊丝焊接用钢及其生产方法
CN113118209B (zh) * 2021-04-15 2023-01-17 鞍钢股份有限公司 一种提高x70m管线钢低温dwtt性能的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284836A (ja) * 1994-04-18 1995-10-31 Nippon Steel Corp 高温鋼板の冷却方法
JP2003277829A (ja) * 2002-03-26 2003-10-02 Jfe Steel Kk 高靭性高張力鋼材の製造方法
JP4119676B2 (ja) * 2002-05-01 2008-07-16 株式会社神戸製鋼所 曲げ加工性に優れた低降伏比型高張力鋼板およびその製造方法
JP3968011B2 (ja) * 2002-05-27 2007-08-29 新日本製鐵株式会社 低温靱性および溶接熱影響部靱性に優れた高強度鋼とその製造方法および高強度鋼管の製造方法
JP2004010971A (ja) * 2002-06-07 2004-01-15 Nippon Steel Corp 強度・靭性に優れ、かつ平坦度の良好な鋼板の高効率製造方法
CN100497705C (zh) * 2003-10-31 2009-06-10 杰富意钢铁株式会社 耐腐蚀性优良的管线管用高强度不锈钢管及其制造方法
RU2331698C2 (ru) * 2003-12-19 2008-08-20 Ниппон Стил Корпорейшн Стальные листы для сверхвысокопрочных магистральных труб и сверхвысокопрочные магистральные трубы, обладающие прекрасной низкотемпературной ударной вязкостью, и способы их изготовления
JP4687122B2 (ja) * 2004-01-30 2011-05-25 Jfeスチール株式会社 板厚方向の強度均一性および耐疲労亀裂伝播特性に優れた鋼材の製造方法
RU2270873C1 (ru) * 2005-03-15 2006-02-27 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Способ производства штрипсовой стали для труб подводных морских газопроводов высоких параметров
JP5251089B2 (ja) * 2006-12-04 2013-07-31 新日鐵住金株式会社 低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管及びその製造方法
JP2009084598A (ja) * 2007-09-27 2009-04-23 Nippon Steel Corp 変形能ならびに低温靱性に優れた超高強度ラインパイプ用鋼板の製造方法および超高強度ラインパイプ用鋼管の製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104024453A (zh) * 2011-12-28 2014-09-03 新日铁住金株式会社 变形性能和低温韧性优异的高强度钢管、高强度钢板、以及前述钢板的制造方法
CN104024453B (zh) * 2011-12-28 2016-08-24 新日铁住金株式会社 变形性能和低温韧性优异的高强度钢管、高强度钢板、以及前述钢板的制造方法
CN104024461A (zh) * 2012-03-30 2014-09-03 新日铁住金株式会社 抗氢诱发裂纹性优良的高强度管道用钢管和其所使用的高强度管道用钢板、以及它们的制造方法
CN104024461B (zh) * 2012-03-30 2016-04-06 新日铁住金株式会社 抗氢诱发裂纹性优良的高强度管道用钢管和其所使用的高强度管道用钢板、以及它们的制造方法
CN103952639A (zh) * 2014-04-04 2014-07-30 日照钢铁控股集团有限公司 具有优异抗延展性破坏的管线钢及其制备方法
CN103952639B (zh) * 2014-04-04 2016-05-04 日照钢铁控股集团有限公司 具有优异抗延展性破坏的管线钢
CN107406948A (zh) * 2015-03-26 2017-11-28 杰富意钢铁株式会社 结构管用厚壁钢板、结构管用厚壁钢板的制造方法和结构管
CN107406948B (zh) * 2015-03-26 2019-03-08 杰富意钢铁株式会社 结构管用厚壁钢板、结构管用厚壁钢板的制造方法和结构管
US10767250B2 (en) 2015-03-26 2020-09-08 Jfe Steel Corporation Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
CN108103410A (zh) * 2018-03-05 2018-06-01 石英楠 一种屈服强度≥910MPa的管线钢及其制备方法
CN108396256A (zh) * 2018-03-05 2018-08-14 石英楠 高强度石油用管线钢及其制备方法
CN108456834A (zh) * 2018-03-05 2018-08-28 石英楠 一种具有含Ti析出物的高强度管线钢及其制备方法
CN108456834B (zh) * 2018-03-05 2020-04-24 白婷婷 一种具有含Ti析出物的高强度管线钢及其制备方法
CN108396256B (zh) * 2018-03-05 2020-04-24 白婷婷 高强度石油用管线钢及其制备方法

Also Published As

Publication number Publication date
WO2010052928A1 (ja) 2010-05-14
JPWO2010052928A1 (ja) 2012-04-05
CN102203303B (zh) 2013-06-12
BRPI0921260B1 (pt) 2018-08-28
JP4819186B2 (ja) 2011-11-24
RU2459875C1 (ru) 2012-08-27

Similar Documents

Publication Publication Date Title
CN102203303B (zh) 超高强度管线管用钢板及钢管的制造方法
CN102203301B (zh) 超高强度管线管用钢板及钢管的制造方法
CN102203302B (zh) 超高强度管线管用钢板及钢管的制造方法
KR101668546B1 (ko) 내변형 시효 특성이 우수한 저항복비 고강도 강판 및 그 제조 방법 그리고 그것을 사용한 고강도 용접 강관
KR101668545B1 (ko) 내변형 시효 특성이 우수한 저항복비 고강도 강판 및 그 제조 방법 그리고 그것을 사용한 고강도 용접 강관
CN103328673B (zh) 干线管用热卷材及其制造方法
JP5055774B2 (ja) 高変形性能を有するラインパイプ用鋼板およびその製造方法。
CN103069020A (zh) 油井用电焊钢管以及油井用电焊钢管的制造方法
JP2007119884A (ja) 中温域での強度に優れた高強度高靭性鋼材の製造方法
JP5991175B2 (ja) 鋼板内の材質均一性に優れたラインパイプ用高強度鋼板とその製造方法
JP2010196165A (ja) 低温靭性に優れた極厚高張力熱延鋼板およびその製造方法
CN102741443A (zh) 高强度焊接钢管及其制造方法
JP7081727B1 (ja) 電縫鋼管およびその製造方法
JP6241570B2 (ja) 高強度鋼及びその製造方法、並びに鋼管及びその鋼管の製造方法
JP5991174B2 (ja) 鋼板内の材質均一性に優れた耐サワーラインパイプ用高強度鋼板とその製造方法
CN111655873B (zh) 管线管用钢材及其制造方法以及管线管的制造方法
JP3941211B2 (ja) 耐hic性に優れた高強度ラインパイプ用鋼板の製造方法
JP2004131799A (ja) 変形性能および低温靱性ならびにhaz靱性に優れた高強度鋼管およびその製造方法
JP5151034B2 (ja) 高張力ラインパイプ用鋼板の製造方法および高張力ラインパイプ用鋼板
JP2005171300A (ja) 大入熱溶接用高張力鋼と溶接金属
JP2009084598A (ja) 変形能ならびに低温靱性に優れた超高強度ラインパイプ用鋼板の製造方法および超高強度ラインパイプ用鋼管の製造方法
JP2007131925A (ja) 低温靱性に優れた引張強さ900MPa級以上の高強度ラインパイプ用鋼板およびそれを用いたラインパイプならびにそれらの製造方法
JP2007169747A (ja) 中温域での強度ならびに変形能に優れた高強度高靭性鋼板の製造方法
JP2005298962A (ja) 加工性に優れた高張力鋼板の製造方法
CN111655872B (zh) 管线管用钢材及其制造方法以及管线管的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: NIPPON STEEL + SUMITOMO METAL CORPORATION

Free format text: FORMER OWNER: SHIN NIPPON STEEL LTD.

Effective date: 20130326

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20130326

Address after: Tokyo, Japan

Applicant after: Nippon Steel Corporation

Address before: Tokyo, Japan

Applicant before: Nippon Steel Corporation

C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Tokyo, Japan

Patentee after: Nippon Iron & Steel Corporation

Address before: Tokyo, Japan

Patentee before: Nippon Steel Corporation

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130612

Termination date: 20201106