CN102198925A - Mems器件及其形成方法 - Google Patents

Mems器件及其形成方法 Download PDF

Info

Publication number
CN102198925A
CN102198925A CN2010101357075A CN201010135707A CN102198925A CN 102198925 A CN102198925 A CN 102198925A CN 2010101357075 A CN2010101357075 A CN 2010101357075A CN 201010135707 A CN201010135707 A CN 201010135707A CN 102198925 A CN102198925 A CN 102198925A
Authority
CN
China
Prior art keywords
layer
gate electrode
mems device
electrode layer
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010101357075A
Other languages
English (en)
Other versions
CN102198925B (zh
Inventor
毛剑宏
韩凤芹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Core Microelectronics Co ltd
Original Assignee
JIANGSU LIHENG ELECTRONIC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU LIHENG ELECTRONIC CO Ltd filed Critical JIANGSU LIHENG ELECTRONIC CO Ltd
Priority to CN201010135707.5A priority Critical patent/CN102198925B/zh
Priority to US13/637,021 priority patent/US9112008B2/en
Priority to PCT/CN2011/070627 priority patent/WO2011116642A1/zh
Publication of CN102198925A publication Critical patent/CN102198925A/zh
Application granted granted Critical
Publication of CN102198925B publication Critical patent/CN102198925B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28176Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/7722Field effect transistors using static field induced regions, e.g. SIT, PBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66606Lateral single gate silicon transistors with final source and drain contacts formation strictly before final or dummy gate formation, e.g. contact first technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种MEMS器件及其形成方法,其中MEMS器件包括:半导体衬底;形成在半导体衬底内的阱区;形成在阱区内的源极区、漏极区和沟道区;形成在源极区、漏极区表面的隔离层;形成在沟道区表面的栅介质层;形成在栅介质层上方并与栅介质层具有间隙的栅电极层,所述间隙宽度与沟道区对应。本发明提供MEMS器件的形成方法与传统半导体形成工艺兼容,不需要重新研发新型材料和新的制备工艺,制备的MEMS器件耐压性能高,栅电极漏电流低。

Description

MEMS器件及其形成方法
技术领域
本发明涉及微电子机械系统工艺,特别涉及MEMS器件及其形成方法。
背景技术
微电子机械系统工艺(MEMS)作为起源于上世纪90年代的跨学科的先进制造技术,广泛应用于改善人们生活质量、提高人们生活水平和增强国力。微电子机械系统工艺具有强烈的多学科交叉特征,近年来,基于硅工艺已经成为微电子机械系统工艺的主流,但是由于微电子机械系统工艺的复杂性,微电子机械系统工艺与半导体工艺的集成化一直成为微电子机械系统工艺发展中的制约。
半导体工艺具有成本低、精度高、一致性好的优点,为此,微电子机械系统工艺与半导体工艺的集成化不但能够利用上述半导体工艺的优点,还能够解决半导体工艺形成的半导体器件的缺陷,以MOS晶体管中的栅极为例,传统的栅极包括,栅介质层;形成在栅介质层表面的栅电极层。在公开号为1522463的中国专利文件中可以发现更多有关栅极的资料。但是,由于栅介质层材料通常采用二氧化硅,而栅电极层通常采用导电材料,例如多晶硅或者金属,栅电极层与栅介质层的界面态变化通常容易导致漏电流的产生,由界面态变化产生的漏电流会让晶体管无法正常工作。
发明内容
本发明解决的问题是提供一种与现有半导体工艺兼容的栅极漏电流低的MEMS器件及其形成方法。
为解决上述问题,本发明提供一种MEMS器件,包括:半导体衬底;形成在半导体衬底内的阱区;形成在阱区内的源极区、漏极区和沟道区;形成在源极区、漏极区表面的隔离层;形成在沟道区表面的栅介质层;形成在栅介质层上方并与栅介质层具有间隙的栅电极层,所述间隙宽度与沟道区宽度对应。
可选的,所述栅电极层是单一覆层或者多层堆叠结构。
可选的,所述单一覆层栅电极层的材料为导电材料。
可选的,所述栅电极层结构为金属层、形成在金属层表面的氧化硅层和形成在氧化硅层表面的氮化硅层的三层堆叠结构。
可选的,所述隔离层是多层堆叠结构。
可选的,所述隔离层包括依次形成在阱区表面的保护层、阻挡层和层间介质层。
可选的,所述保护层的材料为氧化硅。
可选的,所述阻挡层的材料为氮化硅。
可选的,所述层间介质层材料选自未掺杂的氧化硅或者掺杂的氧化硅。
可选的,栅电极层的宽度与沟道区的宽度对应。
所述源极区和漏极区具有和阱区相反的导电类型。
本发明还提供一种MEMS器件形成方法,包括:提供半导体衬底,所述半导体衬底内形成有阱区,所述阱区内形成有源极区、漏极区和沟道区;
在所述半导体衬底表面形成隔离层;
在隔离层内形成开口,所述开口暴露出沟道区和与沟道区相邻的部分源极区、漏极区;
在所述开口底部形成栅介质层;
形成填平所述开口的填充层;
在所述层间介质层、填充层表面形成栅电极层;
去除填充层,使栅电极层与栅介质层形成间隙。
可选的,所述栅电极层的形成步骤包括:在所述层间介质层、填充层表面形成一层栅电极薄膜;在所述栅电极薄膜表面形成与栅电极层对应的光刻胶图形;以所述光刻胶图形为掩膜,刻蚀所述栅电极薄膜形成栅电极层。
可选的,所述栅电极层暴露出部分填充层。
可选的,所述栅电极层是单一覆层或者多层堆叠结构。
可选的,所述单一覆层栅电极层的材料为导电材料。
可选的,所述电极层结构为金属层、形成在金属层表面的氧化硅层和形成在氧化硅层表面的氮化硅层的三层堆叠结构。
可选的,栅电极层的宽度与沟道区的宽度对应。
可选的,填充层的材料选用与栅电极层和栅介质层具有选择性去除特性的材料。
本发明提供的一种MEMS器件及其形成方法,其中MEMS器件的形成方法与传统半导体形成工艺兼容,不需要重新研发新型材料和新的制备工艺,且制备的MEMS器件栅电极层与栅介质层具有空隙,并不直接接触,避免了界面态变化导致的漏电流产生,发明提供的MEMS器件耐压性能高,栅电极漏电流低。
附图说明
通过附图中所示的本发明的优选实施例的更具体说明,本发明的上述及其它目的、特征和优势将更加清晰。在全部附图中相同的附图标记指示相同的部分。并未刻意按实际尺寸等比例缩放绘制附图,重点在于示出本发明的主旨。
图1为MEMS器件一实施例的剖面示意图;
图2为MEMS器件一实施例的俯视图;
图3为本发明MEMS器件形成方法的一实施例流程图;
图4至图11为本发明MEMS器件形成方法的一实施例过程示意图。
具体实施方式
由背景技术可知,现有的栅极结构包括栅介质层和形成在栅介质层表面的栅电极层,由于栅介质层和栅电极层材料不同从而形成的漏电流会让晶体管无法正常工作。
为此,本发明的发明人提供一种MEMS器件及其形成方法,形成的MEMS器件包括与栅介质层有间隙的栅电极层,通过静电吸附作用控栅电极层吸附至栅介质层或者悬浮在栅介质层上空,从而控制MEMS器件开或者关,避免半导体器件中栅电极层与栅介质层漏电流,并且本发明提供的MEMS器件及其形成方法能够与半导体工艺兼容,避免昂贵的半导体新工艺研发。
以下依据附图详细地描述具体实施例,上述的目的和本发明的优点将更加清楚。
本发明提供一种MEMS器件,参考图1,图1为MEMS器件一实施例的剖面示意图,包括:半导体衬底100;形成在半导体衬底100内的阱区110;形成在阱区110内的源极区111、漏极区112和沟道区113;形成在源极区111、漏极区112表面的隔离层,所述隔离层可以是单一覆层或者多层堆叠结构,当隔离层为单一覆层时,隔离层材料为介电材料;所述隔离层为多层堆叠结构时,包括保护层120、形成在保护层120表面的阻挡层130、和形成在阻挡层130表面的层间介质层140;本实施例中以所述隔离层为多层堆叠结构为例。本发明提供的MEMS器件还包括:形成在层间介质层140内并暴露出阱区110的开口121;形成在开口121底部的栅介质层150;位于栅介质层150上方并与栅介质层150之间具有间隙的栅电极层170,所述间隙的宽度与沟道区113宽度对应。
为方便理解本发明提供的MEMS器件,请参考图2,图2为MEMS器件一实施例的俯视图,图1为图2沿a-a’方向的剖面示意图,从图2中可以发现栅电极层170部分位于层间介质层140表面,从而与栅介质层150具有间隙,需要说明的是,所述栅介质层150被开口121和栅电极层170覆盖,在图2上未能示出。
具体的,所述半导体衬底100可以为n型硅衬底、p型硅衬底或者绝缘层上的硅衬底(SOI)。
所述阱区110具有第一导电类型,所述第一导电类型可以为n型或者p型,下面以第一导电类型为p型、第二导电类型为n型为例,做示范性说明,所述阱区的形成方法为现有的离子注入工艺形成。
所述源极区111和漏极区112具有和阱区110相反的导电类型,为第二导电类型,所述源极区111和漏极区112的形成工艺可以参考MOS晶体的形成工艺,为现有的离子注入工艺形成,当源极区111和漏极区112形成后,沟道区113为源极区111和漏极区112之间的阱区,导电类型为第一导电类型。
所述保护层120的材料选自氧化硅,所述阻挡层130的材料选自氮化硅,层间介质层140材料选自未掺杂的氧化硅或者掺杂的氧化硅(BPSG、PSG或者BSG),所述保护层120、阻挡层130和层间介质层140的形成工艺为现有的沉积工艺,例如化学气相沉积;所述保护层120、阻挡层130和层间介质层140构成隔离层。
所述开口121的形成工艺为刻蚀工艺,栅介质层150的材料为氧化硅,形成工艺为化学气相沉积,在本实施例中,由于栅介质层150沉积在开口121底部,在沉积栅介质层150时,开口121的侧壁和层间介质层140表面也会形成有氧化硅层,位于开口121侧壁和层间介质层140表面的氧化硅层可以通过去除工艺去除或者为了节约工艺而保留,在本实施例中,所述氧化硅层予以保留,以节约工艺步骤。所述栅电极层170可以是单一覆层也可以是多层堆叠结构,当栅电极层170为单一覆层时,所述栅电极层170为导电材料,例如多晶硅、掺杂多晶硅、铝、铜、银或者金。
较优选的栅电极层170结构为金属层、形成在金属层表面的氧化硅层和形成在氧化硅层表面的氮化硅层的三层堆叠结构,优选的三层堆叠结构能够提高金属层的抗疲劳特性,提高MEMS器件的寿命。
还需要说明的是,栅电极层170的宽度d1要比沟道区113的宽度d2,当MEMS器件处于开启状态时,可以保证沟道区113形成导通沟道。
在本实施例中,可以通过对栅电极层170施加一开启电压,所述开启电压可以施加于另设的导电插塞(未图示)上,所述导电插塞可以设置于位于层间介质层140表面的栅电极层170上方,与栅电极层170的金属层相连,当栅电极层170施加开启电压后,栅介质层150会因为静电感应而带有与栅电极层170相反的电荷,栅介质层150与栅电极层170互相吸引,使得栅电极层170形变与栅介质层150接触,使得栅电极层170与栅介质层150电势相同,开启沟道区113,从而MEMS器件开启;当栅电极层170移除开启电压,栅电极层170和栅介质层150带同种电荷相斥,栅电极层170恢复初始心态与栅介质层150相隔,从而MEMS器件关闭。
需要指出的是,为了使得MEMS器件正常工作,较优选的工艺参数为所述开口121的面积为0.01μm2~25μm2,所述隔离层厚度为为0.2μm~1μm,栅电极层170厚度为500埃~5000埃(栅电极层170具体的取值还和沟道区113的宽度有关),上述的工艺参数能够保证MEMS器件,栅电极层170不会断裂。
图3为本发明MEMS器件形成方法的一实施例流程图,包括:步骤S101,提供半导体衬底,所述半导体衬底内形成有阱区,所述阱区内形成有源极区、漏极区和沟道区;在所述半导体衬底表面形成隔离层,所述隔离层包括保护层、阻挡层和层间介质层;所述层间介质层内形成有贯穿保护层、阻挡层并位于源极区表面的第一金属插塞和贯穿保护层、阻挡层并位于漏极区表面第二金属插塞;步骤S102,在隔离层内形成开口,所述开口暴露出沟道区和与沟道区相邻的部分源极区、漏极区;步骤S103,在所述开口底部形成栅介质层;步骤S104,在栅介质层表面形成填充所述开口的填充层;步骤S105,平坦化所述填充层直至暴露出层间介质层;步骤S106,在所述层间介质层、填充层表面形成栅电极层;步骤S107,去除填充层。
下面参照附图,对上述MEMS器件形成方法加以详细阐述。
首先参照图4,执行步骤S101,提供半导体衬底100,所述半导体衬底100可以为n型硅衬底、p型硅衬底或者绝缘层上的硅衬底(SOI),在本实施例中以p型硅衬底为例做示范性说明。
所述半导体衬底100内形成有阱区110,所述阱区的离子类型可以为n型或者p型,在本实施例中以所述阱区110为n型为例。所述阱区110的形成工艺为现有的离子注入,所述离子注入的类型为n型,需要指出的是,当半导体衬底100的离子类型为p型时,阱区110的离子类型也为p型时,可以直接执行下一工艺;当半导体衬底100的离子类型为p型时,阱区110的离子类型为n型时,可以采用离子注入工艺在半导体衬底100注入n型离子形成n型阱区。
在形成阱区110后,还可以参考标准的MOS晶体管形成工艺,在阱区110表面形成一层牺牲氧化层,然后对阱区110进行离子注入工艺,所述离子注入工艺用于调整MEMS器件的开启电压,在离子注入工艺后再去除牺牲氧化层。
参考图4,所述阱区110内形成有源极区111、漏极区112和沟道区113;所述源极区111、漏极区112和沟道区113通过在源极区111和漏极区112内进行离子注入,所述源极区111和漏极区112的离子注入类型与阱区110的离子类型相反,位于源极区111和漏极区112之间的阱区为沟道区113。
继续参考图4,在半导体衬底100表面依次形成保护层120、阻挡层130和层间介质层140,所述保护层120、阻挡层130和层间介质层140构成隔离层,在其他的实施例中,所述隔离层也可以为单一的覆层,当隔离层为单一覆层时,隔离层材料选自介电材料。
所述保护层120材料为氧化硅,所述保护层120用于保护半导体衬底100,避免半导体衬底100在后续的等离子体刻蚀中受到损伤;所述阻挡层130材料为氮化硅,所述阻挡层130作为刻蚀工艺的停止层,避免刻蚀工艺过刻蚀损伤半导体衬底100;所述层间介质层140材料为氧化硅、掺磷的氧化硅、掺硼磷的氧化硅,所述层间介质层140保护隔离源极区111、漏极区112、沟道区113和半导体衬底100,以及为后续形成的层间金属层提供平台。
依旧参考图4,所述层间介质层140内形成有贯穿保护层120、阻挡层130并与源极区111导通的第一金属插塞111a和贯穿保护层120、阻挡层130并与漏极区112导通的第二金属插塞112a。
所述第一金属插塞111a和第二金属插塞112a的形成工艺为在层间介质层140表面形成与第一金属插塞111a和第二金属插塞112a对应光刻胶图形;以所述光刻胶图形为掩膜,刻蚀所述层间介质层140直至暴露出源极区111表面和漏极区112表面,形成接触孔(未图示);去除光刻胶图形;采用导电物质填充所述接触孔,形成第一金属插塞111a和第二金属插塞112a。为了避免所述导电物质向层间介质层140内扩散,在填充导电物质之前,可以采用Ti/TiN或者Ta/TaN在接触孔侧壁和底部形成一层缓冲层。
参考图5,如步骤S102所述,在隔离层内形成开口121,所述开口121暴露出沟道区113和与沟道区113相邻的部分源极区111、漏极区112。
所述形成开口121的通过等离子体刻蚀工艺形成,具体形成开口121的步骤包括:在所述层间介质层140表面形成与开口121对应的光刻胶图形;以所述光刻胶图形为掩膜,刻蚀所述层间介质层140、保护层120和阻挡层130,直至暴露出沟道区113和与沟道区113相邻的部分源极区111、漏极区112,形成开口121。
参考图6,如步骤S103所述,在所述开口121底部形成栅介质层150。
所述栅介质层150的材料可以为氧化硅,所述栅介质层的形成工艺为化学气相沉积,需要指出的是,由于形成工艺为沉积工艺,开口121的侧壁以及层间介质层140表面也会形成有氧化硅层,所述开口121的侧壁以及层间介质层140表面的氧化硅层可以通过额外的去除工艺去除也可以保留,在本实施例中,所述开口121的侧壁以及层间介质层140表面的氧化硅层予以保留,以节约工艺步骤。
参考图7,如步骤S104所述,在栅介质层150表面形成填充所述开口121的填充层160。
所述填充层160为后续形成的栅电极层提供支撑平台,且所述填充层160的材料选用与栅电极层和栅介质层具有选择性去除特性的材料。
参考图8,如步骤S105所述,平坦化所述填充层160直至暴露出层间介质层140。
由之前步骤可知,填充所述开口121后,填充层160的表面会凹凸不平,为保证后续栅电极层的形成质量,需要采用平坦化工艺平坦化所述填充层160并去除部分的氧化硅层,直至暴露出层间介质层140,所述平坦化工艺可以选用现有的化学机械抛光工艺,在这里不再赘述。
参考图9,如步骤S106所述,在所述层间介质层140、填充层160表面形成栅电极层170。
所述栅电极层170可以是单一覆层也可以是多层堆叠结构,当栅电极层170为单一覆层时,栅电极层170材料为导电材料,例如多晶硅、掺杂多晶硅、铝、铜、银或者金。
较优选的栅电极层170结构为金属层、形成在金属层表面的氧化硅层和形成在氧化硅层表面的氮化硅层的三层堆叠结构,优选的三层堆叠结构能够提高金属层的抗疲劳特性,提高MEMS器件的寿命。
所述栅电极层170的形成步骤包括:在所述层间介质层140、填充层160表面形成一层栅电极薄膜(未图示);在所述栅电极薄膜表面形成与栅电极层对应的光刻胶图形;以所述光刻胶图形为掩膜,刻蚀所述栅电极薄膜形成栅电极层170。
为进一步理解本发明,请参考图10,图10为形成栅电极层170后的俯视图,图9为图10沿b-b’方向的剖面示意图,需要说明的是,从图9中观察,在本步骤中形成的栅电极层170位于填充层160表面并暴露部分填充层160,但从图10中可以发现,所述栅电极层170有部分位于层间介质层140表面,类似于悬浮桥状,与栅介质层150间隔有填充层160。
参考图11,如步骤S107所述,去除填充层160。
所述去除填充层160的工艺为选择性腐蚀去除,将器件放置于选择性去除填充层160的腐蚀溶液中,腐蚀溶液沿栅电极层170暴露出的填充层160腐蚀,直至去除填充层160。
去除填充层160后,所述栅电极层170位于栅介质层150上方并与栅介质层150之间具有空隙,需要说明的是,栅电极层170的宽度d1要比沟道区113的宽度d2大,当本发明提供的MEMS器件在开启状态,能够使得沟道区113导通。
本发明提供的一种MEMS器件及其形成方法,其中MEMS器件的形成方法与传统半导体形成工艺兼容,不需要重新研发新型材料和新的制备工艺,制备的MEMS器件耐压性能高,栅电极漏电流低。
虽然本发明已以较佳实施例披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (19)

1.一种MEMS器件,其特征在于,包括:
半导体衬底;
形成在半导体衬底内的阱区;
形成在阱区内的源极区、漏极区和沟道区;
形成在源极区、漏极区表面的隔离层;
形成在沟道区表面的栅介质层;
形成在栅介质层上方并与栅介质层具有间隙的栅电极层,所述间隙宽度与沟道区对应。
2.如权利要求1所述的MEMS器件,其特征在于,所述栅电极层是单一覆层或者多层堆叠结构。
3.如权利要求2所述的MEMS器件,其特征在于,所述单一覆层栅电极层的材料为导电材料。
4.如权利要求2所述的MEMS器件,其特征在于,所述栅电极层结构为金属层、形成在金属层表面的氧化硅层和形成在氧化硅层表面的氮化硅层的三层堆叠结构。
5.如权利要求1所述的MEMS器件,其特征在于,所述隔离层是单一覆层或者多层堆叠结构。
6.如权利要求5所述的MEMS器件,其特征在于,所述隔离层包括依次形成在阱区表面的保护层、阻挡层和层间介质层。
7.如权利要求6所述的MEMS器件,其特征在于,所述保护层的材料为氧化硅。
8.如权利要求6所述的MEMS器件,其特征在于,所述阻挡层的材料为氮化硅。
9.如权利要求6所述的MEMS器件,其特征在于,所述层间介质层材料为未掺杂的氧化硅或者掺杂的氧化硅。
10.如权利要求1所述的MEMS器件,其特征在于,栅电极层的宽度与沟道区的宽度对应。
11.如权利要求1所述的MEMS器件,其特征在于,所述源极区和漏极区具有和阱区相反的导电类型。
12.一种如权利要求1所述的MEMS器件的形成方法,其特征在于,包括:
提供半导体衬底,所述半导体衬底内形成有阱区,所述阱区内形成有源极区、漏极区和沟道区;
在所述半导体衬底表面形成隔离层;
在隔离层内形成开口,所述开口暴露出沟道区和与沟道区相邻的部分源极区、漏极区;
在所述开口底部形成栅介质层;
形成填平所述开口的填充层;
在所述层间介质层、填充层表面形成栅电极层;
去除填充层,使栅电极层与栅介质层形成间隙。
13.如权利要求12所述的MEMS器件的形成方法,其特征在于,所述栅电极层的形成步骤包括:在所述层间介质层、填充层表面形成一层栅电极薄膜;在所述栅电极薄膜表面形成与栅电极层对应的光刻胶图形;以所述光刻胶图形为掩膜,刻蚀所述栅电极薄膜形成栅电极层。
14.如权利要求12所述的MEMS器件的形成方法,其特征在于,所述栅电极层暴露出部分填充层。
15.如权利要求12所述的MEMS器件的形成方法,其特征在于,所述栅电极层是单一覆层或者多层堆叠结构。
16.如权利要求12所述的MEMS器件的形成方法,其特征在于,所述单一覆层栅电极层的材料为导电材料。
17.如权利要求15所述的MEMS器件,其特征在于,所述电极层结构为金属层、形成在金属层表面的氧化硅层和形成在氧化硅层表面的氮化硅层的三层堆叠结构。
18.如权利要求12所述的MEMS器件,其特征在于,栅电极层的宽度与沟道区的宽度对应。
19.如权利要求12所述的MEMS器件的形成方法,其特征在于,填充层的材料选用与栅电极层和栅介质层具有选择性去除特性的材料。
CN201010135707.5A 2010-03-25 2010-03-25 Mems器件及其形成方法 Active CN102198925B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201010135707.5A CN102198925B (zh) 2010-03-25 2010-03-25 Mems器件及其形成方法
US13/637,021 US9112008B2 (en) 2010-03-25 2011-01-26 MEMS device and method of forming the same
PCT/CN2011/070627 WO2011116642A1 (zh) 2010-03-25 2011-01-26 Mems器件及其形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010135707.5A CN102198925B (zh) 2010-03-25 2010-03-25 Mems器件及其形成方法

Publications (2)

Publication Number Publication Date
CN102198925A true CN102198925A (zh) 2011-09-28
CN102198925B CN102198925B (zh) 2015-03-04

Family

ID=44659955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010135707.5A Active CN102198925B (zh) 2010-03-25 2010-03-25 Mems器件及其形成方法

Country Status (3)

Country Link
US (1) US9112008B2 (zh)
CN (1) CN102198925B (zh)
WO (1) WO2011116642A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10431695B2 (en) * 2017-12-20 2019-10-01 Micron Technology, Inc. Transistors comprising at lease one of GaP, GaN, and GaAs
US10825816B2 (en) 2017-12-28 2020-11-03 Micron Technology, Inc. Recessed access devices and DRAM constructions
US10734527B2 (en) 2018-02-06 2020-08-04 Micron Technology, Inc. Transistors comprising a pair of source/drain regions having a channel there-between

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1693181A (zh) * 2004-03-11 2005-11-09 帕洛阿尔托研究中心公司 使用高压薄膜晶体管的微机电系统器件的集成驱动器
US20060054984A1 (en) * 2004-09-16 2006-03-16 Stmicroelectronics MOS transistor with a deformable gate
CN1889266A (zh) * 2006-07-25 2007-01-03 电子科技大学 耐高温单片集成微传感器结构及系统集成方法
CN101244800A (zh) * 2007-02-13 2008-08-20 通用电气公司 功率覆盖结构及其制作方法
CN101336472A (zh) * 2005-12-27 2008-12-31 英特尔公司 具有凹进应变区的多栅极器件
CN101567314A (zh) * 2008-04-24 2009-10-28 飞兆半导体公司 用于控制半导体结构中沟槽轮廓的技术
US20100060104A1 (en) * 2008-09-11 2010-03-11 Eun-Soo Jeong Piezoelectric transistor and method of manufacturing same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8407848D0 (en) * 1984-03-27 1984-05-02 Emi Ltd Sensor
US5492858A (en) * 1994-04-20 1996-02-20 Digital Equipment Corporation Shallow trench isolation process for high aspect ratio trenches
US6291331B1 (en) * 1999-10-04 2001-09-18 Taiwan Semiconductor Manufacturing Company Re-deposition high compressive stress PECVD oxide film after IMD CMP process to solve more than 5 metal stack via process IMD crack issue
JP3782297B2 (ja) * 2000-03-28 2006-06-07 株式会社東芝 固体撮像装置及びその製造方法
US6617210B1 (en) 2002-05-31 2003-09-09 Intel Corporation Method for making a semiconductor device having a high-k gate dielectric
KR100682913B1 (ko) * 2005-01-06 2007-02-15 삼성전자주식회사 하이브리드 멀티비트 비휘발성 메모리 소자 및 그 동작 방법
US20070040637A1 (en) * 2005-08-19 2007-02-22 Yee Ian Y K Microelectromechanical switches having mechanically active components which are electrically isolated from components of the switch used for the transmission of signals
US7511994B2 (en) * 2006-08-31 2009-03-31 Micron Technology, Inc. MEM suspended gate non-volatile memory
JP4655083B2 (ja) * 2007-11-16 2011-03-23 セイコーエプソン株式会社 微小電気機械装置
JP5442951B2 (ja) 2008-02-26 2014-03-19 セイコーインスツル株式会社 半導体装置の製造方法
WO2009128084A1 (en) 2008-04-15 2009-10-22 Indian Institute Of Science A sub-threshold elastic deflection fet sensor for sensing pressure/force, a method and system thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1693181A (zh) * 2004-03-11 2005-11-09 帕洛阿尔托研究中心公司 使用高压薄膜晶体管的微机电系统器件的集成驱动器
US20060054984A1 (en) * 2004-09-16 2006-03-16 Stmicroelectronics MOS transistor with a deformable gate
CN1773725A (zh) * 2004-09-16 2006-05-17 St微电子公司 具有可变形的栅极的mos晶体管
CN101336472A (zh) * 2005-12-27 2008-12-31 英特尔公司 具有凹进应变区的多栅极器件
CN1889266A (zh) * 2006-07-25 2007-01-03 电子科技大学 耐高温单片集成微传感器结构及系统集成方法
CN101244800A (zh) * 2007-02-13 2008-08-20 通用电气公司 功率覆盖结构及其制作方法
CN101567314A (zh) * 2008-04-24 2009-10-28 飞兆半导体公司 用于控制半导体结构中沟槽轮廓的技术
US20100060104A1 (en) * 2008-09-11 2010-03-11 Eun-Soo Jeong Piezoelectric transistor and method of manufacturing same

Also Published As

Publication number Publication date
US9112008B2 (en) 2015-08-18
US20130221450A1 (en) 2013-08-29
WO2011116642A1 (zh) 2011-09-29
CN102198925B (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
US9087856B2 (en) Semiconductor device with buried bit line and method for fabricating the same
CN113241350B (zh) 存储器装置的阶梯结构
CN1165984C (zh) 形成受控深沟槽顶部隔离层的装置和方法
WO2019236156A1 (en) Three-dimensional memory device containing source contact to bottom of vertical channels of and method of making the same
CN102148236A (zh) 半导体元件及其制造方法
CN108269758B (zh) 半导体元件的制作方法
CN107706180A (zh) 存储器及其制备方法、半导体器件
CN102198925B (zh) Mems器件及其形成方法
CN104701136B (zh) 电容器、半导体器件及其形成方法
TW202017180A (zh) 積體電路裝置
CN103227101A (zh) 半导体器件及其制造方法
CN112447723B (zh) 半导体装置及其制造方法
CN113764579B (zh) 电容器结构及其制作方法、存储器
CN101339902B (zh) 高压半导体器件及其制造方法
CN207068473U (zh) 存储器及半导体器件
WO2023015849A1 (zh) 半导体结构及半导体结构的制备方法
CN112133750A (zh) 深沟槽功率器件及其制备方法
EP4287256A1 (en) Semiconductor structure and manufacturing method therefor
CN112331660B (zh) 一种三维存储器及其制作方法
US11217664B2 (en) Semiconductor device with porous dielectric structure
US11244901B2 (en) Semiconductor device with graded porous dielectric structure
US20210249310A1 (en) Semiconductor device with porous dielectric structure and method for fabricating the same
CN207458941U (zh) 存储器及半导体器件
CN105529328A (zh) Dram器件及其形成方法
US11302814B2 (en) Semiconductor device with porous dielectric structure and method for fabricating the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SHANGHAI LEXVU OPTO MIRCOELECTRICS TECHNOLOGY CO.,

Free format text: FORMER OWNER: JIANGSU LIHENG ELECTRONIC CO., LTD.

Effective date: 20130123

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 211009 ZHENJIANG, JIANGSU PROVINCE TO: 201203 PUDONG NEW AREA, SHANGHAI

TA01 Transfer of patent application right

Effective date of registration: 20130123

Address after: 201203 Shanghai City, Pudong New Area Zhangjiang hi tech park long East Road No. 3000 Building No. 5 room 501B

Applicant after: LEXVU OPTO MICROELECTRONICS TECHNOLOGY (SHANGHAI) Ltd.

Address before: 211009 Zhenjiang hi tech Industrial Development Zone, Jiangsu Province, No. twelve, No. 211, room 668

Applicant before: Shanghai Lexvu Opto Microelectronics Technology Co.,Ltd.

ASS Succession or assignment of patent right

Owner name: ZHANGJIAGANG LIHENGGUANG MICRO-ELECTRONICS TECHNOL

Free format text: FORMER OWNER: SHANGHAI LEXVU OPTO MIRCOELECTRICS TECHNOLOGY CO., LTD.

Effective date: 20130912

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 201203 PUDONG NEW AREA, SHANGHAI TO: 215613 SUZHOU, JIANGSU PROVINCE

TA01 Transfer of patent application right

Effective date of registration: 20130912

Address after: 215613, Shuanglong Village, Fenghuang Town, Suzhou, Jiangsu, Zhangjiagang

Applicant after: LEXVU OPTO MICROELECTRONICS TECHNOLOGY (SHANGHAI) Ltd.

Address before: 201203 Shanghai City, Pudong New Area Zhangjiang hi tech park long East Road No. 3000 Building No. 5 room 501B

Applicant before: LEXVU OPTO MICROELECTRONICS TECHNOLOGY (SHANGHAI) Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190507

Address after: 201203 501B, Building 5, 3000 Longdong Avenue, Pudong New Area, Shanghai

Patentee after: LEXVU OPTO MICROELECTRONICS TECHNOLOGY (SHANGHAI) Ltd.

Address before: 215613 Shuanglong Village, Fenghuang Town, Zhangjiagang City, Suzhou City, Jiangsu Province

Patentee before: LEXVU OPTO MICROELECTRONICS TECHNOLOGY (SHANGHAI) Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201202

Address after: 323000 Room 307, Block B, 268 Shiniu Road, Nanmingshan Street, Liandu District, Lishui City, Zhejiang Province

Patentee after: Zhejiang Core Microelectronics Co.,Ltd.

Address before: 201203 501B, Building 5, 3000 Longdong Avenue, Pudong New Area, Shanghai

Patentee before: Lexvu Opto Microelectronics Technology (Shanghai) Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230307

Address after: 201203 501b, building 5, No. 3000, Longdong Avenue, Pudong New Area, Shanghai

Patentee after: LEXVU OPTO MICROELECTRONICS TECHNOLOGY (SHANGHAI) Ltd.

Address before: 323000 room 307, block B, building 1, No.268 Shiniu Road, nanmingshan street, Liandu District, Lishui City, Zhejiang Province

Patentee before: Zhejiang Core Microelectronics Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230525

Address after: 323000 room 307, block B, building 1, No.268 Shiniu Road, nanmingshan street, Liandu District, Lishui City, Zhejiang Province

Patentee after: Zhejiang Core Microelectronics Co.,Ltd.

Address before: 201203 501b, building 5, No. 3000, Longdong Avenue, Pudong New Area, Shanghai

Patentee before: LEXVU OPTO MICROELECTRONICS TECHNOLOGY (SHANGHAI) Ltd.

PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: MEMS devices and their formation methods

Granted publication date: 20150304

Pledgee: Lishui Economic Development Zone Sub branch of Bank of China Ltd.

Pledgor: Zhejiang Core Microelectronics Co.,Ltd.

Registration number: Y2024980019317