CN102197580B - 功率转换装置 - Google Patents

功率转换装置 Download PDF

Info

Publication number
CN102197580B
CN102197580B CN2009801437198A CN200980143719A CN102197580B CN 102197580 B CN102197580 B CN 102197580B CN 2009801437198 A CN2009801437198 A CN 2009801437198A CN 200980143719 A CN200980143719 A CN 200980143719A CN 102197580 B CN102197580 B CN 102197580B
Authority
CN
China
Prior art keywords
voltage
command value
inverter
frequency
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009801437198A
Other languages
English (en)
Other versions
CN102197580A (zh
Inventor
河野雅树
畠中启太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN102197580A publication Critical patent/CN102197580A/zh
Application granted granted Critical
Publication of CN102197580B publication Critical patent/CN102197580B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

在具有整流器(2)和逆变器(4)的功率转换装置中,具有:电容器(3),存储直流电力;脉动检测部(8),检测逆变器(4)输出的有效功率的脉动;电压计测器(15),计测电容器(3)的电压;直流电压指令部(16),对应逆变器(4)输出的交流电压的频率求出电容器(3)的电压的指令值;以及直流电压控制部(17),输入电压计测器(15)计测的电压和直流电压指令部(16)求得的指令值,并控制整流器(2)以使电容器(3)的电压变为指令值,其中,在包含电容器(3)的电压进行脉动的频率的既定的范围内的情况下,直流电压指令部(16)使电容器(3)的电压高于通常。

Description

功率转换装置
技术领域
本发明涉及将直流电力转换为可变频率/可变电压的交流电力的功率转换装置,特别涉及具有整流器以及输入该整流器的直流输出电压并转换为可变频率/可变电压的交流的逆变器的交流-交流功率转换装置。
背景技术
用于电气铁道的车辆的PWM整流器,将架线与导轨之间的单相交流电源通过导电弓及变压器等后作为交流侧输入,进行交直转换以成为既定的直流电压。在PWM整流器的直流侧具有用于平滑电压的电容器。驱动感应电动机的逆变器连接于电容器。另外,通过电压检测器检测电容器的电压,检测出向逆变器的直流输入电压。在逆变器的交流输出侧设有电流检测器。
逆变器的输出频率基准,通过在加法器对感应电动机的旋转频率检测部件的输出即旋转频率和转差频率控制的输出即转差频率基准进行加法运算而生成。再有,依据电流检测器的输出电流检测值,被输入电流有效值运算部件,通过电流有效值运算部件计算电流有效值,与电流指令值一起提供给加法器,在转差频率控制部件求得转差频率基准。
通过电压检测器检测向逆变器的直流输入电压,在电压脉动成分检测部件仅抽出其脉动成分。另外,在电压直流成分检测部件输入向逆变器的直流输入电压,仅抽出其直流成分。在除法器中,通过将脉动成分除以直流成分而计算直流输入电压的脉动率,在乘法器中,通过与逆变器频率基准进行乘法运算而算出逆变器频率补正量。逆变器频率,通过在加法器将逆变器频率基准量与逆变器频率补正量进行加法运算而算出。该逆变器频率提供给电压控制部件,从PWM控制电路对逆变器提供PWM控制信号。(参照专利文献1的图1及其说明)
另一方面,在非专利文献1中,专利文献1相关的效果通过实验得到确认。另外,非专利文献1的图7中关于车辆用PWM整流器的直流电源脉动特性进行了记载。在非专利文献1所记载的内容中,关于直流电容器容量与拍频现象的抑制效果的关系(在非专利文献1中记载为逆变器输出电流的变动幅度依赖于拍频差率,该拍频差率表示为没有拍频时的数倍),记载有:为得到拍频差率为1.2倍以下这一抑制效果,将直流电压的脉动率(直流平均电压与直流脉动幅度的比率)设为10%以下。例如,记载有每8台电动机(输出约3000kW),必须将直流电容器容量设定为约30mF以上(每1台电动机为3750μF)。
专利文献1:日本专利公告第7-46918号公报(图1)
非专利文献1:1988年(昭和63年)日本电气学会全国大会论文集1039~1040页,No.845《脈動直流電源で駆動されるPWMインバ一タのビ一ト現象》(仲田、木村、棚町、筒井、中村)
发明内容
如上述,在专利文献1的功率转换装置中,通过将脉动成分除以直流成分计算直流输入电压的脉动率,再与逆变器频率基准进行乘法运算以算出逆变器频率补正量,从而对应直流输入电压的脉动来调整逆变器频率,由此变得能够减少电流的脉动或转矩脉动。
然而,在专利文献1的公开中,存在如下课题,即为了如非专利文献1所记载地得到既定的抑制拍频现象的效果,而受到以能够减小直流电压的脉动率的方式来决定电容器容量的大小这一制约。就是说,在交流电源频率的2倍的频率拍频现象变大,所以以在该频率上将直流电压的脉动成分设为10%以下的方式决定直流电容器容量。存在有这样的课题:电容器容量因为拍频现象变得最大的特定频点而变大。
本发明是考虑解决上述这样的问题点而完成的,目的包括:抑制功率转换装置的输出侧的电动机电流脉动和转矩脉动,还有,减小功率转换装置的直流电容器容量。
本发明所涉及的功率转换装置,其特征在于,具有:整流器,将来自交流电源的交流电力转换为直流电力;电容器,存储该整流器输出的直流电力;逆变器,将存储于该电容器的直流电力转换为交流电力;电压控制部,求出该逆变器输出的交流电压的指令值并控制所述逆变器以输出该指令值;电流计测器,计测所述逆变器输出的交流电流;脉动检测部,输入所述电压控制部求得的交流电压的指令值和所述电流计测器计测的交流电流并检测所述逆变器输出的有效功率的脉动;电压计测器,计测所述电容器的电压;直流电压指令部,对应所述逆变器输出的交流电压的频率,求出所述电容器的电压的指令值;以及直流电压控制部,输入所述电压计测器计测的电压和所述直流电压指令部求得的指令值,并控制所述整流器以使所述电容器的电压变为指令值,其中,在所述逆变器输出的交流电压的频率处于既定的范围内的情况下,所述直流电压指令部使所述电容器的电压的指令值高于通常,所述既定的范围包含所述电容器的电压进行脉动的频率,所述电压控制部,输入所述脉动检测部输出的脉动成分并求出所述逆变器输出的交流电压的指令值以抑制所述脉动成分。
本发明所涉及的功率转换装置,其特征在于,具有:整流器,将来自交流电源的交流电力转换为直流电力;电容器,存储该整流器输出的直流电力;逆变器,将存储于该电容器的直流电力转换为交流电力;电压控制部,求出该逆变器输出的交流电压的指令值并控制所述逆变器以输出该指令值;电流计测器,计测所述逆变器输出的交流电流;脉动检测部,输入所述电压控制部求得的交流电压的指令值和所述电流计测器计测的交流电流,并检测所述逆变器输出的有效功率的脉动;电压计测器,计测所述电容器的电压;直流电压指令部,对应所述逆变器输出的交流电压的频率,求出所述电容器的电压的指令值;以及直流电压控制部,输入所述电压计测器计测的电压和所述直流电压指令部求得的指令值,并控制所述整流器以使所述电容器的电压成为指令值,其中,在所述逆变器输出的交流电压的频率处于既定的范围内的情况下,所述直流电压指令部使所述电容器的电压的指令值高于通常,所述既定的范围包含所述电容器的电压进行脉动的频率,所述电压控制部,输入所述脉动检测部输出的脉动成分并求出所述逆变器输出的交流电压的指令值以抑制所述脉动成分,所以,具有如下效果,即通过检测并控制想要抑制的交流侧的脉动而能够简单地抑制输出侧的电动机电流和转矩脉动之外,还能够减小功率转换装置的电容器容量。
附图说明
图1是示出本发明实施方式1所涉及的功率转换装置的构成例的框图。
图2是说明本发明实施方式1所涉及的功率转换装置中的脉动检测部的构成的图。
图3是说明本发明实施方式1所涉及的功率转换装置中的带通滤波器的图。
图4是示出本发明实施方式1所涉及的功率转换装置中的带通滤波器的一个示例相关的在频率上的增益特性和相位特性的图。
图5是示出本发明实施方式1所涉及的功率转换装置中的直流电压指令部的图。
图6是说明本发明实施方式1所涉及的功率转换装置中的脉动检测部和直流电压指令部的工作的图。
图7是示出本发明实施方式1所涉及的功率转换装置的转矩脉动减小效果的图。图7(a)示出实施本实施方式1的情况的转矩波形,图7(b)示出未进行减少转矩脉动的控制的情况的转矩波形。
图8是示出本发明实施方式2所涉及的功率转换装置的构成例的框图。
图9是说明本发明实施方式2所涉及的功率转换装置中的脉动检测部的构成的图。
图10是示出本发明实施方式2所涉及的功率转换装置中的直流电压指令部的图。
图11是示出本发明实施方式3所涉及的功率转换装置的构成例的框图。
图12是示出本发明实施方式3所涉及的功率转换装置中的直流电压指令部的图。
图13是示出本发明实施方式4所涉及的功率转换装置的构成例的框图。
图14是示出本发明实施方式4所涉及的功率转换装置中的脉动检测部的图。
图15是示出本发明实施方式4所涉及的功率转换装置中的直流电压指令部的图。
图16是示出本发明实施方式4所涉及的构成逆变器的单支路中的开关元件的图。
图17是示出本发明实施方式4所涉及的构成逆变器的单支路中的开关元件的电压波形的图
附图标记说明
1:单相交流电源;2:整流器;3:电容器;4:逆变器;5:感应电机(交流旋转电机);6a:电流检测部;6b:电流检测部;6c:电流检测部;7:电压控制部;7A:电压控制部;8:脉动检测部;8A:脉动检测部;9a:乘法器;9b:乘法器;9c:乘法器;10:加法器;11:有效功率运算部;11A:有效功率运算部;12:带通滤波器;13:高通滤波器;14:低通滤波器;15:直流电压检测部;16:直流电压指令部;16A:直流电压指令部;16B:直流电压指令部;16C:直流电压指令部;17:直流电压控制部;18:绝对值器;18b:绝对值器;19:直流电压值设定表;19B:直流电压值设定表;20:相位运算部;21:三相/dq轴转换运算部;22a:乘法器;22b:乘法器;23:加法器;24:减法器;25:除法器;26:限幅器;27:乘法器;28:限幅器;29:限幅器;30:比较器;31:切换部;32:补正增益运算部;33:乘法器。
具体实施方式
实施方式1
图1是示出本发明实施方式1所涉及的功率转换装置的构成例的框图。功率转换装置具有:整流器2,将来自单相交流电源1的交流电力转换为直流电力;电容器3,存储通过整流器2整流的直流电力;逆变器4,将存储于电容器3的直流电力转换为任意频率的三相交流。逆变器4驱动交流旋转电机即感应电机5。整流器2从商用频率的交流电源1进行PWM(Pulse width modulation:脉冲宽度调制)控制而转换为直流电力。逆变器4在低速区进行可变电压可变频率(VVVF)控制,而在高速区进行恒定电压可变频率(CVVF)控制。
交流侧的电流计测器即电流检测部6a、6b、6c,检测流经感应电机5的相电流iu、iv、iw。图1中记载有将通过CT等检测流经连接逆变器4与感应电机5的接线的电流的部分作为交流侧的电流检测部6,但是,也可以使用其他公知手法,用母线电流等流经功率转换装置内部的电流来检测相电流。另外,因为iu+iv+iw=0的关系成立,也能够从u、v两相分量的检测电流求出w相的电流,所以也可以省略w相的电流检测部6c。
逆变器4输出的交流电压的大小,基于转矩电流指令值I q*、磁通量电流指令值I d*、交流旋转电机的旋转角频率ω,通过电压控制部7来决定。角频率ω可以采用将速度传感器安装于感应电机5而得到的速度信息,另外,在进行速度控制的系统中存在速度指令值ω*,所以也可以将速度指令值ω*作为角频率ω。再有,角频率ω还可以设为通过不安装速度传感器的无速度传感器控制而计算的速度估计值。
图2是说明本发明实施方式1所涉及的功率转换装置中的脉动(ripple)检测部8的构成的图。检测整流器2将交流转换为直流所伴随的脉动成分的脉动检测部8具有:有效功率运算部11,使用由电流检测部6检测出的相电流iu、iv、iw以及电压控制部7求得的逆变器4输出的电压指令值Vu*、Vv*、Vw*,用乘法器9a将Vu*与iu相乘、用乘法器9b将Vv*与iv相乘、用乘法器9c将Vw*与iw相乘,再用加法器10将各个值相加,从而算出逆变器4输出的有效功率P;以及带通滤波器12,抽出有效功率运算部11输出的有效功率P的脉动成分。再有,有效功率运算部11计算根据下式的有效功率P。
P=Vu*·iu+Vv*·iv+Vw*·iw    (1)
在有效功率运算部11的输出即有效功率P中会含有电动机电流的脉动成分,该电动机电流的脉动成分起因于整流器2将交流转换为直流所伴随的脉动成分。再有,也可以采用在旋转正交坐标中的值作为电压和电流来计算有效功率。
图2的带通滤波器12,只抽出包含于有效功率P的整流器2将交流转换为直流所伴随的脉动成分。交流电源1是商用频率的单相交流电源,在日本国内的单相交流电源的频率是60Hz或50Hz。因此,整流器2将交流转换为直流所伴随的脉动成分,会成为单相交流电源的频率的2倍即120Hz或100Hz。
在本实施方式中,作为一个示例,假定单相交流电源的频率为60Hz来构成带通滤波器12。图3示出说明带通滤波器的图。带通滤波器12组合高通滤波器(HPF)13和低通滤波器(LPF)14而成,其中,高通滤波器13使比对应于第1时间常数即时间常数T1的频率高的频率通过,而低通滤波器14使比对应于第2时间常数即时间常数T2的频率低的频率通过。高通滤波器的时间常数T1以及低通滤波器的时间常数T2,因为以120Hz为中心,所以设定为T1=60Hz以及T2=180Hz。就是说,将时间常数T1及T2设定为如(2)式及(3)式。
T1=1/(2π·60)            (2)
T2=1/(2π·180)           (3)
作为一个示例,以(2)式及(3)式的时间常数构成图3的带通滤波器12时的频率的增益特性及相位特性(一般称作博德曲线图),如图4所示。根据图4所示的特性,可知是使以120Hz为中心的频率几乎无衰减地通过的增益特性。因此,带通滤波器12,能够抽出整流器2将交流转换为直流所伴随的脉动成分即120Hz成分并输出脉动成分P_BEET。
返回图1,根据本发明的功率转换装置具有:直流电压指令部16,输入交流旋转电机的旋转角频率ω并输出相对于直流电压Vc的指令值Vc*,该直流电压Vc是通过整流器2充电的电容器3的电压,并且该直流电压Vc用电压计测器即直流电压检测部15计测;以及直流电压控制部17,控制整流器2以与指定值Vc*一致。直流电压指令部16,仅在逆变器4输出的角频率ω对转矩等的、由直流电压的脉动引起的影响较大的期间,增大直流电压。
通过响应本发明的逆变器4的状态来控制直流电压的大小,能够降低电容器3的容量,关于其理由的数学解析记载于下面。
整流器2的输入电流iA设为正弦波,整流器2的输入电源电压Vs和整流器2的输入电流iA分别能记载如下。
Vs = 2 · E · cos ( ωt + φ ) - - - ( 4 )
iA = 2 · I · cos ( ωt ) - - - ( 5 )
根据上式,整流器2的输入功率Pin能够用下式表示。
Pin=2·E·I·cos(ωt+φ)·cos(ωt)
=E·I·(cos(2ωt+φ)+cosφ)            (6)
在这里,(6)式中的常数项表示供给负载的功率,而以ω的2倍的角频率变动的正弦波成分为供给电容器3的脉动功率。在整流器2中能够将功率因数控制为1,所以cosφ=1.0。于是,常数项变为E·I。
如果设(6)式中的脉动功率成分为Pin~,则能够用下式表示。
Pin~=E·I·(cos(2ωt+φ)       (7)
另一方面,如果设电容器3的容量为C,设电容器3的电压为Vc,并假定在逆变器4侧不产生由电容器3的电压Vc的脉动所导致的影响,则下式成立。将电容器3的电压Vc称为直流电压。
【数学式1】
Pin ~ = d dt ( 1 2 · C · Vc 2 ) = Vc · C · d dt Vc - - - ( 8 )
将(7)式代入(8)式,对于直流电压Vc而言下面的微分方程式成立。
【数学式2】
Vc · C d dt Vc = E · I · cos ( 2 ωt + φ ) - - - ( 9 )
如果将直流电压的平均值Vcav作为初始值来求解(9)式的微分方程式,则解答如下。
【数学式3】
Vc = V cav 2 + E · I ωC sin ( 2 ωt + φ )
≅ V cav + E · I 2 ω CV cav sin ( 2 ωt + φ ) - - - ( 10 )
其中,在(10)式中,((E·I)/(2ωC·Vcav2))充分小于1而使用关于充分小于1的ε的
Figure GSB00000750694200095
的这一近似。
(10)式的第2项,表示直流电压Vc的脉动成分。可知脉动成分为电源频率的2倍的频率,其大小与电容器容量C、直流电压Vc的平均值成反比。再有,(E·I)为输入整流器2的功率,即使直流电压Vc发生变化也保持固定。
流经直流电容器的电流ic可根据下式得到。
【数学式4】
i c = C d dt V c = E · I V cav cos ( 2 ωt + φ ) - - - ( 11 )
如果通过(10)式算出在非专利文献1中使用的直流电压的脉动率δ,则会成为如下的(12)式。
【数学式5】
δ = E · I 2 ω CV cav V cav × 100 [ % ] - - - ( 12 )
= E · I 2 ωC ( V cav ) 2 × 100 [ % ]
根据(12)式,可知在((E·I)/2ωC)固定的情况下,如果增大直流电压Vc的平均值Vcav,则能够以二次方的反比例来减小脉动率。另外,根据(12)式能够想到:使脉动率相同时,如果增大直流电压Vc的平均值Vcav,则电容器容量C减小。(12)式示出:例如,通过使直流电压Vc的平均值Vcav从3000V到3600V上升20%,则脉动率为相同条件的电容器容量能够减小约3成(=30.6%)。
再有,虽然(10)式、(12)式是在直流电压Vc的脉动不影响逆变器4的输出侧这一假定下的理论式,但是即使在逆变器4的输出功率脉动的情况下,也几乎同样成立。
固定地提高直流电压,会增加构成逆变器4的开关元件的额定电压,从而还会使用开关元件的电压等级较高的元件,因此有成本变大的可能性。另外,在不提高开关元件的电压等级的情况下还以高于额定电压的电压使用开关元件,会缩短开关元件的寿命。考虑这些事项,设为仅在逆变器4输出对转矩等的、由直流电压的脉动引起的影响较大的角频率ω的期间,增大直流电压。
再有,以后会详细说明,在逆变器以单脉冲模式工作的情况下,与多脉冲模式的情况相比,即使将直流电压设为高于额定电压,对开关元件的影响也会变小。
图5是示出本发明实施方式1所涉及的功率转换装置中的直流电压指令部的图。直流电压指令部16,由转换为角频率ω的绝对值的绝对值器18和直流电压值设定表19构成。由于被输入的角频率ω带有正负号,所以为了对直流电压值设定表19进行简化,绝对值器18取角频率ω的绝对值以变成只有正值。在直流电压值设定表19中,以成为绝对值的角频率ω为横轴,而纵轴表示输出的直流电压指令值。直流电压值设定表19如图5所示,在电容器3的电压进行脉动即拍频现象(beat pheomenon)较大的包含交流电源频率的2倍(在此情况下设为120Hz,但根据交流电源也有100Hz等的情况)的频率的范围(在本实施方式中,115Hz以上125Hz以下的范围)内将直流电压设为上升到最大的3600V,在此之前的范围(60Hz以上115Hz以下的范围)内使直流电压徐徐上升,在此之后的范围(125Hz以上180Hz以下的范围)内徐徐减小。通过使直流电压徐徐上升且减少,能够减少提高直流电压这一事项给构成逆变器4的开关元件造成的负担。在本实施方式中,在既定的范围(60Hz以上180Hz以下的范围)内,提高直流电压。直流电压为最大的范围是115Hz以上125Hz以下的范围。
在直流电压值设定表19中,使直流电压高于通常的既定的范围决定为能够容许拍频差率(beat rate)β的范围内。在这里,非专利文献1中定义为根据下面的计算式。
β=(b-a)/a               (A)
这里,b为逆变器输出电流的变动幅度,a为逆变器输出电流在输出频率上的变动幅度。
使直流电压高于通常的既定的频率范围的上限值,有必要是能够容许直流电压值为通常值时的拍频差率的值。既定的频率范围的下限值也是同样。另外,使直流电压高于通常的频率范围,有必要设为能够容许在其频率的直流电压值的拍频差率的范围。如果将直流电压高于通常的频率范围取得较宽,就能够将拍频差率确实收入容许范围。再有,也可以根据拍频差率以外别的指标来决定既定范围。如果能将逆变器输出的有效功率的脉动成分抑制在能够容许的范围,怎样决定都可以。
考虑容许的拍频差率β、交流电源频率的2倍频率时的脉动率δ的目标值、直流电压的最大值与通常值的比等,适当地决定使直流电压高于通常的频率范围。如本实施方式,在设拍频差率β为1.2以下、交流电源频率的2倍频率时的脉动率为10%、直流电压的最大值与通常值的比为1.2的情况下,如前面所说明的,使直流电压为最大值的频率范围的幅度为10Hz已足够。
再有,直流电压值设定表19,以直流电压指令值Vc*不超过逆变器4的过电压设定值的方式设定表数据。另外,3600V这一使直流电压上升时的最大值,根据构成逆变器4的开关元件考虑额定电压或特性而设定。
直流电压控制部17被输入直流电压指令部16的输出即直流电压指令值Vc*和用直流电压检测部15检测出的直流电压Vc。直流电压控制部17求出直流电压指令值Vc*与直流电压Vc之差,并控制整流器2以使该差变为零。
对控制逆变器4输出的电压的电压控制部7的工作进行说明。首先,说明电压控制部7的工作所使用的感应电机的电动机常数定义如下。
Rs:电动机的一次电阻值
Ls:电动机的一次电感
M:电动机的互感
Lr:电动机的二次电感
Rr:电动机的二次电阻值
σ=1-M·M/Ls/Lr
在电压控制部7,用(13)式从转矩电流指令值Iq*、磁通量电流指令值Id*来计算转差角频率指令值ωs*
ωs*=(Iq*/Id*)·(Rr/Lr)          (13)
通过对转差角频率指令值ωs*和角频率ω与从脉动检测部8得到的脉动量P BEET乘上既定的系数Kf而得到的补正量F_BEET进行减法运算,计算相当于逆变器4的输出的电压的频率的逆变器角频率ωinv。就是说,逆变器角频率ωinv用(14)式来计算。
ωinv=ω+ωs*-F_BEET             (14)
F_BEET=Kf·P_BEET                (15)
这样,在本实施方式1中,基于从脉动检测部8得到的脉动成分来补正逆变器4输出的电压的频率。
能够用下面的(16)、(17)式从逆变器角频率ωinv、转矩电流指令值Iq*、磁通量电流指令值Id*来计算旋转二轴上的d轴电压指令值Vd*、q轴电压指令值Vq*
Vd*=Rs·Id*-ωinv·σ·Ls·Iq*  (16)
Vq*=Rs·Iq*+ωinv·Ls·Id*      (17)
另外,正如众所周知的,在将三相电压或三相电流向旋转正交二轴进行坐标转换时,会需要控制坐标轴。将旋转二轴坐标即控制坐标轴的相位基于角频率ω而设为θ。该相位θ,用(18)式通过对逆变器角频率ωinv积分可得。
【数学式6】
θ=∫ωinv·dt                  (18)
电压指令值的电压相位θv,比相位θ前进少许,所以从下面的(19)式算出。
θv=θ+tan-1(Vd*/Vq*)           (19)
三相电压指令值Vu*、Vv*、Vw*用(20)式从用(19)式得到的电压相位θv和d轴电压指令值Vd*、q轴电压指令值Vq*算出。
【数学式7】
Vu * Vv * Vw * = ( Vd * ) 2 + ( Vq * ) 2 cos ( θv ) cos ( θv - 2 3 π ) cos ( θv + 2 3 π ) - - - ( 20 )
逆变器4,基于用(20)式得到的得自电压控制部7的三相电压指令值Vu*、Vv*、Vw*,将直流转换为交流。
基于从脉动检测部8得到的脉动成分,逆变器4输出的电压的频率得到补正,所以变得能够抑制逆变器4的输出侧的电动机电流及转矩的脉动。图6示出说明脉动检测部和直流电压指令部的工作的图。图6中,设Kf=1。与逆变器4的输出侧的电动机电流及转矩的脉动同步的从脉动检测器8得到的脉动成分P_BEET如果为正,则调整成减小逆变器角频率ωinv,电压控制部7输出的三相电压指令值Vu*、Vv*、Vw*的频率会变小。反过来,从脉动检测器8得到的脉动成分P_BEET如果为负,则调整成增加逆变器角频率ωinv,电压控制部7输出的三相电压指令值Vu*、Vv*、Vw*的频率会变大。由此,能够对应逆变器4的输出侧的电动机电流及转矩的脉动来进行控制,从而能够抑制逆变器4的输出侧的电动机电流及转矩的脉动。
图7是示出本发明实施方式1所涉及的功率转换装置的转矩脉动减小效果的图。图7(a)示出实施了本实施方式1的情况的转矩波形,而图7(b)示出未进行减少转矩脉动的控制的情况的转矩波形。图7示出直流电压为3600V并设逆变器频率为115Hz时的模拟的转矩波形。在未进行减少转矩脉动的控制的情况的图7(b)中,转矩波形以单相电源频率2倍的120Hz进行脉动。与此相对,在实施了本实施方式1的图7(a)中,能够确认在转矩波形中几乎没有脉动。
由上述,通过实施本实施方式1,将整流器使交流转换为直流所伴随的脉动造成的影响设为逆变器的有效功率包含的脉动成分并进行检测,补正逆变器输出的电压的频率,从而能够获得抑制转矩脉动等的效果。
另外,通过仅在逆变器输出拍频现象变大的频率的期间增大直流电压,能够减小为将拍频现象抑制在能够容许的范围所需的电容器容量。因此,能够实现功率转换装置的小型化、低成本化。
以上内容在其他实施方式中也适用。
实施方式2
图8是示出实施方式2所涉及的功率转换装置涉及的功率转换装置的构成例的框图。图9是说明本发明实施方式2所涉及的功率转换装置中的脉动检测部的构成的图。在本实施方式2中,脉动检测部8A、电压控制部7A、直流电压指令部16A与实施方式1的情况相比不同。在实施方式1中,从三相电压指令值和三相电流计算有效功率,从该有效功率检测出脉动成分,根据该脉动成分对频率进行补正。在本实施方式2中,在脉动检测部8A从dq轴电压指令值和dq轴电流计算有效功率,电压控制部7A对应该有效功率的脉动成分补正电压指令值的振幅。另外,直流电压指令部16A进行工作,以对应该计算出的有效功率的值而操作直流电压,在有效功率P较小且处于能够容许拍频现象的范围内的情况下将直流电压设为通常的值。再有,其他的构成与实施方式1相同,附图也以同一标记表示,在这里仅说明不同的部分。
在本实施方式2中,如图9所示,检测整流器2将交流转换为直流所伴随的脉动成分的脉动检测部8A,具有相位运算部20、三相/dq轴转换运算部21、有效功率运算部11A。相位运算部20,以角频率ω为输入,将如后述计算的ωinv进行如(18)式所示的积分而计算相位θ。三相/dq轴转换运算部21,用相位θ并从用电流检测部6检测出的相电流iu、iv、iw来计算dq轴电流Id、Iq。
有效功率运算部11A,使用通过三相/dq轴转换运算部21计算的dq轴电流Id及Iq和通过电压控制部7A计算的dq轴电压指令值Vd*及Vq*,以下式计算有效功率P。
P=Vd*·Id+Vq*·Iq           (21)
为进行(21)式的计算,有效功率运算部11A具有乘法器22a、22b和加法器23。用乘法器22a将Vd*和Id相乘,用乘法器22b将Vq*和Iq相乘,用加法器23将各个乘积值相加,并将加法器23的输出作为有效功率P输出。
再有,在有效功率运算部11A的输出即有效功率P中,会含有整流器2将交流转换为直流所伴随的脉动成分引起的电动机电流的脉动及转矩脉动成分。
用有效功率运算部11A计算的有效功率P输入带通滤波器12,带通滤波器的输出P_BEET输入电压控制部7A。
另外,减法器24,从有效功率运算部11A的输出中减去带通滤波器的输出P_BEET,并将减法器24的输出作为不含有脉动成分的有效功率P而输出到直流电压指令部16A。
在电压控制部7A,使用感应电机的电动机常数并根据转矩电流指令值Iq*、磁通量电流指令值Id*来计算转差角频率指令值ωs*。就是说,转差角频率指令值ωs*,与实施方式1同样地用(13)式计算。
将转差角频率指令值ωs*与角频率ω进行加法运算,计算与逆变器4输出的电压的频率相当的逆变器角频率ωinv。就是说,逆变器角频率ωinv用下示的(22)式计算。
ωinv=ω+ωs*                       (22)
能够从逆变器角频率ωinv、转矩电流指令值Iq*、磁通量电流指令值Id*,计算旋转二轴上的d轴电压指令值Vd*、q轴电压指令值Vq*。就是说,d轴电压指令值Vd*、q轴电压指令值Vq*,与实施方式1同样地用(16)、(17)式计算。电压指令值的电压相位θv,比相位θ前进少许,所以与实施方式1同样地从(19)式算出。
三相电压指令值Vu*、Vv*、Vw*,用(23)式根据用(19)式得到的电压相位θv和d轴电压指令值Vd*、q轴电压指令值Vq*算出。将三相电压指令值的振幅减小使有效功率的脉动成分P_BEET乘上既定的系数Kv而得到的V_BEET。
【数学式8】
Vu * Vv * Vw * = ( Vd * ) 2 + ( Vq * ) 2 - V _ BEET cos ( θv ) cos ( θv - 2 3 π ) cos ( θv + 2 3 π ) - - - ( 23 )
V_BEET=Kv·P_BEET                 (24)
根据(23)式,与逆变器4的输出侧的电动机电流及转矩的脉动同步的从脉动检测器8A得到的脉动成分P_BEET如果为正,则电压控制部7A输出的三相电压指令值Vu*、Vv*、Vw*的振幅会变小。反过来,从脉动检测器8A得到的脉动成分P_BEET如果为负,则电压控制部7A输出的三相电压指令值Vu*、Vv*、Vw*的振幅会变大。由此,能够抑制逆变器4的输出侧的电动机电流及转矩的脉动。
再有,本实施方式中补正电压指令值的振幅,所以即使在恒定电压可变频率(CVVF)控制的频域中,也不能将直流电压设为最大值,而需要将其设为比最大值减小为抑制脉动所需的控制量的分量。
对直流电压指令部16A,输入脉动检测部8A的输出即除去了脉动的有效功率P和角频率ω。直流电压指令部16A的绝对值器18、直流电压值设定表19,与实施方式1的情况相同。本实施方式2的直流电压指令部16A以此为目的:通过与实施方式1相比进一步限定使直流电压上升的期间,还根据有效功率使提升电压的幅度发生变化,从而减轻构成逆变器4的开关元件的负担。本实施方式基于如下内容:拍频现象根据电动机产生的功率或转矩而变化,即,在相同速度下功率越大拍频现象越明显。反过来说,在功率较小的情况下,直流电压即使为额定电压也会处于脉动率能够容许的范围内。在非专利文献1的图7中,也示出在电压固定的情况下整流器的输出越大脉动率就变得越大。
直流电压指令部16A的绝对值器18b,以带有正负号的有效功率P作为输入,取其绝对值,作为有效功率值P1输出。除法器25将P1除以既定值(例如,最大功率),输出系数Kp。设为:通过限幅器26,系数Kp一定成为0≤Kp≤1。乘法器27,进行该限幅器26的输出值与直流电压值设定表19的输出值的乘法运算。由此,直流电压指令值Vc*成为考虑有效功率后的值。乘法器27当计算的值为零等较小的值时会变为0V等较小的值,因此,限幅器28进行限幅处理以使直流电压指令值Vc*处于3000V以上3600V以下的范围。
根据(12)式,脉动率与逆变器输出的有效功率成正比而与直流电压的平方成反比,所以如果使系数Kp与有效功率的平方根成正比,则在有效功率较大的情况下,脉动率不取决于有效功率而基本相同。
再有,在本实施方式中,设为如果有效功率变大则直流电压指令值变大,但在有效功率以外采用如下设定也能够期待同样的效果,即如果电流值或转矩指令值、或者转矩电流指令值、转矩电流值等变大,则直流电压指令值变大。这一点在以下的实施方式中也同样。
由上述,通过实施本实施方式2,将整流器使交流转换为直流所伴随的脉动造成的影响设为逆变器的有效功率包含的脉动成分并进行检测,补正逆变器输出的电压的振幅,从而,能够获得抑制转矩脉动等的效果。另外,通过在有效功率小于既定值的情况下将直流电压设为通常值,而在有效功率大于既定值的情况下设为有效功率变大则直流电压值变大,从而在减小电容器容量之上,还具有能减轻构成逆变器的开关元件的负担的效果。因此,能够获得能实现功率转换装置的小型化、低成本化的效果。
实施方式3
图11是示出实施方式3所涉及的功率转换装置的构成例的框图。本实施方式3,只有直流电压指令部16B与实施方式2不同。在本实施方式3中,将对应所计算的有效功率的值而操作直流电压的条件进一步限定为有效功率为正值的情况下,直流电压值设定表19进行工作。就是说,将使直流电压上升限定于仅在功率操作(power operation)时,而再生(regeneration operation)时将直流电压固定为额定值3000V。在本实施方式中,以下述为目的而构成本实施方式,即与功率操作时相比再生时拍频现象较少,以及再生时从节能的观点出发则使能量尽可能返回交流电源的方式能实现节能。再有,其他构成与实施方式2相同,附图也以相同标记来表示,在此仅说明不同的部分。
图12是示出本发明实施方式3所涉及的功率转换装置中的直流电压指令部的图。与实施方式2的情形即图10相比,追加限幅器29、比较器30、切换部31。
如果有效功率P大于0即功率操作时,则比较器30输出信号1,以使切换部31变成A设定。另外,如果P为0以下即为惰力运转(coasting)或再生时,则比较器30输出信号0,以使切换部31变成B设定。
连接于切换部31的B触点的限幅器29,再生时为将直流电压固定为额定值3000V,进行3000V以上3000V以下的限幅处理以成为3000V。
再有,切换切换部31的A、B设定的信号,不限于有效功率,使用转矩指令或功率操作指令或者再生(制动)指令也能得到同样的效果。
在本实施方式中,直流电压指令部16B具有比较器30、限幅器29、切换部31,从而,能够将使直流电压上升限定为仅在功率操作时,而再生时将直流电压固定为额定值3000V。由此,通过对使直流电压上升的条件进行限定,有能够减轻构成逆变器4的开关元件的负担的效果。功率操作时,在有效功率较小的情况下将直流电压保持为通常的值;在有效功率较大的情况下,对应有效功率而改变直流电压的上升幅度,即使不考虑有效功率而在功率操作时使电压上升,关于再生时不让直流电压上升这一事项也能够得到同样的效果。
实施方式4
图13是示出实施方式4所涉及的功率转换装置的构成例的框图。图14是说明本发明实施方式4所涉及的功率转换装置中的脉动检测部的构成的图。在本实施方式4中,脉动检测部8B、直流电压指令部16C与实施方式2的情况相比不同。
脉动检测部8B,与实施方式2同样地用三相/dq轴转换部21、相位运算部20、有效功率运算部11A、带通滤波器12构成之外,还具有:补正增益运算部32,以角频率ω为输入并计算补正增益k;以及乘法器33,将补正增益运算部32的输出即补正增益k与带通滤波器12的输出值进行乘法运算。
该补正增益k,设为随角频率ω而变化,可以用表数据设定,也可以用函数给出。特别要设定为:例如在120Hz的脉动频率成分之前补正增益为最大。另外,如果将该补正增益置零则不补正,补正增益相对于角频率ω发生改变,从而,具有如下效果:能够对应角频率ω来变更是否补正以及补正的情况下进行怎样程度的补正。
图15是示出本发明实施方式4所涉及的功率转换装置中的直流电压指令部16C的图。直流电压指令部16C,用转换为角频率ω的绝对值的绝对值器18和直流电压值设定表19B构成。由于被输入的角频率ω带有正负号,所以为了对直流电压值设定表19B进行简化,绝对值器18转换为角频率ω的绝对值以变为只有正值。图中,以已取绝对值的角频率ω为横轴,纵轴表示输出的直流电压指令值。直流电压值设定表19B,如图15所示,在拍频现象较大的包含交流电源频率2倍(在此情况下设为120Hz,但根据交流电源也有100Hz等的情况)的频率的既定的范围(在本实施方式中,105Hz以上的范围)内使直流电压为最大时的电压设为3300V,在此以前的范围内使直流电压徐徐上升。通过在120Hz以上仍继续将电压升高,还有能够无需减小直流电压的工作的效果,而通过将电压升高能够减小流经电动机的电动机电流,所以还有在120Hz以上的高速区能够减少损失的效果。
逆变器4的输出电压即电动机电压Vm,在逆变器4的频率ω处于大于0且未满既定的角频率(ω1)的范围(即,0<ω<ω1的范围)时,被控制为Vm/ω基本固定。如果电动机电压Vm达到由下式所表示的最大值,则逆变器4已经不能进行电压振幅控制。成为该最大值时的角频率为ω1。ω1通常小于交流电源频率的2倍所对应的角频率。在角频率ω处于ω>ω1的范围时,电动机电压Vm在该最大值处固定,只有频率发生变化。
Vm = ( ( 6 ) / π ) · Vc - - - ( 25 )
以这样的电动机电压Vm的模式来控制的感应电机的最大转矩Tmax的特性,在高速(ω>ω1)区域会成为以下关系。
Tmax ∝(Vc/ω)2              (26)
在使直流电压Vc固定时,最大转矩Tmax与角频率ω的平方成反比。从而,特别在高速区转矩的减小变得显著,在高速区难以得到足够的转矩。
接下来,对即使不提高构成逆变器4的开关元件的耐压,在高速(ω>ω1)区域也能增大直流电压Vc的情况进行说明。
作为构成逆变器4的开关元件,使用具有自消弧功能的IGBT(insulated gate bipolar transistor)。
图16所示的IGBT元件在使电流I截止时的元件的集电极一发射极间电压波形Vce的峰值Vp,按经验用下式表示。
Vp = Vc + I · ( L / C ) - - - ( 27 )
再有,L为IGBT的寄生电感的电感值,C为IGBT的寄生电容的寄生容量。
不过,在实际的运转状态下IGBT截止的电流值,单脉冲模式一方与多脉冲(非同步)模式相比较小。IGBT在脉动的峰值使电流截止。如果将流经电动机的电动机电流的基波有效值设为Im,则多脉冲(非同步)模式下的IGBT截止的电流的最大值Ip,虽然因感应电机的电动机常数或逆变器4输出的电压的调制度、逆变器4与感应电机的布线的长度等而存在少许差异,但按经验可表示如下。再有,下述的系数1.5,通常为1.3~1.5左右的值,在这里使用上限值即1.5。
Ip = 1.5 · 2 · Im - - - ( 28 )
另一方面,在单脉冲模式中,IGBT元件在电动机电流波形的一个周期中仅使电流截止一次。此时截止的电流Iq,如果将电动机电流的基波有效值设为Im,则相对于基波有效值Im,电流值IQ按经验表示如下。
Iq = 0.7 · 2 · Im - - - ( 29 )
在(28)式和(29)式中,Im如果假定为不随脉冲模式而变化,则下式成立。
Ip≈2.1·Iq                     (30)
如果转移为单脉冲模式,则(27)式中的过充电成分
Figure GSB00000750694200223
会变小,因此,即使这种情况下使直流电压Vc上升,IGBT集电极一发射极间电压的峰值Vp也不会变大。
IGBT的寄生电感的电感值L为3.0μH左右,寄生电容的寄生容量C为1.5~3.0μF左右。如果设L=3.0μH、C=1.5μF,则(27)式中的
Figure GSB00000750694200224
变为
Figure GSB00000750694200225
如果IGBT截止的电流I为200A以下,则即使设直流电压Vc=3300V,用(27)式计算的Vp也不会超过3600V(能够施加于IGBT的电压的最大值)。特别是如果Ip为100A左右,则Vp会为3450V左右,能够进一步缩小对IGBT元件的影响。再有,3600V、3300V为一个例子,要考虑开关元件的特性或使用条件等进行设定。
根据(30)式,在Iq=120A的情况下,会有Ip≈257A。设Vc=3300V时,根据(27)式,如果I=120A则Vp≈3470V。如果I=257A,则Vp≈3660V。就是说,存在电动机电流为基波有效值Im的区域,在该区域,如果是单脉冲模式的高速区,则将IGBT的集电极一发射极间电压的峰值Vp抑制在3600V以下;但如果是多脉冲模式,则Vp超过3600V。像这样在区域中存在Im的情况下,在低速区已设为通常值,即使在发生拍频现象的速度区以上增大电压的情况下,也不必提高构成逆变器4的开关元件的耐压。就是说,如果在全速度区使直流电压上升,则需要提高开关元件的耐压,但是,低速区已使直流电压为通常值,而即使在发生拍频现象的速度区以上增大直流电压也不必提高开关元件的耐压,从而,逆变器4的成本能够实现保持原样。
由上述,通过实施本实施方式4,将整流器使交流转换为直流所伴随的脉动造成的影响设为逆变器的有效功率包含的脉动成分并进行检测,补正逆变器输出的电压的振幅,从而能够获得抑制转矩脉动等的效果。
另外,通过在逆变器输出拍频现象变大的频率的期间增大直流电压,能够减小为将拍频现象抑制在能够容许的范围所需的电容器容量。因此,能够获得使功率转换装置能实现小型化、低成本化的效果。进而,在以单脉冲模式工作的频率提高直流电压Vc,从而,不增加开关元件的负担而能够减低损失并输出较大的转矩。
在这里,设直流电压Vc的指令值的最大值为3300V,但是,也可以设为:在含有直流电压Vc进行脉动的频率的既定的范围,在60Hz电源的情况下,例如从85Hz起徐徐增加,从115Hz到125Hz设为3600V,125Hz以上徐徐减小,140Hz以上为3300V。在逆变器以单脉冲模式工作的频率,将直流电压Vc的指令值设为高于通常并且不给开关元件增加负担的范围内的电压,从而,能够降低损失,能够获得输出较大的转矩这一效果。在这里,将直流电压Vc的指令值的高于通常并且不给开关元件增加负担的范围的上限的电压值(例如,3300V),称为单脉冲模式电压上限值。单脉冲模式电压上限值设定为:在假定的使用条件下,施加于开关元件的电压不会超过最大值。如果在逆变器以单脉冲模式工作的频率,将直流电压Vc的指令值设为高于通常并且在单脉冲模式电压上限值以下,则电压值相对于频率的变化发生变动也可以。指令值也可以暂时为通常电压。
再有,在上述各实施方式中,作为连接于逆变器4的负载示出了交流旋转电机(感应电机)的情况,但是作为交流旋转电机并不限于感应电机。另外,并不限于交流旋转电机,适用于例如控制线性感应电动机、线性同步电动机或螺线管等的电磁致动器的其他负载的情况,也能够期待同样的效果。
产业上的可利用性
本发明涉及以将交流电源用整流器整流而得的直流作为电源且可变速驱动交流电动机的逆变器,特别是在整流脉动会变大的交流电源为单相的交流轨道的铁道的电气车辆上利用。在以单相受电的家电制品中,也能适用于向例如空调、冰箱、洗衣机等的用逆变器控制电动机的设备的使用。

Claims (1)

1.一种功率转换装置,其特征在于,包括:
整流器,将来自交流电源的交流电力转换为直流电力;
电容器,存储该整流器输出的直流电力;
逆变器,将存储于该电容器的直流电力转换为交流电力;
电压控制部,求出该逆变器输出的交流电压的指令值并控制所述逆变器以使所述交流电压成为该指令值;
电流计测器,计测所述逆变器输出的交流电流;
脉动检测部,输入所述电压控制部求得的交流电压的指令值和所述电流计测器计测的交流电流,并检测所述逆变器输出的有效功率的脉动;
电压计测器,计测所述电容器的电压;
直流电压指令部,对应所述逆变器输出的交流电压的频率,求出所述电容器的电压的指令值;以及
直流电压控制部,输入所述电压计测器计测的电压和所述直流电压指令部求得的指令值,并控制所述整流器以使所述电容器的电压成为指令值,
在所述逆变器输出的交流电压的频率处于既定的频率范围内的情况下,所述直流电压指令部使所述电容器的电压的所述指令值高于通常的值,所述既定的频率范围包含所述电容器的电压进行脉动的频率;
所述电压控制部,输入所述脉动检测部输出的脉动成分,并求出所述逆变器输出的交流电压的指令值以抑制所述脉动成分。
2. 如权利要求1所述的功率转换装置,其特征在于,所述既定的频率范围设为能够容许所述脉动成分的范围。
3. 如权利要求1所述的功率转换装置,其特征在于,所述直流电压指令部,在所述逆变器以单脉冲模式工作的频率的范围的至少一部分,将所述电容器的电压的所述指令值设为高于所述通常的值并且在不增加给所述逆变器具有的开关元件的负担的范围的上限的电压值以下。
4. 如权利要求1或权利要求2所述的功率转换装置,其特征在于,所述直流电压指令部,在所述逆变器输出的有效功率的绝对值为既定值以下的情况下,使所述电容器的电压的所述指令值为所述通常的值。
5. 如权利要求1或权利要求2所述的功率转换装置,其特征在于,所述直流电压指令部,在所述逆变器输出的有效功率为负的情况下,使所述电容器的电压的所述指令值为所述通常的值。
6. 如权利要求1至权利要求3中的任一项所述的功率转换装置,其特征在于:
所述直流电压指令部,具有直流电压值设定表,该直流电压值设定表基于所述逆变器输出的交流电压的频率求出所述电容器的电压的所述指令值;并且
在所述既定的频率范围内存在使所述指令值为最大的范围,在频率比该使所述指令值为最大的范围低的一侧的所述既定的频率范围内,所述指令值相对于频率的增加而增加。
7. 如权利要求6所述的功率转换装置,其特征在于,在频率比使所述指令值为最大的范围高的一侧的所述既定的频率范围内,所述指令值相对于频率的增加而减少。
8. 如权利要求1至权利要求3中的任一项所述的功率转换装置,其特征在于,所述脉动检测部具有:
有效功率运算部,求出所述逆变器输出的有效功率;以及
带通滤波器,从所述有效功率运算部的输出检测出脉动。
9. 如权利要求8所述的功率转换装置,其特征在于,所述有效功率运算部,对所述电流计测器计测的三相的交流电流与所述电压控制部求得的交流电压的三相的指令值的每一个相乘的结果取和,求出有效功率。
10. 如权利要求8所述的功率转换装置,其特征在于,所述有效功率运算部,对将所述电流计测器计测的三相的交流电流转换为在旋转正交坐标系中的值后所得的值,与在旋转正交坐标系中的所述电压控制部求得的交流电压的指令值分别相乘的结果取和,求出有效功率。
11. 如权利要求8所述的功率转换装置,其特征在于,所述带通滤波器串联连接:
高通滤波器,具有与通过带域的下限相关的第一时间常数的第一一阶延迟滤波器和从所述第一一阶延迟滤波器的输入减去所述第一一阶延迟滤波器的输出的减法器;以及
低通滤波器,具有与通过带域的上限相关的第二时间常数的第二一阶延迟滤波器。
12. 如权利要求8所述的功率转换装置,其特征在于:
所述脉动检测部,具有:
补正增益运算部,计算补正增益;以及
乘法器,将所述带通滤波器的输出与所述补正增益运算部输出的所述补正增益进行乘法运算,
所述乘法器的输出成为所述脉动检测部的输出。
13. 如权利要求12所述的功率转换装置,其特征在于,所述补正增益运算部输出的所述补正增益,根据所述逆变器输出的交流电压的频率而变化。
14. 如权利要求1至权利要求3中的任一项所述的功率转换装置,其特征在于,所述电压控制部,对应所述脉动成分控制所述逆变器输出的交流电压的频率的指令值。
15. 如权利要求1至权利要求3中的任一项所述的功率转换装置,其特征在于,所述电压控制部,对应所述脉动成分控制所述逆变器输出的交流电压的振幅的指令值。
CN2009801437198A 2008-10-31 2009-05-28 功率转换装置 Expired - Fee Related CN102197580B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2008/003132 WO2010049976A1 (ja) 2008-10-31 2008-10-31 電力変換装置
JPPCT/JP2008/003132 2008-10-31
PCT/JP2009/002349 WO2010050086A1 (ja) 2008-10-31 2009-05-28 電力変換装置

Publications (2)

Publication Number Publication Date
CN102197580A CN102197580A (zh) 2011-09-21
CN102197580B true CN102197580B (zh) 2013-11-20

Family

ID=42128355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801437198A Expired - Fee Related CN102197580B (zh) 2008-10-31 2009-05-28 功率转换装置

Country Status (10)

Country Link
US (1) US8542502B2 (zh)
EP (1) EP2346151A4 (zh)
JP (1) JP4433099B1 (zh)
KR (1) KR101175030B1 (zh)
CN (1) CN102197580B (zh)
AU (1) AU2009309187B9 (zh)
HK (1) HK1159334A1 (zh)
MX (1) MX2011004387A (zh)
RU (1) RU2462806C1 (zh)
WO (2) WO2010049976A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897909B2 (ja) * 2010-07-15 2012-03-14 ファナック株式会社 すべり周波数補正機能を有するセンサレス誘導モータの制御装置
JP5597474B2 (ja) * 2010-08-06 2014-10-01 株式会社東芝 車両用補助電源装置
KR101140392B1 (ko) * 2011-02-24 2012-05-03 강원대학교산학협력단 인버터의 입력전압 산출 방법 및 장치
JP5702195B2 (ja) * 2011-03-11 2015-04-15 東芝機械株式会社 インバータ発電装置
US20120065806A1 (en) * 2011-05-06 2012-03-15 General Electric Company Method for measuring energy usage in an appliance
CN102931896B (zh) * 2012-05-31 2016-04-20 同济大学 一种车用无刷直流电机母线限流控制方法及装置
JP5527386B2 (ja) * 2012-11-08 2014-06-18 株式会社安川電機 電流形電力変換装置
EP2922190B1 (en) * 2012-11-14 2020-02-19 Posco Energy Co. Ltd. Apparatus for compensating for ripple and offset of inverter, and method therefor
CN105027424B (zh) * 2013-03-29 2017-09-12 爱信艾达株式会社 旋转电机驱动装置
DE102013209185A1 (de) 2013-05-17 2014-11-20 Robert Bosch Gmbh Verfahren und Schaltung zur verbesserten Nutzung einer Kapazität in einem Zwischenkreis
JP2015056013A (ja) * 2013-09-11 2015-03-23 株式会社リコー 画像処理装置
US10054641B2 (en) 2013-09-20 2018-08-21 Schweitzer Engineering Laboratories, Inc. Monitoring synchronization of a motor using stator current measurements
KR101800644B1 (ko) * 2013-11-08 2017-11-23 엘지전자 주식회사 모터 구동장치 및 이를 구비하는 세탁물 처리기기
CN103780068B (zh) * 2014-01-15 2016-07-27 南京航空航天大学 两级式单相逆变器输入二次谐波电流的抑制方法
JP5784163B2 (ja) * 2014-03-05 2015-09-24 株式会社東芝 車両用補助電源装置
DE102014226272A1 (de) 2014-12-17 2016-06-23 Carl Zeiss Smt Gmbh Spiegel-Einrichtung
DE102015110460B4 (de) * 2015-06-30 2017-01-19 Schmidhauser Ag Erkennung eines Netzphasenausfalls bei Umrichtern mit einer Frequenzdetektion in der Zwischenkreisspannung
TWI641205B (zh) 2015-09-30 2018-11-11 財團法人工業技術研究院 漣波補償控制方法與應用此漣波補償控制之電能轉換裝置
JP6651795B2 (ja) * 2015-11-06 2020-02-19 住友電気工業株式会社 力率改善装置、双方向ac/dc変換装置及びコンピュータプログラム
CN105322770B (zh) * 2015-11-20 2017-08-04 湖南大学 直流微电网双向储能变换器的二次纹波电流抑制方法
ITUA20162878A1 (it) * 2016-04-26 2017-10-26 Phase Motion Control S P A Dispositivo di alimentazione e azionamento per un motore elettrico a magneti permanenti
US11588432B2 (en) 2017-11-17 2023-02-21 Schweitzer Engineering Laboratories, Inc. Motor monitoring and protection using residual voltage
CN111512541A (zh) * 2017-12-22 2020-08-07 东芝三菱电机产业系统株式会社 电动机驱动装置
RU2706110C1 (ru) * 2018-08-31 2019-11-14 Владимир Яковлевич Завьялов Устройство питания для электроприборов
CN112997395B (zh) * 2018-11-14 2024-01-02 东芝三菱电机产业系统株式会社 电力转换装置
US11309807B2 (en) * 2019-01-11 2022-04-19 Mitsubishi Electric Corporation Power conversion system and power conversion device
CN110474362B (zh) * 2019-07-11 2023-08-25 广东明阳龙源电力电子有限公司 一种用于高压大容量变频器的低压穿越控制方法及系统
JP7143272B2 (ja) * 2019-12-24 2022-09-28 ツインバード工業株式会社 フリーピストン型スターリング冷凍機
US11736051B2 (en) 2021-08-05 2023-08-22 Schweitzer Engineering Laboratories, Inc. Synchronous motor startup configuration to synchronous mode at a field zero-crossing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2907030Y (zh) * 2006-05-31 2007-05-30 张淼 具有无功功率补偿的低谐波变频调速器
CN101040427A (zh) * 2004-10-04 2007-09-19 大金工业株式会社 功率转换装置
CN101127490A (zh) * 2006-03-21 2008-02-20 上海恒精机电设备有限公司 一种大功率晶体管变频电源

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61248881A (ja) * 1985-04-22 1986-11-06 三菱電機株式会社 エレベ−タの制御装置
JPH0746918B2 (ja) 1987-06-03 1995-05-17 株式会社日立製作所 電力変換装置
JP2796340B2 (ja) * 1989-03-29 1998-09-10 株式会社日立製作所 直流電圧脈動補正電源装置および電動機制御装置
JPH03128691A (ja) * 1989-07-27 1991-05-31 Seiko Epson Corp 電圧形pwmコンバータ・インバータシステムとその制御方式
JP3265398B2 (ja) * 1992-01-30 2002-03-11 株式会社日立製作所 直流送電装置の制御装置
JP3404826B2 (ja) * 1993-10-14 2003-05-12 株式会社日立製作所 モータ制御装置
JP2576288B2 (ja) 1994-07-07 1997-01-29 井関農機株式会社 苗植機における苗供給装置
JP3311214B2 (ja) * 1995-09-05 2002-08-05 東京電力株式会社 電力変換装置の制御装置
JP3232431B2 (ja) * 1995-09-08 2001-11-26 株式会社日立製作所 電力変換装置
CN100438320C (zh) * 1997-10-31 2008-11-26 株式会社日立制作所 电源转换设备
CN1334985A (zh) * 1999-11-29 2002-02-06 三菱电机株式会社 逆变器控制装置
JP4003414B2 (ja) * 2001-06-29 2007-11-07 株式会社日立製作所 永久磁石式発電機を用いた発電装置
JP2002252994A (ja) * 2001-11-05 2002-09-06 Hitachi Ltd モータ制御装置
JP3534110B2 (ja) * 2002-11-29 2004-06-07 株式会社日立製作所 モータ制御装置
JP4488415B2 (ja) * 2004-07-21 2010-06-23 東芝三菱電機産業システム株式会社 電力変換装置
JP5121200B2 (ja) * 2006-09-26 2013-01-16 株式会社東芝 永久磁石電動機の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101040427A (zh) * 2004-10-04 2007-09-19 大金工业株式会社 功率转换装置
CN101127490A (zh) * 2006-03-21 2008-02-20 上海恒精机电设备有限公司 一种大功率晶体管变频电源
CN2907030Y (zh) * 2006-05-31 2007-05-30 张淼 具有无功功率补偿的低谐波变频调速器

Also Published As

Publication number Publication date
AU2009309187A1 (en) 2010-05-06
AU2009309187B9 (en) 2013-12-19
EP2346151A1 (en) 2011-07-20
WO2010050086A1 (ja) 2010-05-06
JP4433099B1 (ja) 2010-03-17
AU2009309187B2 (en) 2013-06-06
HK1159334A1 (en) 2012-07-27
WO2010049976A1 (ja) 2010-05-06
KR20110053280A (ko) 2011-05-19
US20110194318A1 (en) 2011-08-11
KR101175030B1 (ko) 2012-08-17
EP2346151A4 (en) 2014-07-30
RU2462806C1 (ru) 2012-09-27
JPWO2010050086A1 (ja) 2012-03-29
US8542502B2 (en) 2013-09-24
MX2011004387A (es) 2011-06-16
CN102197580A (zh) 2011-09-21

Similar Documents

Publication Publication Date Title
CN102197580B (zh) 功率转换装置
US9954475B2 (en) Motor driving apparatus
CN101647186B (zh) 电力变换装置
US11063531B2 (en) Series connected DC input inverters
CN101809857B (zh) 旋转电机的控制装置
CN101682267B (zh) 电源控制装置以及具有该电源控制装置的热泵装置
CN101939901B (zh) 功率转换装置
CN101682271B (zh) 功率转换装置
US20110133678A1 (en) Motor control device, motor drive system and inverter control device
KR20160109745A (ko) 모터 구동 장치
JP2015053824A (ja) モータ駆動システムおよび該システムを搭載する電気鉄道車両
CN103563243B (zh) 逆变器控制装置
CN104993761B (zh) 永磁无刷直流电机的弱磁控制方法和装置
KR20150094431A (ko) 동력 장치 및 동력 장치에 포함되는 전동기 구동 장치
JP2014072936A (ja) 交流電動機駆動システム及び電動機車両
Zhang et al. A robust open-circuit fault diagnosis method for three-level T-type inverters based on phase voltage vector residual under modulation mode switching
CN105577021B (zh) 一种双逆变器的单svm方法
Taïb et al. An improved fixed switching frequency direct torque control of induction motor drives fed by direct matrix converter
Mansour Three-phase induction motor drive with reactive power injection to supply
Al-Badrani Flux Observation of Induction Machine Based on the Enhanced Sensorless Voltage Model
Liu et al. Implementation of a Fault-Tolerant AC/DC Converter for Permanent Magnet Synchronous Motor Drive Systems
Kongsuk et al. Loss modeling of three-leg voltage source inverter fed asymmetrical two-phase induction motor
Lee et al. Simple fault diagnosis and fault-tolerant strategy based on model predictive control for matrix converter
Makys et al. A low memory disturbance elimination method for sensorless control of induction motor drive using test vector injection
CN113708677A (zh) 一种基于谐波发电机的磁阻尼控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1159334

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1159334

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131120

Termination date: 20170528

CF01 Termination of patent right due to non-payment of annual fee