CN102187389B - 有源降噪自适应滤波器自适应率调节 - Google Patents

有源降噪自适应滤波器自适应率调节 Download PDF

Info

Publication number
CN102187389B
CN102187389B CN200980140810.4A CN200980140810A CN102187389B CN 102187389 B CN102187389 B CN 102187389B CN 200980140810 A CN200980140810 A CN 200980140810A CN 102187389 B CN102187389 B CN 102187389B
Authority
CN
China
Prior art keywords
adaptive rate
signal
noise reduction
frequency
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980140810.4A
Other languages
English (en)
Other versions
CN102187389A (zh
Inventor
D·Y·潘
C·J·程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bose Corp
Original Assignee
Bose Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bose Corp filed Critical Bose Corp
Priority to CN201410476206.1A priority Critical patent/CN104299610B/zh
Publication of CN102187389A publication Critical patent/CN102187389A/zh
Application granted granted Critical
Publication of CN102187389B publication Critical patent/CN102187389B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1783Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions
    • G10K11/17833Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions by using a self-diagnostic function or a malfunction prevention function, e.g. detecting abnormal output levels
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17883General system configurations using both a reference signal and an error signal the reference signal being derived from a machine operating condition, e.g. engine RPM or vehicle speed
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17885General system configurations additionally using a desired external signal, e.g. pass-through audio such as music or speech
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/128Vehicles
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3028Filtering, e.g. Kalman filters or special analogue or digital filters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

一种用于确定针对有源降噪系统中自适应滤波器的泄漏因子或自适应率或者这两者的方法。泄漏因子或自适应率或者这两者可以依赖于输入参考信号的参数而改变。该参数可以包括参考信号输入频率、参考输入信号频率的变化率、是否存在预定触发条件或者是否发生了预定事件中的一个或多个。

Description

有源降噪自适应滤波器自适应率调节
背景技术
本说明书描述了使用自适应滤波器的有源降噪系统,并且更具体地描述了窄带前向馈送有源降噪系统。使用自适应滤波器和窄带前向馈送有源降噪系统的有源噪声控制在S.J.Elliot和P.A.Nelson的“Active Noise Control(有源噪声控制)”IEEE信号处理杂志,1993年10月中进行了总体论述。
发明内容
在一个方面中,方法包括:基于参考输入信号的频率相关参数确定用于降噪系统的自适应滤波器的自适应率;将该自适应率应用到自适应滤波器的系数;以及将该系数应用到音频信号。参数可以是参考输入信号的频率。参数可以是参考输入信号频率的变化率。所述确定可以包括从多个预定自适应率中选择自适应率。所述确定可以包括计算该自适应率。该方法还可以包括确定泄漏因子并且将该泄漏因子应用到滤波器系数。该方法还可以包括平滑该泄漏因子。所述确定该泄漏因子可以包括确定该泄漏因子作为参考输入信号的参数的函数。
在另一方面中,有源降噪系统包括:用于确定用于降噪系统的自适应滤波器的自适应率作为参考输入信号的频率相关参数的函数的电路;用于将该自适应率应用到自适应滤波器的系数的电路;以及用于将该系数应用到音频信号的电路。参数可以是参考输入信号的频率。参数可以是输入参考信号频率的变化率。用于确定的电路、用于应用自适应率的电路或用于应用系数的电路中的至少一个可以实现为由数字信号处理元件执行的一组指令。用于确定的电路可以包括用于从多个预定自适应率值中选择自适应率的电路。用于确定的电路可以包括用于计算自适应率的电路。系统还可以包括泄漏调节器,其用于提供泄漏因子以应用到滤波器系数。系统还可以包括数据平滑器,其用于提供经平滑的泄漏因子以应用到滤波器系数。泄漏调节器可以包括用于确定泄漏因子作为参考输入信号的参数的函数的电路。
在另一方面中,用于操作有源降噪系统的方法包括:响应于噪声信号提供自适应滤波器的滤波器系数;确定与该滤波器系数相关联的自适应率;以及将滤波器系数应用到音频信号。所述确定包括:响应于第一触发条件,提供第一自适应率;响应于第二触发条件,提供不同于该第一自适应率的第二自适应率;并且在不存在第一触发条件和第二触发条件时,提供默认自适应率。提供第一自适应率,提供第二自适应率,以及提供第三自适应率中的至少一个可以包括提供被确定为参考输入信号的参数的函数的自适应率值。该方法还可以包括基于参考输入信号的参数确定用于自适应滤波器的泄漏因子,并且将该泄漏因子应用到自适应滤波器的系数。
当结合附图阅读时,其他特征、目标和优势将通过以下详细描述变得易于理解。
附图说明
图1A是有源降噪系统的框图;
图1B是包括实现为交通工具中有源声学降噪系统的图1A的有源降噪系统的元件的框图;
图2A是图1B的娱乐音频信号的递送系统的实现方式和参考频率的递送系统的框图;
图2B是图1B的娱乐音频信号的递送系统和参考频率的递送系统的另一实现方式的框图;
图3A是示出了图1A和图1B的泄漏调节器操作的逻辑流的框图;
图3B和图3C是示出了将泄漏因子应用到更新量和旧系数值的逻辑流的框图;
图3D和图3E是示出了允许更复杂泄漏调节机制的泄漏调节器另一实现方式的操作的逻辑流的框图;
图4A是示出了系数计算器和控制块的某些细节的框图;
图4B是示出了误差信号监测器和不稳定控制块的逻辑流的框图;
图5A和图5B是示出了自适应速率确定器操作的逻辑流的框图;以及
图6是示出了特定频谱轮廓示例的频率响应曲线。
具体实施方式
虽然附图的若干视图中的元件可以被显示和描述为框图中的分立元件并且可以被称为“电路”,但是除非明确指出,否则元件可以被实现为模拟电路、数字电路或执行软件指令的一个或多个微处理器中的一个或其组合。软件指令可以包括数字信号处理(DSP)指令。除非明确指出,否则信号线可以被实现为分立的模拟或数字信号线。多个信号线可以被实现为具有用于处理单独音频信号流的适当信号处理的一个分立数字信号线,或者被实现为无线通信系统的元件。一些处理操作可以由系数的计算和应用来表达。与计算和应用系数的等同的操作可以由其他模拟或DSP技术执行,并且包括在本专利申请的范围内。除非明确指出,否则音频信号可以编码为数字或模拟形式;电路图中可能未显示常规数模转换器和模数转换器。本说明书描述了有源降噪系统。有源降噪系统通常旨在消除不期望的噪声(即,目标为零噪声)。然而在实际降噪系统中,虽然衰减了不期望的噪声,但没有取得完全降噪。在本说明书中,“趋向零”意味着有源降噪系统的目标是零噪声,虽然应当认识到实际结果是噪声显著衰减,而没有完全消除。
参考图1A,示出了有源降噪系统的框图。通信路径38耦合到降噪参考信号生成器19,用于向该降噪参考信号生成器呈现参考频率F。该降噪参考信号生成器耦合到滤波器22和自适应滤波器16。滤波器22耦合到系数计算器20。输入转换器24耦合到控制块37并且耦合到系数计算器20,该系数计算器20进而双向耦合到泄漏调节器18和自适应滤波器16。自适应滤波器16通过功率放大器26耦合到输出转换器28。控制块37耦合到泄漏调节器18。可选地,可以存在耦合到系数计算器20的附加输入转换器24′,并且可选地,自适应滤波器16可以耦合到泄漏调节器18。如果存在附加输入转换器24′则通常存在对应的滤波器23、25。在下文中将解释由虚线指示的参考信号生成器19与系数计算器20之间以及参考信号生成器19与泄漏调节器18之间的可选逻辑耦合。
在操作中,向降噪参考信号生成器19提供参考频率或者从中能够导出参考频率的信息。降噪参考信号生成器生成到滤波器22和自适应滤波器16的降噪信号,该降噪信号可以是周期信号的形式,诸如具有与引擎速度相关的频率分量的正弦曲线。输入转换器24检测具有与参考频率相关的频率分量的周期振动能量,并且将该振动能量转换成噪声信号,而该噪声信号被提供到系数计算器20。系数计算器20确定针对自适应滤波器16的系数。自适应滤波器16使用来自系数计算器20的系数来修改来自降噪参考信号生成器19的噪声消除参考信号的振幅和/或相位,并且向功率放大器26提供该经修改的噪声消除信号。该降噪信号由功率放大器26放大,并且由输出转换器28转换成振动能量。控制块37控制有源降噪元件的操作,举例来说通过激活或去激活该有源降噪系统或通过调节噪声衰减的量。
自适应滤波器16、泄漏调节器18和系数计算器20重复并递归地操作以提供滤波器系数流,该滤波器系数流使得自适应滤波器16修改当被转换成周期振动能量时用于衰减由输入转换器24检测到的振动能量的信号。可以由传递函数H(s)表征的滤波器22补偿有源降噪系统的组件(包括功率放大器26和输出转换器28)和该系统所操作的环境对输入转换器24所转换的能量的影响。
输入转换器24、24′可以是将振动能量转换成电子或数字编码的信号的许多类型设备中的一个,例如加速度计、麦克风、压电设备等。如果存在不止一个输入转换器24、24′,则来自这些转换器的经滤波输入可以通过某些方式进行组合,例如通过求平均,或者来自一个转换器的输入的加权可以比来自其他转换器的输入的加权更大。滤波器22、系数计算器20、泄漏调节器18和控制块37可以被实现为由微处理器(例如,DSP设备)执行的指令。输出转换器28可以是提供周期振动能量的许多机电或电声设备中的一个,例如电机或声学驱动器。
参考图1B,示出了包括图1A的有源降噪系统的元件的框图。图1B的有源降噪系统被实现为封闭空间中的有源声学降噪系统。图1B被描述为针对车厢进行配置,但是还可以被配置为在其他封闭空间(例如,房间或控制室)中使用。图1B的系统还包括音频娱乐或通信系统的元件,该元件可以与封闭空间相关联。例如,如果封闭空间是交通工具(例如,小客车、厢式货车、卡车、运动型多用途车、工程车或农用车、军用车或飞机)中的舱,则音频娱乐或通信系统可以与交通工具相关联。娱乐音频信号处理器10通信地耦合到信号线40用于接收娱乐音频信号和/或娱乐系统控制信号C,并且耦合到组合器14以及可以耦合到泄漏调节器18。降噪参考信号生成器19通信地耦合到信号线38并且通信耦合到自适应滤波器16和对应于图1A的滤波器22的舱滤波器22′。自适应滤波器16耦合到组合器14,耦合到系数计算器20,以及可选地可以直接耦合到泄漏调节器18。系数计算器20耦合到舱滤波器22′,耦合到泄漏调节器18,以及耦合到对应于图1A的输入转换器24、24′的麦克风24″。组合器14耦合到功率放大器26,该功率放大器26耦合到对应于图1A的输出转换器28的声学驱动器28′。控制块37通信地耦合到泄漏调节器18并且通信地耦合到麦克风24″。在许多交通工具中,娱乐音频信号处理器10耦合到多个组合器14,其中每个组合器耦合到功率放大器26和声学驱动器28′。
多个组合器14、功率放大器26和声学驱动器28′的每一个都可以通过诸如放大器和组合器之类的元件耦合到多个自适应滤波器16中的一个自适应滤波器,每个自适应滤波器都具有与其相关联的泄漏调节器18、系数计算器20和舱滤波器22。单个自适应滤波器16,关联的泄漏调节器18和系数计算器20可以修改向不止一个声学驱动器呈现的噪声消除信号。为了简化起见,只示出了一个组合器14、一个功率放大器26和一个声学驱动器28′。每个麦克风24″可以耦合到不止一个系数计算器20。
所有或某些娱乐音频信号处理器10、降噪参考信号生成器19、自适应滤波器16、舱滤波器22′、系数计算器20、泄漏调节器18、控制块37和组合器14可以被实现为由一个或多个微处理器或DSP芯片执行的软件指令。功率放大器26和微处理器或DSP芯片可以是放大器30的组件。
在操作中,图1B中的某些元件操作用于向交通工具的乘员提供音频娱乐和听觉呈现的信息(例如,导航指令、听觉警告指示器、蜂窝电话传输、可操作信息[例如,低燃料指示]等)。来自信号线40的娱乐音频信号由娱乐音频信号处理器10进行处理。经处理的音频信号在组合器14处与有源降噪信号组合(稍后进行描述)。经组合的信号由功率放大器26放大并且由声学驱动器28′转换成声能。
图1B的设备中的某些元件操作用于主动地降低车厢中由交通工具引擎和其他噪声源产生的噪声。向降噪参考信号生成器19提供引擎速度,其通常呈现为指示引擎转速的脉冲,所述引擎速度还被称作每分钟转速或RPM,该降噪参考信号生成器19根据以下公式确定参考频率:
(f(Hz)=引擎速度(rpm)/60)向舱滤波器22′提供该参考频率。降噪参考信号生成器19生成噪声消除信号,该噪声消除信号可以通过周期信号的形式出现,例如具有与引擎速度相关的频率分量的正弦曲线。向自适应滤波器16提供噪声消除信号,并且并行地提供到舱滤波器22′。麦克风24″将车厢中的声能转换成向系数计算器20提供的噪声音频信号,该声能可以包括对应于娱乐音频信号的声能。系数计算器20修改自适应滤波器16的系数。自适应滤波器16使用该系数修改来自降噪参考信号生成器19的噪声消除信号的振幅和/或相位,并且向信号组合器14提供经修改的噪声消除信号。某些电声元件(例如,声学驱动器28′、功率放大器26、麦克风24″和降噪系统操作的环境)的组合效果可以由转换函数H(s)表征。舱滤波器22′对转换函数H(s)进行建模和补偿。下文将描述泄漏调节器18和控制块37的操作。
自适应滤波器16、泄漏调节器18和系数计算器20重复并递归地操作以提供滤波器系数流,该滤波器系数流使得自适应滤波器16修改当被声学驱动器28′辐射时将由麦克风24″检测到的信号的特定频谱分量的振幅驱动到某个期望值的音频信号。特定频谱分量通常对应于从引擎速度导出的频率的固定倍数。特定频谱分量将被驱动到的特定期望值可以是零,还可以是如下文描述的某些其他值。
图1A和图1B的元件还可以被复制并且用于生成和修改针对不止一个频率的降噪信号。通过与上文描述的相同方式生成和修改针对其他频率的降噪信号。
来自娱乐音频信号源的音频信号的内容包括常规音频娱乐,例如,音乐、谈话类无线电、新闻和体育广播、与多媒体娱乐相关联的音频等,以及如上文所列举的可以包括诸如导航指令、来自蜂窝电话网络的音频传输、与交通工具的操作相关联的警告信号和关于交通工具的操作信息的听觉信息的形式。娱乐音频信号处理器可以包括立体声和/或多通道音频处理电路。自适应滤波器16和系数计算器20一起可以实现为多个滤波器类型(例如,n抽头延迟线;Laguerre滤波器;有限冲击响应(FIR)滤波器等)中的一个。自适应滤波器可以使用多个类型的自适应机制(例如,最小均方(LMS)自适应机制;归一化LMS机制;块LMS机制;或块离散傅里叶变换机制等)中的一个。组合器14并不必须是物理元件,而是可以被实现为信号的总和。
虽然显示为单个元件,但是自适应滤波器16可以包括不止一个滤波器元件。在图1B的系统的某些实施方式中,自适应滤波器16包括两个FIR滤波器元件,其中FIR滤波器元件各自针对正弦函数和余弦函数并且,其具有以相同频率的正弦曲线输入,每个FIR滤波器使用具有单个抽头的LMS自适应机制,以及可以与音频频率采样率r(例如,)相关的采样率。由系数计算器20使用的适当自适应算法可以在Simon Haykin的Adaptive Filter Theory,第四版,ISBN0130901261中找到。下文将描述泄漏调节器18。
图2A是示出了向降噪参考信号生成器19提供引擎速度以及向音频信号处理器10提供音频娱乐信号的设备的框图。音频信号递送元件可以包括娱乐总线32,该娱乐总线32由信号线40耦合到图1B的音频信号处理器10并且还由信号线38耦合到降噪参考信号生成器19。娱乐总线可以是在交通工具音频娱乐系统的元件之间传输数字编码的音频信号的数字总线。诸如CD播放器、MP3播放器、DVD播放器或类似设备或者无线接收器(其中都没有显示)之类的设备可以耦合到娱乐总线32,用于提供娱乐音频信号。同样耦合到娱乐总线32的可以是表示诸如导航指令、来自蜂窝电话网络的音频传输、与交通工具的操作相关联的警告信号和其他音频信号之类信息的音频信号源。引擎速度信号递送元件可以包括交通工具数据总线34,以及将该交通工具数据总线34与娱乐总线32耦合的桥36。已经参考具有娱乐系统的交通工具对该示例进行了描述;然而,图2A的系统可以利用与其他类型的正弦曲线噪声源(例如,功率转换器)相关联的降噪系统来实现。该系统还可以通过提供总线、信号线和其他信号传输元件的组合(其产生于图2A的系统类似的延迟特征)而在不包括娱乐系统的降噪系统中实现。
在操作中,娱乐总线32传输针对娱乐系统的元件的音频信号和/或控制和/或状态信息。交通工具数据总线34可以传达关于交通工具的状态(例如引擎速度)的信息。桥36可以接收引擎速度信息,并且可以向娱乐总线传输该引擎速度信息,该娱乐总线进而可以向降噪参考信号生成器19传输高延迟引擎速度信号。如下文在图2A和图2B中更加完整的描述,术语“高延迟”和“低延迟”适用于事件发生之间的间隔,例如引擎速度的变化与指示引擎速度变化的信息信号的到达所述有源降噪系统。总线能够以低延迟传输信号,但是例如由于桥36中的延迟,引擎速度信号可能被高延迟递送。
图2B示出了图1B的娱乐音频信号的信号递送元件和引擎速度信号的信号递送元件的另一实现方式。娱乐音频信号递送元件包括由信号线40A耦合到图1B的音频信号处理器10的娱乐音频信号总线49。娱乐控制总线44由信号线40B耦合到图1B的音频娱乐处理器10。引擎速度信号递送元件包括由桥36耦合到娱乐控制总线44的交通工具数据总线34。娱乐控制总线44由信号线38耦合到降噪参考信号生成器19。
图2B的实施方式类似于图2A的实施方式进行操作,除了高延迟引擎速度信号从桥36传输到娱乐控制总线44继而传输到降噪参考信号生成器19。音频信号通过信号线40A从娱乐音频信号总线49传输到娱乐音频信号处理器10。娱乐控制信号由信号线40B从娱乐控制总线44传输到图1的娱乐音频信号处理器10。交通工具数据总线、娱乐总线、娱乐控制总线、娱乐音频信号总线以及依赖于交通工具配置的其他类型的总线和信号线可以用于向降噪参考信号生成器19提供引擎速度信号以及向娱乐信号处理器20提供音频娱乐信号。
常规引擎速度信号源包括传感器,其用于感测或测量某些引擎速度指示符(例如,曲轴角、进气歧管压力、点火脉冲或者某些其他条件或事件)。传感器电路通常是低延迟电路,但是需要将机械传感器、电传感器、光传感器或磁传感器放置在可能不便于接近或者可能具有不期望操作条件(例如,高温)的位置,并且还需要传感器与降噪参考信号生成器19和/或自适应滤波器16和/或舱滤波器22′之间的通信电路,通常是专用物理连接。交通工具数据总线通常是包括用于控制引擎或交通工具的其他重要组件的信息的高速、低延迟总线。与交通工具数据总线对接增加系统的复杂度,并且另外向与该交通工具数据总线对接的设备加以约束,使得对接设备不干扰控制交通工具操作的重要组件的操作。根据图2A和图2B的引擎速度信号递送系统与其他引擎速度信号源和引擎速度信号递送系统相比具有优势,因为根据图2A和图2B的引擎速度信号递送系统允许有源降噪能力而不需要任何专用组件(例如,专用信号线)。根据图2A和图2B的布置也占有优势,因为交通工具数据总线34、桥36和图2A的娱乐总线32或图2B的娱乐控制总线44的一个或两者出现在许多交通工具中,所以不需要针对引擎速度的附加信号线来执行有源降噪。根据图2A和图2B的布置还可以使用娱乐总线32或娱乐控制总线44与放大器30之间的已有物理连接,并且不需要诸如用于添加有源降噪能力的管脚或端子的附加物理连接。由于娱乐总线32或娱乐控制总线44可以被实现为数字总线,因此图2A的信号线38和信号线40以及图2B的信号线38、信号线40A和信号线40B可以被实现为具有用于将信号路由到适当组件的合适电路的单个物理元件(例如,管脚或端子)。
由于娱乐总线的带宽、桥36的延迟或这两者,根据图2A和图2B的引擎速度信号递送系统可以是高延迟递送系统。在本说明书的上下文中,“高延迟”意味着事件的(例如点火事件或引擎速度的变化)发生与指示该事件发生的信号到达降噪参考信号生成器19之间的延迟,为10ms或更多。
可以使用高延迟信号操作的有源降噪系统是有利的,因为向有源降噪系统提供低延迟信号通常比使用已经可用的高延迟信号更加复杂、困难和昂贵。
现在更加详细地描述泄漏调节器18。图3A是示出了泄漏调节器18操作的逻辑流的框图。泄漏调节器选择将由系数计算器20应用的泄漏因子。泄漏因子是当已有系数值由更新量更新时自适应滤波器中应用到已有系数值的因子α;例如
(new_value)=α(old_value)+(update_amount)((新值)=α(旧值)+(更新量))
关于泄漏因子的信息可以在Simon Haykin的Adaptive Filter Theory的13.2节,第四版,ISBN 0130901261中找到。逻辑块52确定是否发生预定触发事件,或者是否存在可以引起期望使用备选泄漏因子的预定触发条件。下文将在图3E的论述中描述事件或条件的特定示例。如果逻辑块52的值为假,则在泄漏因子确定逻辑块48应用默认泄漏因子D。如果逻辑块52的值为真,则可以在泄漏因子确定逻辑块48应用备选(通常更低的)泄漏因子A。备选泄漏因子可以根据算法进行计算,或者可以通过基于预定标准从一些离散的预定泄漏因子值选择泄漏因子值进行操作。泄漏因子流可选地可以例如通过低通滤波进行平滑(块50),用于防止具有不期望结果的泄漏因子中的突变的发生。低通滤波使得由自适应滤波器16应用的泄漏因子被默认泄漏因子与备选泄漏因子界定。其他形式的平滑可以包括随时间取平均或摆幅限制(slew limiting)。
如上所述,可以根据以下公式将泄漏因子α应用到系数更新过程:
(new_value)=α(old_value)+(update_amount)((新值)=α(旧值)+(更新量))
在一个实施方式中,可以如以下所示将泄漏因子α应用到系数更新过程:
(new_value)=α((old_value)+(update_amount))((新值)=α(旧值)+(更新量))
在该实施方式中,泄漏因子不仅应用到旧值,还应用到更新量。
应用泄漏因子的备选方法的一个优势在于:自适应滤波器可以在某些反常情况中表现得更好,例如当用户因为其不希望噪声消除而禁用滤波器时或者当输入转换器检验脉冲类型的振动能量时。
应用泄漏因子的备选方法的另一优势在于:泄漏因子中的变化不影响输出的相位。通常用于抑制正弦曲线噪声(例如,交通工具引擎噪声)的自适应滤波器16的类型通常为单频自适应陷波滤波器。单频自适应陷波滤波器包括两个单个系数自适应滤波器,一个用于余弦项,一个用于正弦项:
s(n)=w1(n)sin(n)+w2(n)cos(n)=|S(n)|sin(n+ang(S(n)))其中S(n)为自适应滤波器16的净输出;w1(n)为正弦项自适应滤波器的滤波器系数的新值;w2(n)为余弦项自适应滤波器的滤波器系数的新值;|S(n)|是S(n)的幅度,其等于以及ang(S(n))为S(n)的角度,其等于通过应用泄漏因子的其他方法:
(其中w1(n-1)为正弦项自适应滤波器的滤波器系数的旧值;w2(n-1)为余弦项自适应滤波器的旧值;update_amount1为正弦项自适应滤波器的更新量;以及update_amount2为余弦项自适应滤波器的更新量),使得S(n)的角度依赖于泄漏因子α。通过应用泄漏因子的备选方法:
可以提出分子和分母中的公因数泄漏因子,使得从而ang S(n)独立于泄漏项并且泄漏因子中的变化不影响输出的相位。
逻辑上,泄漏因子值的应用可以通过至少两种方式完成。在图3B中,延迟的新系数值变成针对下一迭代的旧滤波器系数值(由块70表示),并且在应用泄漏因子值(由乘法器74表示)之前在加法器72处与更新量77相加。在图3C中,泄漏因子单独应用到(由乘法器74表示)变成旧滤波器系数值的延迟新系数值(由块70表示),并且单独应用到滤波器系数值更新量77。然后将泄漏因子修改的旧滤波器系数值和泄漏因子修改的滤波器系数更新量的进行组合(由加法器72表示)来形成新的系数值,该系数值被延迟并且变成针对下一迭代的旧滤波器系数值。
图3D是示出了泄漏调节器18操作的逻辑流的框图,该泄漏调节器18允许不止一个(例如n个)备选泄漏因子并且允许n个备选泄漏因子根据预定优先级进行应用。在逻辑块53-1处,确定是否存在最高优先级触发条件或事件是否已经发生。如果逻辑块53-1的值为真,则在逻辑块55-1处选择与逻辑块53-1的触发条件和事件相关联的泄漏因子,并且将其通过数据平滑器50(如果存在)向系数计算器20提供。如果逻辑块53-1的值为假,则确定在逻辑块53-2处第二高优先级触发条件是否存在或事件是否已经发生。如果逻辑块53-2的值为真,则在逻辑块55-2处选择与逻辑块53-2的触发条件和事件相关联的泄漏因子,并且将其通过数据平滑器50(如果存在)向系数计算器20提供。如果逻辑块53-2的值为假,则确定下一最高优先级触发条件是否存在或事件是否已经发生。该过程一直进行直到在逻辑块53-n处确定最低(或第n高)优先级触发条件是否存在或事件是否已经发生。如果逻辑块53-n的值为真,则在逻辑块55-n处选择与最低优先级触发条件或事件相关联的泄漏因子,并且将其通过数据平滑器50(如果存在)向系数计算器20提供。如果逻辑块53-n的值为假,则在逻辑块57处选择默认泄漏因子,并且将其通过数据平滑器50(如果存在)向系数计算器20提供。
在图3D的一个实现方式中,存在两组触发条件和事件以及两个相关联的泄漏因子(n=2)。最高优先级触发条件或事件包括系统被无效、降噪信号的频率在声学驱动器的频谱范围之外、或者由诸如扬声器的输入转换器检测到的噪声具有将引起非线性操作(诸如削波)的幅度。与最高优先级触发条件相关联的泄漏因子为0.1。第二高优先级触发条件或事件包括来自自适应滤波器16的消除信号幅度超出阈值幅度、娱乐音频信号的幅度接近(例如,进入预定范围(例如6dB))如下信号幅度:在该信号幅度下图1B的一个或多个电声元件(例如,功率放大器26或声学驱动器28′)可能非线性操作,或者发生可能导致声学赝像(例如发出咔嚓声或砰的一声)或者失真的某些其他事件。可能引起声学赝像(例如发出咔嚓声或砰的一声)或者失真的事件可以包括输出水平被调节,或者降噪信号具有已知在声学驱动器28或娱乐音频系统的某些其他组件中引起嗡嗡声或嘎嘎声的振幅或频率。与第二高优先级触发条件和事件相关联的泄漏因子为0.5。默认泄漏因子为0.999999。
图3E示出了图3D的泄漏调节器的另一实现方式。在图3E的泄漏调节器中,图3D的块55-1至55-n处的备选泄漏因子由155-1到155-n的泄漏因子计算器替代,并且图3B的默认泄漏因子块57由默认泄漏因子计算器157替代。泄漏因子计算器允许默认泄漏因子和/或备选泄漏因子具有一系列值而不是单个值,并且还允许泄漏因子依赖于触发条件或某些其他因子。所应用的特定泄漏因子可以从一组离散值(例如,从查阅表)选择,或者可以基于与触发条件的元件、滤波器系数、消除信号幅度或者某些其他条件或测量的限定数学关系进行计算。例如,如果触发条件是来自自适应滤波器16的消除信号幅度超出阈值幅度,则泄漏因子可以是指派值。如果触发条件为假,则默认泄漏可以是αdefault=αbase+λA,其中αbase为基本泄漏值;A为消除信号的振幅;以及λ是表示默认泄漏因子与消除信号振幅之间线性关系的斜率(通常为负)数值。在其他示例中,泄漏因子可以根据非线性函数(例如二次或指数函数)确定,或者在其他示例中,斜率可以是零,这相当于图3B的实现方式,其中默认泄漏因子和备选泄漏因子具有设定值。
可以组合图3D和图3E的实现方式的元件。例如,某些备选泄漏因子可以预定而某些可以计算;某些或所有备选泄漏因子可以预定而默认泄漏因子可以计算;某些或所有备选泄漏因子可以预定而默认泄漏因子可以计算等等。
根据图3E的泄漏因子调节器可以推进较低能量的解决方案。
逻辑块53-1至53-n从图1A或图1B的适当元件接收触发事件已经或将要发生或者触发事件存在的指示,如箭头59-1至59-n所指示。适当元件可以是图1B的控制块37;然而,指示可以来自其他元件。例如,如果预定事件是娱乐音频信号的幅度接近图1B的一个元件的非线性操作范围,则指示可以起源于娱乐音频信号处理器10(未在该视图中示出)。
在另一示例中,预定事件为参考频率接近系统失效的频率,例如由于输出转换器28中的一个转换器的限制,或由于防止收听者集中在转换器、高参考频率、可以导致缺乏收听者耳部噪声与麦克风之间相关的短波长参考信号,或者由于某些其他原因。在该实例中,泄漏因子可以设置为允许滤波器系数以比正常操作更慢的速度减小值,以改进针对存在于失效频率附近以及在失效频率以上和以下波动的输入信号的系统性能。在该示例中,当预定事件为参考频率接近系统失效的频率时,0.5的泄漏因子可能是适当的。在该示例中,泄漏调节器18可以从由图1A中虚线指示的降噪参考信号生成器接收参考频率。其他可能的预定事件包括输入信号频率中的快速变化。
图3A、图3D和图3E的过程和设备通常由DSP处理器上的数字信号处理指令实现。可以经验地确定针对默认泄漏因子和备选泄漏因子的特定值。某些系统可能不在默认条件中应用泄漏因子。由于泄漏因子是相乘的,因此不应用泄漏因子相当于应用为1的泄漏因子。数据平滑器50例如可以实现为具有可调谐频率截止的第一阶低通滤波器,该可调谐频率截止例如可以设置为20Hz。
使用图1A、图1B、图3A、图3D和图3E的设备和方法的有源降噪系统是占有优势的,因为其显著减少了发生可听见的咔哒或砰的数量,并且因为其显著减少了发生失真和非线性的数量。用于减少发生可听见的咔哒或砰以及减少发生失真和非线性的数量的另一方法为修改自适应滤波器的自适应率。
如上所述,系数更新过程根据以下公式进行:
(new_value)=α(old_value)+(update_amount)
(new_value)=α((old_value)+(update_amount))
update_amount的值为update_amount=μxnen,其中xn为滤波器的参考输入;en为待最小化的误差信号;以及μ为自适应率或增益。因子xn以正弦波的形式从降噪参考信号生成器19提供。误差信号en由输入转换器24提供。自适应率值μ确定滤波器收敛的速度。高的自适应率允许滤波器快速收敛,但需要冒不稳定的风险。低的自适应率使得滤波器收敛较慢,但倾向于稳定。因此,应当理解基于交通工具的操作条件提供用于控制自适应率的过程。
图4A中示出了用于确定自适应率的逻辑布置。自适应率模块60接收向其提供用于确定自适应率的数据的输入。在该示例中,所需数据是频率相关的,例如来自降噪参考信号生成器19的参考输入信号的频率。自适应率确定器65可以操纵频率相关的输入,例如通过确定参考输入信号的变化率,如变化率块80所指示的。下文将解释图4B和图4A的其他元件。
图5A为示出了自适应率确定器65的操作的逻辑流的框图,该自适应率确定器65允许不止一个(例如n个)备选自适应率以及允许根据预定优先级来应用n个备选自适应率。在逻辑块163-1处,确定最高优先级触发条件是否存在或者事件是否已经发生。如果逻辑块163-1的值为真,则在逻辑块166-1处选择与逻辑块163-1的触发条件和事件相关联的自适应率并且将其向系数计算器20提供。如果逻辑块163-1的值为假,则确定在逻辑块163-2处第二高优先级触发条件是否存在或事件是否已经发生。如果逻辑块163-2的值为真,则在逻辑块166-2处选择与逻辑块163-2的触发条件和事件相关联的自适应率并且将其提供到系数计算器20。如果逻辑块163-2的值为假,则确定下一最高优先级触发条件是否存在或事件是否已经发生。该过程一直进行直到在逻辑块163-n处,确定最低(或第n最高)优先级触发条件是否存在或发生了事件。如果逻辑块163-n的值为真,则在逻辑块166-n处选择与最低优先级触发条件或事件相关联的自适应率并且将其提供到系数计算器20。如果逻辑块163-n的值为假,则在逻辑块167处选择默认自适应率并且将其提供到系数计算器20。
在图5A的一个实现方式中,存在两个备选自适应率(n=2)。一个触发事件为参考输入信号的频率处于或接近系统组件不稳定、具有较大差异、或者非线性操作的频率处,μ的值可能相对较低(例如,0.2)使得自适应滤波器不太可能趋向不稳定。
如果参考信号频率为系统组件(例如输入转换器24、舱滤波器22和声学驱动器28)稳定、具有较小差异和线性操作的频率处,以及如果交通工具没有正在经历快速加速的频率,则μ的值可能为相对较低的默认值(例如,0.1),以通过减少自适应滤波器中的抖动来改进消除。
在图5A的实现方式中,μ的值可以从许多值中选择,例如从表格中选择。
在另一示例中,μ的值与参考频率的变化率相关。在快速加速期间,可能期望具有相对较高的自适应率以便更快地适应;或者可能期望具有相对较低的自适应率以便避免不稳定性。
图5B示出了图5A的自适应率确定器的另一实现方式。在图5B的自适应率确定器中,图5A的块166-1至166-n的备选自适应率由自适应率计算器168-1至168-n替代,并且图5A的默认自适应率块167由默认自适应率计算器170替代。自适应率计算器允许默认自适应率和/或备选自适应率具有一系列值而不是单个值,并且还允许自适应率将依赖于触发条件或依赖于某些其他因素。特定自适应率可以基于与触发条件的元件、与滤波器系数、与消除信号幅度或者与某些其他条件或测量的限定数学关系进行计算。例如,如果触发条件为输入参考信号中频率的高变化率,则自适应率可以为指派值。如果触发条件为假,则默认自适应率可以是其中μbase为基本自适应率;为参考输入信号频率的变化率;以及λ为表示自适应率与参考输入信号频率的变化率之间线性关系的斜率(可以为负)数值。在其他示例中,自适应率可以根据非线性函数(例如二次或指数函数)确定,或者在其他示例中,斜率可以是零。
可以组合图5A和图5B的实现方式的元件。例如,某些备选自适应率可以预定而某些可以计算;某些或所有备选自适应率可以预定而默认自适应率可以计算;某些或所有备选自适应率可以预定而默认自适应率可以计算等等。
再次参考图4A,有源降噪系统的控制块37可以包括误差信号水平监测器70和不稳定性控制块71。高误差信号经常表示系统将变得不稳定,因此如果检测到高误差信号,则误差信号监测器可以调节其他系统组件79,例如改变自适应率或泄漏因子,或者使系统失效。然而,在交通工具的快速加速期间,高误差信号可能表示系统的正常操作。
图4B中示出了误差信号水平监测器和不稳定性控制块71操作的示例。在块73处,确定误差信号水平是否超出指示系统可能不稳定的预定水平。如果误差信号不在预定水平之上,则系统在每盒(box)81上正常操作。如果误差信号在预定水平之上,则在块75处确定参考信号频率的变化率是否大于阈值。如果参考信号频率的变化率在该阈值水平之上,则系统在每盒81上正常操作。如果频率的变化率不在阈值水平之上,则不稳定性控制块71可以执行操作以通过改变泄漏因子、改变自适应率或使系统失效来校正不稳定性。因此,误差信号水平监测器可以确定参考信号频率的变化率是否在阈值水平之上,如图4A所示,变化率块80与误差信号水平监测器70可以操作地耦合。
有源降噪系统可以控制降噪音频信号的幅度以避免过度驱动声学驱动器或出于其他原因。这些其他原因中的一个原因可能是将封闭空间中出现的噪声限制到预定非零目标值,或者换言之允许封闭空间中存在预定量的噪声。在某些实例中,可能期望使得封闭空间中的噪声具有特定频谱分布以便提供与众不同的声音或达到某些效果。
图6示出了特定频谱轮廓的示例。为了简化起见,将从解释中省略室内影响和声学驱动器28的特性。室内影响由图1A的滤波器22或图1B的舱滤波器22′进行建模。均衡器补偿声学驱动器的声学特性。另外,为了促进依据比率来描述轮廓,图6的垂直标尺可以是线性的,例如来自麦克风24″的噪声信号的伏特。线性标尺可以由标准数学技术转换为非线性标尺(例如dB)。
在图6中,频率f可能与引擎速度相关,例如曲线62表示没有有源噪声消除元件操作的噪声信号。曲线61表示具有有源噪声消除元件操作的噪声信号。数值n1、n2、和n3可以是固定数值,使得n1f、n2f、和n3f为f的固定倍数。因子n1、n2、和n3可以是整数,使得频率n1f、n2f、和n3f可以被常规地描述为“谐波”,但它们不是必须是整数。频率n1f、n2f、和n3f的振幅a1、a2和a3可以具有期望的特征关系,例如a2=0.6a1以及a3=0.5a1这些关系可以作为频率的函数而变化。
在频率f可能存在较少声能。通常对于主导噪声而言其与缸点火相关,对于四冲程而言,每次引擎转动,六缸引擎发生三次,因此主导噪声可以处于引擎速度的第三谐波,所以在该示例中n1=3。可能期望尽可能多地减少频率3f(n1=3)处的振幅,因为频率3f的噪声是有害的。为了达到某些声学效果,可能期望减少频率4.5f(因此在该示例中n2=4.5)处的振幅,但目前不尽可能,例如减少到振幅0.5a2。类似地,可能期望将频率6f(因此在该示例中n3=6)处的振幅减少到例如0.4a3。在该示例中,参考图1B,降噪参考信号生成器19从引擎速度信号递送系统接收引擎速度,并且生成频率3f为降噪参考信号。系数计算器16确定适于提供降噪音频信号的滤波器系数,以将频率3f处的振幅驱向零,由此确定振幅a1。如果噪声处于频率3f不是有害的,而是达到声学效果所期望的,那么自适应滤波器可以在数值上使处于频率3f的信号清零并且在降噪系统内部。这允许确定振幅a1而不影响频率3f处的噪声。降噪参考信号生成器19还生成频率为4.5f的降噪信号,并且系数计算器20确定适于提供降噪信号的滤波器系数,以将振幅a2驱向零。然而,在该示例中,期望频率4.5f处的振幅被减少到不小于0.5a2。由于已知a2=0.6a1,因此当处于频率4.5f的噪声接近(0.5)(0.6)a1或0.3a1时,由泄漏调节器18应用备选泄漏因子。类似地,当频率6f处的噪声接近(0.4)(0.5)a1或0.2a1时,由泄漏调节器18应用备选泄漏因子。因此,有源降噪系统可以依据振幅a1达到期望的频谱轮廓。
可以对这里公开的特定装置和技术进行各种使用和变更而不脱离本发明构思。因此,本发明可以解释为包括这里公开的每个新颖特征以及这些特征的新颖组合,并且仅由所附权利要求书的精神和范围限制。

Claims (7)

1.一种用于操作有源降噪系统的方法,包括:
响应于噪声信号,提供自适应滤波器的滤波器系数;
确定与所述滤波器系数相关联的自适应率;
将所述滤波器系数应用到音频信号;
其中所述确定包括:
响应于第一触发条件,提供第一自适应率;
响应于第二触发条件,提供第二自适应率,所述第二自适应率不同于所述第一自适应率;以及
在缺少所述第一触发条件和所述第二触发条件时,提供默认自适应率;以及
其中提供所述第一自适应率、提供所述第二自适应率和提供所述默认自适应率中的一个包括:提供被确定为参考输入信号的频率相关参数的函数的自适应率值,
其中所述参数为所述参考输入信号的频率的变化率。
2.根据权利要求1所述的方法,其中所述确定包括从多个预定自适应率中选择所述自适应率。
3.根据权利要求1所述的方法,其中所述确定包括计算所述自适应率。
4.根据权利要求1所述的方法,进一步包括:
基于所述参考输入信号的参数确定用于所述自适应滤波器的泄漏因子;以及
将所述泄漏因子应用到所述自适应滤波器的系数。
5.一种有源降噪系统,包括:
用于确定用于降噪系统的自适应滤波器的自适应率作为参考输入信号的频率相关参数的函数的电路;
用于将所述自适应率应用到所述自适应滤波器的系数的电路;以及
用于将所述系数应用到音频信号的电路,
其中所述确定包括:
响应于第一触发条件,提供第一自适应率;
响应于第二触发条件,提供第二自适应率,所述第二自适应率不同于所述第一自适应率;以及
在缺少所述第一触发条件和所述第二触发条件时,提供默认自适应率;以及
其中提供所述第一自适应率、提供所述第二自适应率和提供所述默认自适应率中的一个包括:提供被确定为所述参考输入信号的频率相关参数的函数的自适应率值,
其中所述参数为所述参考输入信号的频率的变化率,
其中所述参考输入信号用作所述音频信号的噪声消除信号,并且所述参数为所述参考输入信号的频率的变化率。
6.根据权利要求5所述的有源降噪系统,其中用于确定的电路包括用于从多个预定自适应率值中选择所述自适应率的电路。
7.根据权利要求5所述的有源降噪系统,其中用于确定的电路包括用于计算所述自适应率的电路。
CN200980140810.4A 2008-10-20 2009-09-23 有源降噪自适应滤波器自适应率调节 Active CN102187389B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410476206.1A CN104299610B (zh) 2008-10-20 2009-09-23 有源降噪自适应滤波器自适应率调节

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/254,041 US8306240B2 (en) 2008-10-20 2008-10-20 Active noise reduction adaptive filter adaptation rate adjusting
US12/254,041 2008-10-20
PCT/US2009/057945 WO2010047909A1 (en) 2008-10-20 2009-09-23 Active noise reduction adaptive filter adaptation rate adjusting

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201410476206.1A Division CN104299610B (zh) 2008-10-20 2009-09-23 有源降噪自适应滤波器自适应率调节

Publications (2)

Publication Number Publication Date
CN102187389A CN102187389A (zh) 2011-09-14
CN102187389B true CN102187389B (zh) 2014-11-05

Family

ID=41356266

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200980140810.4A Active CN102187389B (zh) 2008-10-20 2009-09-23 有源降噪自适应滤波器自适应率调节
CN201410476206.1A Active CN104299610B (zh) 2008-10-20 2009-09-23 有源降噪自适应滤波器自适应率调节

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201410476206.1A Active CN104299610B (zh) 2008-10-20 2009-09-23 有源降噪自适应滤波器自适应率调节

Country Status (5)

Country Link
US (2) US8306240B2 (zh)
EP (1) EP2345032B1 (zh)
JP (1) JP5342007B2 (zh)
CN (2) CN102187389B (zh)
WO (1) WO2010047909A1 (zh)

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070297619A1 (en) * 2006-06-26 2007-12-27 Bose Corporation*Ewc* Active noise reduction engine speed determining
US8194873B2 (en) * 2006-06-26 2012-06-05 Davis Pan Active noise reduction adaptive filter leakage adjusting
US8036767B2 (en) * 2006-09-20 2011-10-11 Harman International Industries, Incorporated System for extracting and changing the reverberant content of an audio input signal
JP4322916B2 (ja) * 2006-12-26 2009-09-02 本田技研工業株式会社 能動型振動騒音制御装置
US20090123523A1 (en) * 2007-11-13 2009-05-14 G. Coopersmith Llc Pharmaceutical delivery system
US8204242B2 (en) * 2008-02-29 2012-06-19 Bose Corporation Active noise reduction adaptive filter leakage adjusting
US8306240B2 (en) 2008-10-20 2012-11-06 Bose Corporation Active noise reduction adaptive filter adaptation rate adjusting
US8355512B2 (en) * 2008-10-20 2013-01-15 Bose Corporation Active noise reduction adaptive filter leakage adjusting
US8135140B2 (en) 2008-11-20 2012-03-13 Harman International Industries, Incorporated System for active noise control with audio signal compensation
US9020158B2 (en) * 2008-11-20 2015-04-28 Harman International Industries, Incorporated Quiet zone control system
US8718289B2 (en) * 2009-01-12 2014-05-06 Harman International Industries, Incorporated System for active noise control with parallel adaptive filter configuration
US8189799B2 (en) * 2009-04-09 2012-05-29 Harman International Industries, Incorporated System for active noise control based on audio system output
US8199924B2 (en) * 2009-04-17 2012-06-12 Harman International Industries, Incorporated System for active noise control with an infinite impulse response filter
US8077873B2 (en) * 2009-05-14 2011-12-13 Harman International Industries, Incorporated System for active noise control with adaptive speaker selection
DE202009009804U1 (de) * 2009-07-17 2009-10-29 Sennheiser Electronic Gmbh & Co. Kg Headset und Hörer
EP2486737B1 (en) * 2009-10-05 2016-05-11 Harman International Industries, Incorporated System for spatial extraction of audio signals
US8908877B2 (en) 2010-12-03 2014-12-09 Cirrus Logic, Inc. Ear-coupling detection and adjustment of adaptive response in noise-canceling in personal audio devices
JP5937611B2 (ja) 2010-12-03 2016-06-22 シラス ロジック、インコーポレイテッド パーソナルオーディオデバイスにおける適応ノイズキャンセラの監視制御
CN102176668B (zh) * 2011-02-24 2013-12-25 南京大学 一种变压器噪声有源控制算法
CN103477116B (zh) * 2011-04-05 2016-01-20 株式会社普利司通 车辆减振系统
US9318094B2 (en) 2011-06-03 2016-04-19 Cirrus Logic, Inc. Adaptive noise canceling architecture for a personal audio device
US9214150B2 (en) 2011-06-03 2015-12-15 Cirrus Logic, Inc. Continuous adaptation of secondary path adaptive response in noise-canceling personal audio devices
US8948407B2 (en) 2011-06-03 2015-02-03 Cirrus Logic, Inc. Bandlimiting anti-noise in personal audio devices having adaptive noise cancellation (ANC)
US8958571B2 (en) 2011-06-03 2015-02-17 Cirrus Logic, Inc. MIC covering detection in personal audio devices
US9824677B2 (en) 2011-06-03 2017-11-21 Cirrus Logic, Inc. Bandlimiting anti-noise in personal audio devices having adaptive noise cancellation (ANC)
US9325821B1 (en) 2011-09-30 2016-04-26 Cirrus Logic, Inc. Sidetone management in an adaptive noise canceling (ANC) system including secondary path modeling
US9641934B2 (en) * 2012-01-10 2017-05-02 Nuance Communications, Inc. In-car communication system for multiple acoustic zones
US9654866B2 (en) * 2012-01-27 2017-05-16 Conexant Systems, Inc. System and method for dynamic range compensation of distortion
US8892046B2 (en) * 2012-03-29 2014-11-18 Bose Corporation Automobile communication system
US9014387B2 (en) 2012-04-26 2015-04-21 Cirrus Logic, Inc. Coordinated control of adaptive noise cancellation (ANC) among earspeaker channels
US9142205B2 (en) 2012-04-26 2015-09-22 Cirrus Logic, Inc. Leakage-modeling adaptive noise canceling for earspeakers
US9319781B2 (en) * 2012-05-10 2016-04-19 Cirrus Logic, Inc. Frequency and direction-dependent ambient sound handling in personal audio devices having adaptive noise cancellation (ANC)
US9123321B2 (en) 2012-05-10 2015-09-01 Cirrus Logic, Inc. Sequenced adaptation of anti-noise generator response and secondary path response in an adaptive noise canceling system
US9082387B2 (en) 2012-05-10 2015-07-14 Cirrus Logic, Inc. Noise burst adaptation of secondary path adaptive response in noise-canceling personal audio devices
US9318090B2 (en) 2012-05-10 2016-04-19 Cirrus Logic, Inc. Downlink tone detection and adaptation of a secondary path response model in an adaptive noise canceling system
US9532139B1 (en) 2012-09-14 2016-12-27 Cirrus Logic, Inc. Dual-microphone frequency amplitude response self-calibration
CN102982798B (zh) * 2012-12-07 2015-07-15 奇瑞汽车股份有限公司 发电机的降噪系统
US9959852B2 (en) 2013-01-18 2018-05-01 Bose Corporation Vehicle engine sound extraction
US9031248B2 (en) 2013-01-18 2015-05-12 Bose Corporation Vehicle engine sound extraction and reproduction
US9167067B2 (en) 2013-02-14 2015-10-20 Bose Corporation Motor vehicle noise management
US9118987B2 (en) 2013-03-12 2015-08-25 Bose Corporation Motor vehicle active noise reduction
US9369798B1 (en) 2013-03-12 2016-06-14 Cirrus Logic, Inc. Internal dynamic range control in an adaptive noise cancellation (ANC) system
US9831898B2 (en) * 2013-03-13 2017-11-28 Analog Devices Global Radio frequency transmitter noise cancellation
US9215749B2 (en) 2013-03-14 2015-12-15 Cirrus Logic, Inc. Reducing an acoustic intensity vector with adaptive noise cancellation with two error microphones
US9414150B2 (en) 2013-03-14 2016-08-09 Cirrus Logic, Inc. Low-latency multi-driver adaptive noise canceling (ANC) system for a personal audio device
US9208771B2 (en) 2013-03-15 2015-12-08 Cirrus Logic, Inc. Ambient noise-based adaptation of secondary path adaptive response in noise-canceling personal audio devices
US9467776B2 (en) 2013-03-15 2016-10-11 Cirrus Logic, Inc. Monitoring of speaker impedance to detect pressure applied between mobile device and ear
US9635480B2 (en) 2013-03-15 2017-04-25 Cirrus Logic, Inc. Speaker impedance monitoring
US9324311B1 (en) 2013-03-15 2016-04-26 Cirrus Logic, Inc. Robust adaptive noise canceling (ANC) in a personal audio device
US9344796B2 (en) 2013-03-25 2016-05-17 Bose Corporation Active reduction of harmonic noise from multiple noise sources
US9191739B2 (en) 2013-03-25 2015-11-17 Bose Corporation Active reduction of harmonic noise from multiple rotating devices
US9177542B2 (en) * 2013-03-29 2015-11-03 Bose Corporation Motor vehicle adaptive feed-forward noise reduction
US10206032B2 (en) 2013-04-10 2019-02-12 Cirrus Logic, Inc. Systems and methods for multi-mode adaptive noise cancellation for audio headsets
US9462376B2 (en) 2013-04-16 2016-10-04 Cirrus Logic, Inc. Systems and methods for hybrid adaptive noise cancellation
US9460701B2 (en) 2013-04-17 2016-10-04 Cirrus Logic, Inc. Systems and methods for adaptive noise cancellation by biasing anti-noise level
US9478210B2 (en) 2013-04-17 2016-10-25 Cirrus Logic, Inc. Systems and methods for hybrid adaptive noise cancellation
US20140314241A1 (en) * 2013-04-22 2014-10-23 Vor Data Systems, Inc. Frequency domain active noise cancellation system and method
US9578432B1 (en) 2013-04-24 2017-02-21 Cirrus Logic, Inc. Metric and tool to evaluate secondary path design in adaptive noise cancellation systems
US9264808B2 (en) 2013-06-14 2016-02-16 Cirrus Logic, Inc. Systems and methods for detection and cancellation of narrow-band noise
US9837066B2 (en) 2013-07-28 2017-12-05 Light Speed Aviation, Inc. System and method for adaptive active noise reduction
US9392364B1 (en) 2013-08-15 2016-07-12 Cirrus Logic, Inc. Virtual microphone for adaptive noise cancellation in personal audio devices
US9177541B2 (en) 2013-08-22 2015-11-03 Bose Corporation Instability detection and correction in sinusoidal active noise reduction system
US9591403B2 (en) 2013-08-22 2017-03-07 Bose Corporation Instability detection and correction in sinusoidal active noise reduction systems
US9269344B2 (en) 2013-09-03 2016-02-23 Bose Corporation Engine harmonic cancellation system afterglow mitigation
US9607602B2 (en) * 2013-09-06 2017-03-28 Apple Inc. ANC system with SPL-controlled output
US9666176B2 (en) 2013-09-13 2017-05-30 Cirrus Logic, Inc. Systems and methods for adaptive noise cancellation by adaptively shaping internal white noise to train a secondary path
US9620101B1 (en) 2013-10-08 2017-04-11 Cirrus Logic, Inc. Systems and methods for maintaining playback fidelity in an audio system with adaptive noise cancellation
US10382864B2 (en) 2013-12-10 2019-08-13 Cirrus Logic, Inc. Systems and methods for providing adaptive playback equalization in an audio device
US10219071B2 (en) 2013-12-10 2019-02-26 Cirrus Logic, Inc. Systems and methods for bandlimiting anti-noise in personal audio devices having adaptive noise cancellation
US9704472B2 (en) 2013-12-10 2017-07-11 Cirrus Logic, Inc. Systems and methods for sharing secondary path information between audio channels in an adaptive noise cancellation system
US9369557B2 (en) 2014-03-05 2016-06-14 Cirrus Logic, Inc. Frequency-dependent sidetone calibration
US9479860B2 (en) 2014-03-07 2016-10-25 Cirrus Logic, Inc. Systems and methods for enhancing performance of audio transducer based on detection of transducer status
US9648410B1 (en) 2014-03-12 2017-05-09 Cirrus Logic, Inc. Control of audio output of headphone earbuds based on the environment around the headphone earbuds
US9319784B2 (en) 2014-04-14 2016-04-19 Cirrus Logic, Inc. Frequency-shaped noise-based adaptation of secondary path adaptive response in noise-canceling personal audio devices
US9609416B2 (en) 2014-06-09 2017-03-28 Cirrus Logic, Inc. Headphone responsive to optical signaling
US10181315B2 (en) 2014-06-13 2019-01-15 Cirrus Logic, Inc. Systems and methods for selectively enabling and disabling adaptation of an adaptive noise cancellation system
US9478212B1 (en) 2014-09-03 2016-10-25 Cirrus Logic, Inc. Systems and methods for use of adaptive secondary path estimate to control equalization in an audio device
JP6499279B2 (ja) 2014-09-24 2019-04-10 ボーズ・コーポレーションBose Corporation 複数のノイズ源からの高調波ノイズの能動低減
US9240819B1 (en) * 2014-10-02 2016-01-19 Bose Corporation Self-tuning transfer function for adaptive filtering
US9466282B2 (en) 2014-10-31 2016-10-11 Qualcomm Incorporated Variable rate adaptive active noise cancellation
US9552805B2 (en) 2014-12-19 2017-01-24 Cirrus Logic, Inc. Systems and methods for performance and stability control for feedback adaptive noise cancellation
KR20180044324A (ko) 2015-08-20 2018-05-02 시러스 로직 인터내셔널 세미컨덕터 리미티드 피드백 적응적 잡음 소거(anc) 제어기 및 고정 응답 필터에 의해 부분적으로 제공되는 피드백 응답을 갖는 방법
US9578415B1 (en) 2015-08-21 2017-02-21 Cirrus Logic, Inc. Hybrid adaptive noise cancellation system with filtered error microphone signal
JP6727825B2 (ja) * 2016-02-02 2020-07-22 キヤノン株式会社 音声処理装置および音声処理方法
US10013966B2 (en) 2016-03-15 2018-07-03 Cirrus Logic, Inc. Systems and methods for adaptive active noise cancellation for multiple-driver personal audio device
JP2017197021A (ja) * 2016-04-27 2017-11-02 パナソニックIpマネジメント株式会社 能動型騒音低減装置及び能動型騒音低減方法
KR102503684B1 (ko) 2016-06-24 2023-02-28 삼성전자주식회사 전자 장치 및 그의 동작 방법
CN106094654B (zh) * 2016-08-16 2018-10-26 武汉大学 一种基于扰动观测法的电力变压器有源噪声控制系统
US10789932B2 (en) * 2016-10-20 2020-09-29 Harman Becker Automotive Systems Gmbh Noise control
TWI604439B (zh) * 2017-01-17 2017-11-01 瑞昱半導體股份有限公司 噪音消除裝置與噪音消除方法
US10163432B2 (en) * 2017-02-23 2018-12-25 2236008 Ontario Inc. Active noise control using variable step-size adaptation
EP3593349B1 (en) * 2017-03-10 2021-11-24 James Jordan Rosenberg System and method for relative enhancement of vocal utterances in an acoustically cluttered environment
CN109059992B (zh) * 2018-10-26 2020-06-26 河北农业大学 一种禽舍环境传感器的在线监控系统及其监控方法
CN111862924A (zh) * 2019-04-25 2020-10-30 瑞昱半导体股份有限公司 用于主动式降噪的音频调校方法以及相关音频调校装置
US11380298B2 (en) * 2020-02-05 2022-07-05 Bose Corporation Systems and methods for transitioning a noise-cancellation system
CN112865752A (zh) * 2020-12-24 2021-05-28 南京财经大学 一种混合网络攻击下基于自适应事件触发机制的滤波器设计方法
JP7157831B2 (ja) * 2021-01-22 2022-10-20 本田技研工業株式会社 能動騒音制御装置
CN113870823B (zh) * 2021-09-26 2024-04-30 西南石油大学 一种基于频域指数函数连接网络的有源噪声控制方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243959A (en) 1979-06-21 1981-01-06 Bell Telephone Laboratories, Incorporated Adaptive filter with tap coefficient leakage
US5386472A (en) 1990-08-10 1995-01-31 General Motors Corporation Active noise control system
US5359662A (en) 1992-04-29 1994-10-25 General Motors Corporation Active noise control system
US5222148A (en) 1992-04-29 1993-06-22 General Motors Corporation Active noise control system for attenuating engine generated noise
US5321759A (en) 1992-04-29 1994-06-14 General Motors Corporation Active noise control system for attenuating engine generated noise
US5418857A (en) 1993-09-28 1995-05-23 Noise Cancellation Technologies, Inc. Active control system for noise shaping
US5689572A (en) 1993-12-08 1997-11-18 Hitachi, Ltd. Method of actively controlling noise, and apparatus thereof
US5475761A (en) 1994-01-31 1995-12-12 Noise Cancellation Technologies, Inc. Adaptive feedforward and feedback control system
US5627896A (en) 1994-06-18 1997-05-06 Lord Corporation Active control of noise and vibration
US5586190A (en) 1994-06-23 1996-12-17 Digisonix, Inc. Active adaptive control system with weight update selective leakage
JPH08261277A (ja) * 1995-03-27 1996-10-08 Mazda Motor Corp 車両の振動低減装置
US5715320A (en) 1995-08-21 1998-02-03 Digisonix, Inc. Active adaptive selective control system
US5694474A (en) 1995-09-18 1997-12-02 Interval Research Corporation Adaptive filter for signal processing and method therefor
US5838599A (en) 1996-09-13 1998-11-17 Measurex Corporation Method and apparatus for nonlinear exponential filtering of signals
US5805457A (en) 1996-12-06 1998-09-08 Sanders; David L. System for analyzing sound quality in automobiles using musical intervals
US6418227B1 (en) 1996-12-17 2002-07-09 Texas Instruments Incorporated Active noise control system and method for on-line feedback path modeling
JP3216704B2 (ja) 1997-08-01 2001-10-09 日本電気株式会社 適応アレイ装置
US6778966B2 (en) 1999-11-29 2004-08-17 Syfx Segmented mapping converter system and method
WO2001067953A1 (en) 2000-03-15 2001-09-20 Cardiac Focus, Inc. Continuous localization and guided treatment of cardiac arrhythmias
EP1287521A4 (en) 2000-03-28 2005-11-16 Tellabs Operations Inc PERCEPTIVE SPECTRAL WEIGHTING OF FREQUENCY BANDS FOR ADAPTIVE REMOVAL OF NOISE
US6741707B2 (en) 2001-06-22 2004-05-25 Trustees Of Dartmouth College Method for tuning an adaptive leaky LMS filter
CA2354808A1 (en) 2001-08-07 2003-02-07 King Tam Sub-band adaptive signal processing in an oversampled filterbank
JP4079831B2 (ja) * 2003-05-29 2008-04-23 松下電器産業株式会社 能動型騒音低減装置
US20050147258A1 (en) 2003-12-24 2005-07-07 Ville Myllyla Method for adjusting adaptation control of adaptive interference canceller
US7426464B2 (en) 2004-07-15 2008-09-16 Bitwave Pte Ltd. Signal processing apparatus and method for reducing noise and interference in speech communication and speech recognition
JP4664116B2 (ja) * 2005-04-27 2011-04-06 アサヒビール株式会社 能動騒音抑制装置
ATE450983T1 (de) 2005-04-29 2009-12-15 Harman Becker Automotive Sys Kompensation des echos und der rückkopplung
DE102006029194B4 (de) * 2006-06-26 2010-04-15 Siemens Audiologische Technik Gmbh Vorrichtung und Verfahren zur Schrittweitensteuerung eines adaptiven Filters
US8194873B2 (en) 2006-06-26 2012-06-05 Davis Pan Active noise reduction adaptive filter leakage adjusting
US20070297619A1 (en) 2006-06-26 2007-12-27 Bose Corporation*Ewc* Active noise reduction engine speed determining
US9560448B2 (en) 2007-05-04 2017-01-31 Bose Corporation System and method for directionally radiating sound
US8483413B2 (en) 2007-05-04 2013-07-09 Bose Corporation System and method for directionally radiating sound
US8204242B2 (en) 2008-02-29 2012-06-19 Bose Corporation Active noise reduction adaptive filter leakage adjusting
US8306240B2 (en) 2008-10-20 2012-11-06 Bose Corporation Active noise reduction adaptive filter adaptation rate adjusting
US8355512B2 (en) 2008-10-20 2013-01-15 Bose Corporation Active noise reduction adaptive filter leakage adjusting
US8335318B2 (en) 2009-03-20 2012-12-18 Bose Corporation Active noise reduction adaptive filtering

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Active Engine Vibration Control With Variable μ Method;AMONYMOUS;《RESEARCH DISCLOSURE,MASON PUBLICATIONS,HAMPSHIRE, GB》;19930101;第345卷(第21期);1-2 *
Alexander D.Streeter,et al..Hybrid feedforward-feedback active noise control.《PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE》.2004,2876-2881. *
AMONYMOUS.Active Engine Vibration Control With Variable μ Method.《RESEARCH DISCLOSURE,MASON PUBLICATIONS,HAMPSHIRE, GB》.1993,第345卷(第21期),1-2. *

Also Published As

Publication number Publication date
EP2345032A1 (en) 2011-07-20
CN104299610B (zh) 2018-04-27
JP2012506070A (ja) 2012-03-08
CN104299610A (zh) 2015-01-21
JP5342007B2 (ja) 2013-11-13
CN102187389A (zh) 2011-09-14
US8306240B2 (en) 2012-11-06
EP2345032B1 (en) 2019-03-06
US8571230B2 (en) 2013-10-29
US20120230506A1 (en) 2012-09-13
WO2010047909A1 (en) 2010-04-29
US20100098265A1 (en) 2010-04-22

Similar Documents

Publication Publication Date Title
CN102187389B (zh) 有源降噪自适应滤波器自适应率调节
CN102187387A (zh) 调节有源降噪滤波器的泄漏因子
CN101473370B (zh) 利用自适应滤波器泄漏调节的主动降噪
CN101473371B (zh) 主动降噪引擎速度的确定
CN102356426B (zh) 主动降噪自适应滤波
US8204242B2 (en) Active noise reduction adaptive filter leakage adjusting
EP1780082B1 (en) Active noise reducing device
WO2016124896A1 (en) Loudspeaker protection
WO2007011010A1 (ja) 能動騒音低減装置
EP3486896B1 (en) Noise cancellation system and signal processing method
JP3502112B2 (ja) 騒音キャンセル装置
JP2004050859A (ja) 車両用騒音制御装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant