CN102119164A - 可溶液处理的有机半导体 - Google Patents

可溶液处理的有机半导体 Download PDF

Info

Publication number
CN102119164A
CN102119164A CN2009801310799A CN200980131079A CN102119164A CN 102119164 A CN102119164 A CN 102119164A CN 2009801310799 A CN2009801310799 A CN 2009801310799A CN 200980131079 A CN200980131079 A CN 200980131079A CN 102119164 A CN102119164 A CN 102119164A
Authority
CN
China
Prior art keywords
alkyl
layer
semiconductor layer
semiconductor
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801310799A
Other languages
English (en)
Inventor
朱培旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN102119164A publication Critical patent/CN102119164A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明描述了半导体材料、包含所述半导体材料的组合物、包含所述半导体材料的半导体器件以及制备包含所述半导体材料的半导体器件的方法。更具体地讲,所述半导体材料是小分子半导体,所述小分子半导体是被两个甲硅烷基乙炔基以及两个供电子基取代的蒽基化合物(即蒽衍生物)。

Description

可溶液处理的有机半导体
技术领域
本发明描述了半导体材料、包含该半导体材料的组合物、包含该半导体材料的半导体器件以及制备包含该半导体材料的半导体器件的方法。
背景技术
传统上,无机材料一直在半导体行业中占主导地位。例如,砷化硅和砷化镓已被用作半导体材料,二氧化硅已被用作绝缘材料,诸如铝和铜之类的金属已被用作电极材料。然而,近年来,已经有越来越多的研究工作着眼于在半导体器件中使用有机材料而不使用传统的无机材料。除了其它有益效果外,使用有机材料使得能以更低的成本制造电子器件,使得能大面积的应用,并且使得能将柔性电路支承体用于显示器底板或集成电路。
已经考虑了多种有机半导体材料,最常见的是并四苯、并五苯、双(并苯基)乙炔和并苯-噻吩所示例的稠合芳环化合物;含有噻吩或芴单元的低聚物材料;以及诸如区域规则性聚(3-烷基噻吩)之类的聚合物材料。这些有机半导体材料中的至少一些具有相当于或优于无定形硅基器件的性能特性,例如,载流子迁移率、开/关电流比以及亚阈值电压。这些材料由于它们在大多数溶剂中不易溶解而通常需要进行气相沉积。
并五苯由于其良好的电子性能特性而常常为有机半导体的选择。然而,并五苯难以合成和纯化。由于并五苯在许多普通溶剂中的溶解度有限,含有并五苯的半导体层通常不能用基于溶剂的沉积技术来形成。基于溶剂的沉积技术的另外的复杂性表现在,并五苯在许多溶液中往往会氧化或发生二聚化反应。一旦沉积在半导体层中,并五苯会随时间推移而氧化。这可导致含有氧化并五苯的半导体器件的性能降低或完全失效。
发明内容
本发明描述了半导体材料、包含该半导体材料的组合物、包含该半导体材料的半导体器件以及制备包含该半导体材料的半导体器件的方法。更具体地讲,该半导体材料是小分子半导体,该小分子半导体是被两个甲硅烷基乙炔基以及两个供电子基取代的蒽基化合物(即,蒽衍生物)。
在第一方面,提供了式(I)表示的小分子半导体。
Figure BPA00001310059700021
在该式中,每个R1独立地是苯基或萘基。所述苯基或萘基可以是未取代的或可被一个或多个选自卤素、羟基、氨基、烷基、烯基、烷氧基、酰氧基、杂芳基、杂烷基或杂芳烷基的基团取代。每个R2基团独立地选自烷基、烯基、烷氧基、芳基、杂芳基、芳烷基、杂烷基、杂芳烷基或羟烷基。
在第二方面,提供了包含(a)小分子半导体和(b)有机溶剂的组合物。小分子半导体具有如上所述的式(I)。在一些实施例中,组合物还包含绝缘聚合物。
在第三方面,提供了半导体器件。该半导体器件包含半导体层,该半导体层包含式(I)表示的小分子半导体。在一些实施例中,半导体层还包含绝缘聚合物。
在第四方面,提供了制造半导体器件的方法。该方法包括提供包含式(I)表示的小分子半导体的半导体层。在一些实施例中,半导体层还包含绝缘聚合物。
本发明的以上概述并非旨在描述本发明的每个实施例或本发明的每项具体实施。以下的附图、具体实施方式和实例将更具体地说明这些实施例。
附图说明
结合以下附图对本发明的多个实施例的详细说明,可以更全面地理解本发明,其中:
图1示意性地示出了第一示例性薄膜晶体管。
图2示意性地示出了第二示例性薄膜晶体管。
图3示意性地示出了第三示例性薄膜晶体管。
图4示意性地示出了第四示例性薄膜晶体管。
图5示意性地示出了第五示例性薄膜晶体管。
图6示意性地示出了第六示例性薄膜晶体管。
虽然本发明可修改为各种变化形式和替代形式,但其细节已在附图中以举例的方式示出并将做详细描述。应当理解,本发明不局限于所述的具体实施例。相反,本发明的目的在于覆盖属于本发明的精神和范围内的所有修改形式、等同物及替代形式。
具体实施方式
提供小分子半导体,其可包括在半导体器件(例如薄膜晶体管)内的半导体层中。通常是p-型半导体的小分子半导体是蒽衍生物,具有两个甲硅烷基乙炔基以及两个供电子基团。供电子基团选自苯基或萘基,并且可以是未取代的或可被一个或多个诸如卤素、羟基、氨基、烷基、烯基、烷氧基、酰氧基、杂芳基、杂烷基或杂芳烷基之类的取代基取代。
如本文所用,术语“一(种)”、“一个(种)”和“该”与“至少一个(种)”可互换使用,意指一个(种)或多个(种)被描述的要素。
术语“烷基”指其为烷烃基团的一价基团,所述烷烃是饱和烃。烷基可以是直链的、支链的、环状的或其组合,通常含有1至30个碳原子。在一些实施例中,烷基含有1至20个碳原子、1至14个碳原子、1至10个碳原子、4至10个碳原子、4至8个碳原子、1至8个碳原子、1至6个碳原子或1至4个碳原子。烷基的例子包括(但不限于):甲基、乙基、正丙基、异丙基、正丁基、叔丁基、异丁基、正戊基、正己基、环己基、环戊基、环丁基、环丙基、正庚基、正辛基和乙基己基。
术语“烷氧基”指由其中R为烷基的式-OR表示的一价基团。例子包括甲氧基、乙氧基、丙氧基、丁氧基等。
术语“烯基”指为烯烃基团的一价基团,所述烯烃为具有至少一个碳-碳双键的烃。烯基可以是直链的、支链的、环状的或其组合,并且通常含有2至30个碳原子。在一些实施例中,烯基含有2至20个碳原子、2至14个碳原子、2至10个碳原子、4至10个碳原子、4至8个碳原子、2至8个碳原子、2至6个碳原子或2至4个碳原子。示例性的烯基包括乙烯基、正丙烯基(即,烯丙基)、异丙烯基和正丁烯基。
术语“氨基”指式-N(Rb)2表示的一价基团,其中每个Rb独立地是氢、烷基、杂烷基、芳基或芳烷基。
术语“芳基”指为芳族碳环化合物基团的一价基团。术语“碳环”指其中所有环原子是碳的环结构。芳基可具有一个芳环或可包括最多5个连接至或稠合至芳环的碳环结构。其它环结构可以是芳族的、非芳族的或它们的组合。芳基的例子包括但不限于苯基、联苯基、三联苯基、蒽基、萘基、苊基、蒽醌基、菲基、蒽基、芘基、苝基和芴基。
术语“芳烷基”指为化合物R-Ar的基团的单价基团,其中Ar是芳族碳环基团和R是烷基。通常,芳烷基是由芳基取代的烷基。
术语“酰氧基”指式-O(CO)Rc表示的一价基团,其中(CO)代表羰基,Rc是烷基、杂烷基、芳基或芳烷基。
术语“卤素”指卤素基团(即-F、-Cl、-Br或-I)。
术语“羟烷基”指至少一个羟基取代的烷基。
术语“杂烷基”指一个或多个-CH2-基团被硫基、氧基、式-NRb-表示的基团(其中Rb是氢、烷基、杂烷基、芳烷基或芳基)或式-SiR2-表示的基团(其中R是烷基)取代的烷基。所述杂烷基可为直链、支链、环状或其组合,并且可包括最多30个碳原子和最多20个杂原子。在一些实施例中,所述杂烷基包括最多25个碳原子、最多20个碳原子、最多15个碳原子或最多10个碳原子。硫代烷基和烷氧基是杂烷基的子集。其他杂烷基在硫基、氧基、-NRb-或-SiR2-的两侧上具有-CH2-基团。
术语“杂芳基”指具有五至七元芳环的一价基团,该五元至七元芳环在环中包括一个或多个独立地选自S、O、N或它们的组合的杂原子。该杂芳基环可连接至或稠合至最多5个环结构,所述结构是芳族、脂肪族或其组合。杂芳基的例子包括,但不限于呋喃基、苯硫基、吡咯基、咪唑基、吡唑基、三唑基、四唑基、噻唑基、噁唑基、异噁唑基、噁二唑基、噻二唑基、异噻唑基、吡啶基、哒嗪基、吡嗪基、嘧啶基、喹啉基、异喹啉基、苯并呋喃基、苯并噻吩基、吲哚基、咔唑基、苯并噁唑基、苯并噻唑基、苯咪唑基、噌啉基、喹唑啉基、喹噁啉基、酞嗪基、苯并噻二唑基、苯并三嗪基、吩嗪基、菲啶基、吖啶基以及吲唑基等。
术语“杂芳烷基”指杂芳基取代的烷基。
术语“羟基”指式-OH表示的基团。
术语“甲硅烷基乙炔基”指式-C≡C-Si(Ra)3表示的一价基团,其中Ra独立地选自烷基、烷氧基、烯基、杂烷基、羟烷基、芳基、芳烷基、杂芳基或杂芳烷基。这些基团有时称作硅烷基乙炔基团。
术语“三烷基甲硅烷基”指由式-SiR3表示的一价基团,其中每个R都是烷基。
短语“在…范围内”包括范围的端值和端值之间的所有数字。例如,短语在1至10范围包括1、10和在1和10之间的所有数字。此外,除非另外指明,否则没有具体称为范围的任何范围的表述包括端点和在端点之间的所有数字。
除非另外指明,否则在所有的情况下,说明书和权利要求书中使用的表示特征大小、量和物理性质的所有数字都应该理解为受术语“大约”限制的。因此,除非有相反的指示,否则所示数字是近似值,取决于所期望的性质利用本文所公开的教导内容而可以变化。
在第一方面,提供了小分子半导体。如本文所用,关于半导体材料的术语“小分子”意指该半导体不是聚合物材料。小分子半导体是具有两个甲硅烷基乙炔基以及两个供电子基的蒽衍生物。该小分子半导体由如下式(I)表示。
Figure BPA00001310059700071
在该化学式中,每个R1独立地选自苯基或萘基,其中苯基或萘基可以是未取代的或被一个或多个取代基取代。适用于苯基或萘基的取代基包括卤素、羟基、氨基、烷基、烯基、烷氧基、酰氧基、杂芳基、杂烷基或杂芳烷基。每个R2基团独立地选自烷基、烯基、烷氧基、芳基、杂芳基、芳烷基、杂烷基、杂芳烷基或羟烷基。
适用于苯基或萘基R1基团的烷基、烯基、烷氧基、酰氧基和杂烷基取代基可以是直链的、环状的或它们的组合,通常含有最多10个碳原子、最多8个碳原子、最多6个碳原子或最多4个碳原子。用于苯基或萘基R1基团的杂烷基取代基通常具有氧基作为杂原子。适合的杂芳基取代基通常具有包括1或2个杂原子的5元或6元饱和或不饱和的杂环。示例性的杂芳烷基取代基具有最多10个碳原子的烷基,其被具有1或2个杂原子的5元或6元杂芳基取代。适合的氨基可以是伯氨基、仲氨基或叔氨基。
在一些实施例中,R1基团是单个R3基团取代的苯基或单个R3基团取代的萘基,如式(II)至(IV)所示,其中R3选自氢、卤素、羟基、氨基、烷基、烯基、烷氧基、酰氧基、杂芳基、杂烷基或杂芳烷基。R3基团可位于不直接连接到小分子的蒽部分的苯基或萘基的任何碳原子上。
在一些更具体的实施例中,式(I)中的R1基团可具有式(V)或(VI)。
Figure BPA00001310059700082
在一些甚至更具体的实施例中,式(II)至(VI)中任一者中的R3是具有最多10个碳原子、最多6个碳原子、最多4个碳原子、最多3个碳原子或1个碳原子的烷氧基。
式(I)表示的小分子半导体中包括的每个甲硅烷基乙炔基具有式-C≡C-Si-(R2)3,其中每个R2独立地选自烷基、烷氧基、烯基、芳基、杂芳基、芳烷基、杂烷基、杂芳烷基或羟烷基。示例性的烷基、烷氧基、烯基、杂烷基以及羟烷基团可以是直链的、支链的、环状或它们的组合,并且通常具有最多10个碳原子、最多8个碳原子、最多6个碳原子或最多4个碳原子。示例性的芳基是苯基,示例性的芳烷基是由苯基取代的具有最多10个碳原子的烷基。示例性的杂芳基通常具有包含1或2个杂原子的5元或6元不饱和杂环。示例性的杂芳烷基具有含最多10个碳原子的烷基,所述烷基由具有1或2个杂原子的5元或6元杂芳基取代。
在一些示例性的甲硅烷基乙炔基中,每个R2是直链或支链的且具有最多10个碳原子、最多8个碳原子、最多6个碳原子或最多4个碳原子的烷基。也就是说,甲硅烷基乙炔基团是三烷基甲硅烷基乙炔基团。每个R2基团可例如是异丙基、正丙基、正丁基、正戊基或正己基。例如,甲硅烷基乙炔基可以是三异丙基甲硅烷基乙炔基,其中每个R2是异丙基。
在其他示例性甲硅烷基乙炔基中,每个R2基团是烷基,但至少一个烷基是环状的。烷基中的碳原子全部或仅一部分可包含在碳环中。一些示例性的烷基具有3至6个碳原子,所有的碳原子均是碳环的一部分。其他示例性的烷基具有含最多10个碳原子的直链或支链部分,该部分连接至具有最多6个碳原子的环部分。烷基的非环部分(即直链或支链部分)或环部分可连接至甲硅烷基乙炔基的硅。环烷基的例子包括(但不限于)环丙基、环丁基、环戊基、环己基、2,2,3,3-四甲基环丙基、2,3-二甲基环丙基、环丁基亚甲基和环丙基亚甲基。
在另外其他示例性甲硅烷基乙炔基中,至少一个R2基团是烯基,并且不是烯基的任何R2基团是烷基。即,甲硅烷基乙炔基可以是三烯基甲硅烷基乙炔基、烷基二烯基甲硅烷基乙炔基或二烷基烯基甲硅烷基乙炔基。烯基和烷基的每一者可以是直链的或支链的,并且可具有最多10个碳原子、最多8个碳原子、最多6个碳原子或最多4个碳原子。例如,每个烯基和任何烷基可具有3或4个碳原子。示例性的烯基包括(但不限于)烯丙基、异丙烯基、2-丁-1-烯基和3-丁-1-烯基。
可通过任何已知的合成方法制备式(I)的小分子半导体。例如,可如反应方案A所示制备半导体。
Figure BPA00001310059700101
最初,将式H-C≡CH-Si(R2)3表示的甲硅烷基乙炔化合物用丁基锂处理,以形成甲硅烷基乙炔化合物的锂化形式Li-C≡CH-Si(R2)3。各种甲硅烷基乙炔化合物是市售的。例如,(三甲基甲硅烷基)乙炔、(三乙基甲硅烷基)乙炔、(三异丙基甲硅烷基)乙炔和(叔丁基二甲基甲硅烷基)乙炔可得自GFS Chemicals(Columbus,OH)。(二甲基苯基甲硅烷基)乙炔、(甲基二苯基甲硅烷基)乙炔和(三苯基甲硅烷基)乙炔可得自Sigma Aldrich(Milwaukee,WI)。
然后将甲硅烷基乙炔化合物的锂化形式与2,6-二卤代蒽醌如2,6-二溴蒽醌反应。随后可将所得的二醇中间体用还原剂如氯化亚锡处理,以形成式(VII)表示的2,6-二卤-9,10-双(甲硅烷基乙炔基)蒽。2,6-二溴蒽醌可采用Ito等人,Angew.Chem.Int.Ed.,42,1159-1162(2003)中所述的工序,用得自Sigma Aldrich(Milwaukee,WI)的2,6-二氨基蒽醌制备。其可从N,N-二甲基甲酰胺(DMF)中进一步重结晶。
然后将式(VII)表示的2,6-二卤-9,10-双(甲硅烷基乙炔基)蒽与二氧杂环戊硼烷(例如,联硼酸频那醇酯)反应,以形成具有两个二氧杂环戊硼烷基团(例如,四甲基二氧杂环戊硼烷)的式(VIII)化合物。然后将式(VIII)化合物与式(IX)卤代苯或卤代萘化合物反应以形成式(X)的半导体化合物。
适合的式(IX)卤代苯或卤代萘化合物是市售的。例如,4-溴苯甲醚、4-溴苯、4-溴代-N,N-二甲基苯胺、4-溴二苯基醚、4-溴甲苯、4-溴苯乙烯、1-溴代-4-乙苯、4-溴酚、4-溴代苯胺、4-溴代-N,N-二乙基苯胺、1-溴代-4-环己基苯、1-溴代-4-丁氧基苯、1-溴代-4-N-辛基苯、2-溴萘、2-溴代-6-甲氧基萘、6-溴代-2-萘酚、2-溴代-6-丁氧基萘、2-溴代-6-乙氧基萘、1-溴萘等可得自Alfa Aesar(Ward Hill,MA)。
当利用差示扫描量热法表征时,式(I)表示的小分子半导体通常是热稳定的。分解温度常大于350℃。式(I)表示的小分子半导体的溶液在环境条件下和一般室内照明条件下在长时间内是稳定的。例如,在环境条件和一般室内照明条件下储存数周后,溶液中没有观察到颜色变化。良好的稳定性源自蒽结构。蒽衍生物因为它们的较短共轭而通常比并五苯或并五苯衍生物示出更好的稳定性。在9、10位被取代的甲硅烷基乙炔基可防止这些分子与单态氧或其自身(二聚化反应)发生狄尔斯-阿德耳(Diels-Alder)加成反应。
在第二方面,提供了包含(a)式(I)表示的小分子半导体和(b)有机溶剂的组合物,例如涂层组合物。以组合物的总重量计,该组合物含有至少0.1重量%的溶解的式(I)小分子半导体。可使用可提供该最小溶解度的任何有机溶剂。通常基于式(I)小分子半导体上存在的R1和R2基团来选择有机溶剂。在一些应用中,选择有机溶剂以具有相对高的沸点和相对低的毒性。例如,对于一些但不是所有的应用而言,需要使用这样的有机溶剂,其具有高于80℃、高于90℃或高于100℃的沸点。该组合物可例如用来在半导体器件中形成半导体层。
第一种适合类型的有机溶剂具有可任选由一个或多个烷基取代的单芳环。也就是说,第一种适合类型的有机溶剂可以是未被取代的或被至少一个烷基取代的苯。该第一种类型的有机溶剂的例子包括(但不限于)苯、甲苯、二甲苯、邻二甲苯、间二甲苯、对二甲苯、乙苯、正丙苯、正丁苯、正戊苯和正己苯。第二种适合类型的有机溶剂是由一个或多个卤素基团取代的烷烃。该第二种类型的有机溶剂的例子包括(但不限于)氯仿、1,2-二氯乙烷、1,1,2,2-四氯乙烷和三氯乙烷。第三种适合类型的有机溶剂具有由一个或多个卤素基团取代的单芳环。也就是说,第三种适合类型的有机溶剂可以是由至少一个卤素基团取代的苯。该第三种类型的有机溶剂的例子包括(但不限于)氯苯和二氯苯。第四种适合类型的有机溶剂是环状的、直链的、支链的或其组合的酮。该第四种类型的有机溶剂的例子包括(但不限于)丙酮、甲基乙基酮、甲基异丁基酮、异佛乐酮、2,4-戊二酮、环戊酮、环己酮、2-甲基环戊酮、3-甲基环戊酮、2,4-二甲基环戊酮和1,3-环己酮。第五种适合类型的有机溶剂是醚,例如环醚或芳香醚。该第五种类型的有机溶剂的例子包括(但不限于)1,4-二噁烷、四氢呋喃(THF)和苯甲醚。第六种适合类型的有机溶剂是酰胺。该第六种类型的有机溶剂的例子包括(但不限于)N,N-二甲基甲酰胺(DMF)和N,N-二甲基乙酰胺(DMAc)。第七种适合类型的有机溶剂是例如具有至少6个碳原子的烷烃。该第七种类型的有机溶剂的例子包括(但不限于)辛烷、壬烷、癸烷和十二烷。在一些实施例中,溶剂是相同类型的多种有机溶剂的混合物,或不同类型的多种有机溶剂的混合物。
以组合物的总重量计,组合物中的小分子半导体的浓度常常为至少0.1重量%、至少0.2重量%、至少0.3重量%、至少0.5重量%、至少1.0重量%、至少1.5重量%或至少2.0重量%。以组合物的总重量计,小分子半导体的浓度常常为最多10重量%、最多5重量%、最多4重量%、最多3重量%或最多2重量%。在许多实施例中,至少50重量%、至少60重量%、至少70重量%、至少80重量%、至少90重量%、至少95重量%、至少98重量%或至少99重量%的小分子半导体溶解于组合物中。在这些实施例中,组合物可同时包含溶解的和分散或悬浮的式(I)表示的小分子半导体。在一些实施例中,存在于组合物中的全部量的小分子半导体都得以溶解。也就是说,在这些实施例中,小分子半导体可完全溶解于组合物中。
在一些实施例中,组合物还可包含绝缘聚合物。溶于适用于所述小分子半导体的有机溶剂中的任何绝缘聚合物都可用于组合物中。适合的绝缘聚合物通常不具有沿聚合物主链的共轭碳-碳双键。也就是说,绝缘聚合物在整个聚合物链的长度上是不导电的。然而,绝缘聚合物可具有带有共轭碳-碳双键的区域。例如,绝缘聚合物可具有共轭的芳族侧基。在一些实施例中,绝缘聚合物是脂族的,并具有(如果有的话)较少的碳-碳双键。
绝缘聚合物常为无定形材料。示例性的绝缘聚合物包括(但不限于)聚苯乙烯(PS)、聚(α-甲基苯乙烯)(PαMS)、聚(甲基丙烯酸甲酯)(PMMA)、聚乙烯基苯酚(PVP)、聚(乙烯醇)(PVA)、聚(醋酸乙烯酯)(PVAc)、聚氯乙烯(PVC)、聚二氟乙烯(PVDF)、氰乙基普鲁兰多糖(CYPEL)、聚(二乙烯基四甲基二硅氧烷-双(苯并环丁烯))(BCB)等。
绝缘聚合物可具有可溶于有机溶剂的任何适合的分子量。绝缘聚合物的分子量可影响组合物的粘度。具有较高分子量的绝缘聚合物往往会产生具有较高粘度的组合物。如果该组合物用于制备涂层,则所需粘度可至少部分地取决于用来制备涂层的方法。例如,与刮涂方法相比,较低粘度的组合物可用于喷墨方法。
然而,在许多实施例中,绝缘聚合物的分子量为至少1000g/摩尔、至少2000g/摩尔、至少5000g/摩尔、至少10,000g/摩尔、至少20,000g/摩尔、至少50,000g/摩尔或至少100,000g/摩尔。分子量常常不超过1,000,000g/摩尔、不超过500,000g/摩尔、不超过200,000g/摩尔或不超过100,000g/摩尔。分子量常常在1000至1,000,000g/摩尔的范围内、在2000至500,000g/摩尔的范围内或在2000至200,000g/摩尔的范围内。
以组合物的总重量计,组合物中的绝缘聚合物的浓度通常为至少0.1重量%、至少0.2重量%、至少0.5重量%、至少1.0重量%、至少1.5重量%、至少2.0重量%、至少2.5重量%、至少3重量%、至少5重量%或至少10重量%。浓度下限值可取决于组合物的使用。如果利用喷墨方法将组合物施加至表面,则以组合物的总重量计,绝缘聚合物的浓度通常为至少0.5重量%。较低的浓度可具有不期望的低粘度。然而,如果利用不同的技术(例如,刮涂法)将组合物施加至表面以形成涂层,则组合物的粘度可较低(即,以组合物的总重量计,绝缘聚合物的浓度可小于0.5重量%)。
以组合物的总重量计,组合物中绝缘聚合物的浓度常常为最多20重量%、最多10重量%、最多5重量%、最多4重量%或最多3重量%。如果浓度过高,则对许多应用而言,组合物的粘度可高得无法接受。通常,上限值由绝缘聚合物在组合物中的溶解度决定。绝缘聚合物通常溶解于或基本上溶解于组合物中,而不是分散或悬浮于组合物中。如本文所用,术语“基本上溶解”意指绝缘聚合物溶解于组合物中,但可能含有不溶于组合物的杂质。至少98重量%、至少99重量%、至少99.5重量%、至少99.8重量%或至少99.9重量%的绝缘聚合物溶解于组合物中。
在组合物中可使用任何比例的小分子半导体与绝缘聚合物。在一些应用中,小分子与绝缘聚合物的重量比在1∶10至20∶1的范围内、在1∶10至10∶1的范围内、在1∶8至8∶1的范围内、在1∶5至5∶1的范围内、在1∶4至4∶1的范围内、在1∶3至3∶1的范围内或在1∶2至2∶1的范围内。
以组合物的总重量计,组合物的固体百分比可以是任何需要的量,但通常在0.2至30重量%的范围内。固体百分比常在0.5至20重量%的范围内、在0.5至10重量%的范围内、在0.5至5重量%的范围内或在1至5重量%的范围内。在许多实施例中,固体百分比受有机溶剂中式(I)表示的小分子半导体的溶解度和绝缘聚合物的溶解度限制。
该组合物常用于制备半导体器件中的半导体层。因此,在另一个方面,提供了包含半导体层的半导体器件。半导体层包括(a)式(I)表示的小分子半导体。在一些实施例中,半导体层还包含绝缘聚合物。
半导体器件例如已在S.M.Sze的Physics of Semiconductor  Devices,第二版,John Wiley and Sons,New York (1981)中有所描述。这些半导体器件包括整流器、晶体管(其中存在许多类型,包括p-n-p、n-p-n和薄膜晶体管)、光电导体、电流限制器、热敏电阻器、p-n结、场效应二极管、肖特基二极管等。半导体器件可包括用来形成电路的元件,例如晶体管、晶体管阵列、二极管、电容器、嵌入式电容器和电阻器。半导体器件也可包括执行电子功能的电路阵列。这些阵列或集成电路的例子包括反相器、振荡器、移位寄存器和逻辑电路。这些半导体器件和阵列的应用包括射频识别器件(RFID)、智能卡、显示器背板、传感器、存储器器件等。
如图1至图6中示意性示出的,一些半导体器件是有机薄膜晶体管。图1至图6所示的各种薄膜晶体管中的任意给定层可包括多个材料层。此外,任何层可包括单一材料或多种材料。另外,如本文所用,术语“被设置”、“设置”、“被沉积”、“沉积”和“相邻”不排除在所提及的层之间存在另一层。如本文所用,这些术语意指第一层设置在第二层附近。第一层常接触第二层,但另一层可设置在第一层和第二层之间。
在图1中示意性地示出了有机薄膜晶体管100的一个实施例。有机薄膜晶体管(OTFT)100包括栅极14、设置在栅极14上的栅介质层16、源极22、漏极24以及与源极22和漏极24两者均接触的半导体层20。源极22和漏极24彼此分开(即,源极22不接触漏极24),并且与介质层16相邻布置。源极22和漏极24两者均与半导体层20接触,使得半导体层的一部分设置在源极和漏极之间。半导体层设置在源极与漏极之间的部分称为沟道21。沟道邻近栅介质层16。一些半导体器件在栅介质层16与半导体层20之间具有可选的表面处理层。
有机薄膜晶体管中可包括可选的基底。例如,如图2示意性地示出的,对于OTFT 200,可选的基底12可邻近栅极14,或者如图3示意性地示出的,对于OTFT 300,可选的基底12可邻近半导体层20。OTFT 300可包括在基底12与半导体层20之间的可选的表面处理层。
在图4中示意性地示出了有机薄膜晶体管的另一个实施例。此有机薄膜晶体管400包括栅极14、设置在栅极14上的栅介质层16、半导体层20以及设置在半导体层20上的源极22和漏极24。在该实施例中,半导体层20位于栅介质层16与源极22和漏极24两者之间。源极22和漏极24彼此分开(即,源极22没有接触漏极24)。源极22和漏极24两者均与半导体层接触,使得半导体层的一部分设置在源极和漏极之间。沟道21是半导体层设置在源极22和漏极24之间的部分。一个或多个可选的表面处理层可包括在半导体器件中。例如,可选表面处理层可包括在栅介质层16和半导体层20之间。
在有机薄膜晶体管中可包括可选的基底。例如,如图5示意性地示出的,对于OTFT 500,可选的基底12可与栅极14接触,或者如图6示意性地示出的,对于OTFT 600,可选的基底12可与半导体层20接触。OTFT 600可包括在基底12与半导体层20之间的可选表面处理层。
在图1至图6所示的半导体器件构造的操作过程中,电压可以施加至漏极24。然而,至少理想的是,没有电荷(即,电流)传至源极22,除非电压也施加至栅极14。也就是说,除非电压施加至栅极14,否则半导体层20中的沟道21仍保持在非导电的状态。一旦将电压施加到栅电极14上,则通道21变成导电性,并且电荷通过通道21从源极22流至漏极24。
在制造、测试和/或使用期间,一般由基底12支承OTFT。可选的是,基底可为OTFT提供电学功能。例如,基底的背面可提供电接触。可用的基底材料包括(但不限于):无机玻璃、陶瓷材料、聚合物材料、填充的聚合物材料(如纤维增强型聚合物材料)、金属、纸张、织造或非织造布、带涂层的或不带涂层的金属箔或它们的组合。
栅电极14可包括导电材料的一层或多层。例如,栅电极可包括掺杂质的硅材料、金属、合金、导电聚合物或它们的组合。适合的金属和合金包括(但不限于):铝、铬、金、银、镍、钯、铂、钽、钛、铟锡氧化物(ITO)、氟氧化锡(FTO)、掺杂锑的氧化锡(ATO)或它们的组合。示例性的导电聚合物包括(但不限于):聚苯胺、聚(3,4-亚乙二氧噻吩)/聚(苯乙烯磺酸)或聚吡咯。在一些有机薄膜晶体管中,相同的材料可提供基底的栅电极功能和支承功能两者。例如,掺杂质的硅可同时起到栅电极和基底的作用。
在一些实施例中,栅电极通过用含有导电材料的分散体涂覆基底表面来形成,所述的导电材料是例如导电的纳米颗粒和导电的聚合材料。导电性纳米粒子包括(但不限于):ITO纳米粒子、ATO纳米粒子、银纳米粒子、金纳米例子或碳纳米管。
栅介质层16可设置在栅极14上。该栅介质层16使栅极14与OTFT器件的其余部件电绝缘。栅介质的可用材料包括(例如)无机介质材料、聚合物介质材料或它们的组合。栅介质可以是单层或多层的合适电介质材料。单层或多层电介质中的每一层可包括一种或多种电介质材料。
有机薄膜晶体管可包括可选的表面处理层,该表面处理层设置在栅介质层16与有机半导体层20的至少一部分之间,或设置在基底12与有机半导体层20的至少一部分之间。在一些实施例中,可选的表面处理层充当栅介质层与半导体层之间或基底与半导体层之间的界面。表面处理层可以是美国专利No.6,433,359B1(Kelley等人)中所述的自组装单层,或者是美国专利No.6,946,676(Kelley等人)和美国专利No.6,617,609(Kelley等人)所述的聚合材料。
源极22和漏极24可以是金属、合金、金属化合物、导电金属氧化物、导电陶瓷、导电分散体和导电聚合物,包括例如,金、银、镍、铬、钡、铂、钯、铝、钙、钛、铟氧化锡(ITO)、氟氧化锡(FTO)、锑氧化锡(ATO)、铟氧化锌(IZO)、聚(3,4-亚乙基二氧噻吩)/聚(苯乙烯磺酸)、聚苯胺、其它导电聚合物、它们的合金、它们的组合以及它们的多层。这些材料中的一些适合与n-型半导体材料一起使用,并且其它适合与p-型半导体材料一起使用,这一点在本领域内是已知的。
薄膜电极(如栅极、源极和漏极)可通过本领域已知的任何手段如物理气相沉积(例如热蒸镀或溅射)、喷墨印刷等提供。可通过已知方法来实现这些电极的图案化,这些方法例如为荫罩、加成光刻法、减成光刻法、印刷法、微接触印刷法和图案涂层法。
在又一个方面,提供了制备半导体器件的方法。该方法包括提供包含式(I)表示的小分子半导体的半导体层。尽管可使用任何适合的方法来提供半导体层,但常利用组合物来提供该层。组合物可与上述的相同。在一些实施例中,组合物和所得的半导体层两者除了式(I)的小分子半导体之外,还包含绝缘聚合物。
在一些制备半导体器件的示例性方法中,所述方法包括提供选自介质层或导电层的第一层以及将半导体层邻近该第一层设置。并无必要按具体顺序进行制备或提供。然而,往往在另一层(例如介质层、导电层或基底)的表面上制备半导体层。例如,导电层可包括(例如)一个或多个电极如栅极或同时包括源极和漏极的层。将半导体层邻近第一层设置的步骤常包括:(1)制备组合物,其包含式(I)表示的小分子半导体、溶解至少一部分小分子半导体的有机溶剂;(2)将该组合物施加至第一层以形成涂层;以及(3)从该涂层除去至少一部分有机溶剂。以组合物的总重量计,该组合物含有至少0.1重量%的溶解的小分子半导体。通常,该组合物还含有至少0.1重量%的溶解的绝缘聚合物。
一些制备半导体器件的方法是制备有机薄膜晶体管的方法。一种制备有机薄膜晶体管的方法涉及将多个层按以下顺序布置:栅电极;栅介质层;具有彼此分开的源极和漏极的层;以及与源极和漏极两者相接触的半导体层。该半导体层包括式(I)表示的小分子半导体和任选的绝缘聚合物。图1至图6中示意性示出了根据该方法的示例性有机薄膜晶体管。
例如,图1示意性地示出有机薄膜晶体管可通过下列步骤加以制备:提供栅电极14;沉积与栅电极14相邻的栅介质层16;布置与栅介质层16相邻的源极22和漏极24,使得源极22和漏极24彼此分开;以及形成沉积在源极22上、漏极24上以及源极22与漏极24之间的区域21中的半导体层20。半导体层20同时接触源极22和漏极24两者。半导体层设置在源极与漏极之间区域中的部分限定了沟道。
图2示意性地示出的有机薄膜晶体管可通过下列步骤加以制备:提供基底12;在基底12上沉积栅电极14;沉积与栅电极14相邻的栅介质层16,使得栅电极14布置在基底12和栅介质层16之间;布置与栅介质层16相邻的源极22和漏极24,使得这两个电极彼此分开;以及邻近源极22、漏极24以及在源极22与漏极24之间的区域21中形成半导体层20。该半导体层20同时接触源极22和漏极24两者。半导体层设置在源极与漏极之间的区域中的部分限定了沟道。
图3示意性地示出的有机薄膜晶体管可通过下列步骤加以制备:提供基底12;形成与基底12相邻的半导体层20;与基底12相对于邻近半导体层20设置源极22和漏极24,使得源极22和漏极24彼此分开;沉积与源极22、漏极24以及半导体层20在源极22和漏极24之间的一部分相邻的栅介质层16;沉积与栅介质层16相邻的栅电极14。源极22和漏极24两者都与半导体层20接触。半导体层的一部分设置在源极22和漏极24之间。半导体层的该部分限定了通道。
图4至6示意性示出的有机薄膜晶体管可通过涉及以如下顺序布置多个层的方法加以制备:栅电极;栅介质层;包含式(I)的半导体和任选的绝缘聚合物的半导体层;以及具有彼此分开的源极和漏极的层,其中半导体层与漏极和源极两者均接触。在一些实施例中,表面处理层可设置在栅介质层和半导体层之间。基底可邻近栅电极设置或邻近包含源极和漏极的层设置。
例如,图4示意性示出的有机薄膜晶体管可通过如下制备:提供栅电极14;沉积相邻于栅电极14的栅介质层16;形成相邻于栅介质层16的半导体层20(即栅介质层16设置在栅电极14和半导体层20之间);以及将源极22和漏极24邻近半导体层20设置。该源极22和漏极24彼此分开,并且两个电极均与半导体层20接触。一部分半导体层设置在源极和漏极之间。
图5示意性示出的有机薄膜晶体管可通过如下步骤制备:提供基底12;邻近基底12沉积栅极14;邻近栅极14沉积栅介质层16,使得栅极14设置在基底12与栅介质层16之间;邻近栅介质层16形成半导体层20;以及将源极22和漏极24邻近半导体层20设置。该源极22和漏极24彼此分开,并且这两个电极均与半导体层20接触。半导体层20的一部分设置在源极22和漏极24之间。
图6示意性地示出的有机薄膜晶体管可通过下列步骤加以制备:提供基底12;设置与基底相邻的源极22和漏极24,使得源极22和漏极24彼此分开;形成接触源极22和漏极24的半导体层20;以及与源极22和漏极24相对邻近于半导体层沉积栅介质层16;以及邻近于栅介质层16沉积栅极14。一部分半导体层20设置在源极22和漏极24之间。
在图1至图6中示意性示出的任何有机薄膜晶体管中,半导体层可通过如下步骤形成:(1)制备组合物,该组合物含有式(I)表示的小分子半导体、任选的绝缘聚合物和溶解所述小分子半导体和所述任选的绝缘聚合物两者的至少一部分的有机溶剂;(2)将所述组合物施加至有机薄膜晶体管的另一层;以及(3)除去至少一部分有机溶剂。以组合物的总重量计,该组合物含有至少0.1重量%的溶解的式(I)表示的小分子半导体,并且可任选还含有至少0.1重量%的溶解的绝缘聚合物。
实例
所有试剂皆购自商业来源且不进一步纯化即使用除非另有说明。
碳酸钠、氯化锡(II)、双(频哪醇合)二硼、四(三苯基膦)钯(0)、4-溴苯甲醚和2-溴代-6-甲氧基萘购自SigmaAldrich(Milwaukee,WI)。
ALIQUAT 336(相转移催化剂)、正丁基锂和[1,1′-双(二苯基膦基)二茂铁]二氯化钯与二氯甲烷络合物得自Alfa Aesar(Ward Hill,MA)。
三异丙基甲硅烷基乙炔购自GFS Chemicals(Columbus,OH)。
将己烷和四氢呋喃(THF)在钠上蒸馏。
所有产物和中间体的分子结构都由1H-NMR(400MHz)确认。下列原料使用如下的公开工序来制备:
2,6-二溴蒽醌可如Ito等人,Angew.Chem.Int.Ed.,42,1159-1162(2003)所述用商购的2,6-二氨基蒽醌(Sigma Aldrich)制备。在升华后,将其在DMF中重结晶而进一步纯化。
前体2,6-双-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)-9,10-双-[(三异丙基甲硅烷基)乙炔基]蒽根据反应方案1合成,如制备例1和2所描述的。
将Suzuki偶合反应用来合成多种如反应方案2中所示的式(I)化合物。在实例1中,使前体2,6-双-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)-9,10-双-[(三异丙基甲硅烷基)乙炔基]蒽与4-溴苯甲醚(反应方案2中的R1-Br)反应。在实例2中,将相同前体与2-溴代-6-甲氧基萘(反应方案2中的R1-Br)反应。
Figure BPA00001310059700231
制备例1-2,6-二溴-9,10-双[(三异丙基甲硅烷基)乙炔基]蒽的合成
将三异丙基甲硅烷基乙炔(12.32g,67.5mmol)和干己烷(140mL)在干燥氮封下加至烘箱干燥的圆底烧瓶(1L)中。将丁基锂(在己烷中2.7M,14.5mL,39.2mmol)在干燥的氮气下通过注射器逐滴加至混合物。室温下搅拌混合物2小时。在干燥的氮气下向该无色溶液添加干THF(300mL)和2,6-二溴蒽醌(5.49g,15.0mmol)。溶液立即变红,并且2,6-二溴蒽醌在数分钟内溶解。室温下搅拌混合物过夜,溶液变成暗红色。加入去离子(DI)水(6.0mL),颜色变为淡红色,并且出现白色沉淀。然后加入HCl(18mL,10%)水溶液中的氯化亚锡(II)(8.088g,42.6mmol)。将混合物加热至60℃持续2小时,然后冷却至室温。通过旋转蒸发除去溶剂。将去离子水(100mL)加至混合物中,然后用己烷(100mL×3)萃取。用DI水洗涤己烷溶液直至中性。将其通过柱层析(硅胶/己烷)浓缩和纯化。得到亮黄色固体产物(8.55g,收率:82%)。
制备例2-2,6-双-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2- 基)-9,10-双[(三异丙基甲硅烷基)乙炔基]蒽的合成
将来自制备例1的2,6-二溴-9,10-双-[(三异丙基甲硅烷基)乙炔基]蒽(5.225g,7.5mmol)、双(频哪醇合)二硼(4.763g,18.8mmol)、KOAc(2.940g,30.0mmol)和CHCl3(100mL)在干燥氮气下装至250mL烧瓶中。得到具有悬浮的KOAc的黄色溶液。将悬浮液脱气以除去痕量氧气。然后在干燥氮气下添加[1,1′-双(二苯基膦基)二茂铁]二氯化钯(0.205g)。溶液变成橙色。在70℃下搅拌混合物3天,然后冷却至室温。将其用DI水(100mL×3)洗涤并在MgSO4上干燥。通过旋转蒸发除去溶剂。将固体残余物通过柱层析(硅胶,CHCl3)纯化并在乙酸乙酯中重结晶。得到橙色针状晶体产物(3.20g,收率55%)。
实例1-2,6-双(4-甲氧基-苯基)-9,10-双-[(三异丙基甲硅烷基)乙炔 基]蒽(B4MP-TIPS-An)的合成
将250mL希莱克烧瓶装入2,6-双-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)-9,10-双-[(三异丙基甲硅烷基)乙炔基]蒽(1.266g,1.60mol)、4-溴苯甲醚(0.748g,4.00mmol)、碳酸钠(0.848g,8.00mmol)、ALIQUAT 336(0.072g,[CH3(CH2)9]3NCH3 +Cl-与[CH3(CH2)7]3NCH3 +Cl-的混合物,用作相转移催化剂)、蒸馏水(25mL)和甲苯(100mL)。在氮气下用希莱克技术使混合物脱气以除去氧气。然后在氮气流下加入四(三苯膦)钯(0)(0.024g,0.02mmol)。再次脱气之后,将混合物在氮气下于90℃搅拌。上面的有机层变成绿橙色,下面的水层为无色。将混合物于90℃下搅拌20小时后,冷却至室温。滤出小的不溶解的黑色固体。通过旋转蒸发然后在MeOH(100mL)中骤冷,将暗绿色的甲苯溶液浓缩为约15mL。通过过滤收集橙色固体(1.13g)。通过区域升华法将其纯化。真空为1.1×10-6托,源区域温度为260℃,而中心区域温度为200℃。获得细微的桔红色晶体产物(1.0)。
实例2-2,6-双-(6-甲氧基-萘-2-基)-9,10-双-[(三异丙基甲硅烷基)- 乙炔基]-蒽(BMN-TIPS-An)的合成
将250mL希莱克烧瓶装入2,6-双-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)-9,10-双-[(三异丙基甲硅烷基)乙炔基]蒽(1.266g,1.60mol)、2-溴-6-甲氧基萘(0.949g,4.00mmol)、碳酸钠(0.848g,8.00mmol)、ALIQUAT 336(0.072g,[CH3(CH2)9]3NCH3 +Cl-与[CH3(CH2)7]3NCH3 +Cl-的混合物,用作相转移催化剂)、蒸馏水(25mL)和甲苯(100mL)。在氮气下用希莱克技术使混合物脱气三次以除去氧气。然后在氮气流下加入四(三苯膦)钯(0)(0.024g,0.02mmol)。再次脱气之后,将混合物在氮气下于90℃搅拌。在约1小时内红色上有机层变为暗绿色,下水层为无色。将混合物于90℃下搅拌20小时后,冷却至室温。滤出小的不溶解的黑色固体。通过旋转蒸发然后在MeOH(100mL)中骤冷,将暗绿色的甲苯溶液浓缩为约15mL。通过过滤收集橙色固体(1.15g)。通过区域升华法将其进一步纯化。真空为3~5×10-6托,源区域温度为300℃,而中心区域温度为220℃。在中心区域收集橙色固体(0.4g)。
实例3-溶解度测量
在室温下于多种溶剂中测量实例1中合成的B4MP-TIPS-An的溶解度。这种小分子半导体在正丁苯中具有适度溶解度(约1.0重量%),在二氯苯中具有较好的溶解度(大于6.0重量%),在二甲苯中具有较好的溶解度(约3.5重量%)。所述重量%是基于总的溶液重量。
实例4-薄膜晶体管(TFT)器件的制备和表征
通过在1000rmp下旋涂30秒,用1,1,1,3,3,3-六甲基二硅氮烷(HMDS)预处理重掺杂硅晶圆(Si 100,Silicon Valley Microelectronics,Inc.,Santa Clara,CA)。将B4MP-TIPS-An和聚苯乙烯(Mw=97400,Sigma Aldrich)在室温下溶解于二甲苯中,使得它们的浓度以组合物的总重量计分别为3.0重量%和1.0重量%。然后将该溶液刮涂到一片HMDS处理过的基底上。在风干后,将样品在120℃下于空气中退火30分钟。用热蒸镀法在2×10-6托的真空下通过聚合物荫罩板使金源极/漏极(60nm厚)图案化。在环境条件下用Hewlett Packard半导体参数分析器(4145A型,可得自Hewlett Packard Corporation(Palo Alto,CA)),通过扫描+10V至-40V的栅电压(Vg),同时保持漏电压(Vds)为-40V,对薄膜晶体管进行表征。对Id 1/2-Vg轨迹进行线性拟合使得能提取饱和迁移率和阈值电压(Vt)。对Id-Vg轨迹进行线性拟合使得能计算出电流开/关比。空穴迁移率μ计算为0.21cm2/Vs;阈值电压为-8V;开/关比率为6×104
实例5-薄膜晶体管(TFT)器件的稳定性测试
根据实例4中描述的工序制造B4MP-TIPS-An TFT器件。以总溶液重量计,该实验中使用的半导体溶液的组合物为3.0重量%的B4MP-TIPS-An、2.0重量%的聚苯乙烯和95.0重量%的二甲苯。样品制备好后,随机选择十六个TFT器件并测试其TFT性质。将样品置于温度设置在120℃的空气烘箱中。在使这十六个器件老化3天和7天后,重新测量它们的TFT性质。在老化阶段之后,所有的十六个被测试器件工作非常好。如可以从表1中可看到的,在空气中120℃下老化3天之后,器件的迁移率稍微降至其初始值的75%,在此条件下老化7天之后,器件的迁移率保留初始值的约50%。令人吃惊的是,在老化之后,开/关比和亚阈斜率表现出较大的改善。平均而言,迁移率从0.079cm2/Vs降至0.059cm2/Vs(第3天)和降至0.039cm2/Vs(第7天);开/关比从1.0×104增加到1.7×104(3天)和增加到8.7×104(7天);并且亚阈斜率从3.2V/十倍频程降至1.4V/十倍频程(第3天)并降至1.5V/十倍频程(第7天),这表明在老化之后器件运转更快。
表1.B4MP-TIPS-An TFT器件在空气中在120℃下的稳定性
Figure BPA00001310059700271

Claims (24)

1.一种式(I)化合物
Figure FPA00001310059600011
其中
R1是苯基或萘基,其中所述苯基或萘基是未取代的或被一个或多个选自卤素、羟基、氨基、烷基、烯基、烷氧基、酰氧基、杂芳基、杂烷基或杂芳烷基的取代基取代;并且
每个R2独立地是烷基、烯基、烷氧基、芳基、杂芳基、芳烷基、杂烷基、杂芳烷基或羟烷基。
2.根据权利要求1所述的化合物,其中R1具有式(II)、(III)或(IV):
Figure FPA00001310059600012
其中
R3是氢、卤素、羟基、氨基、烷基、烯基、烷氧基、酰氧基、杂芳基、杂烷基或杂芳烷基。
3.根据权利要求1或2所述的化合物,其中R1是式(V)或(VI)
Figure FPA00001310059600021
其中
R3是氢、卤素、羟基、氨基、烷基、烯基、烷氧基、酰氧基、杂芳基、杂烷基或杂芳烷基。
4.根据权利要求2或3所述的化合物,其中R3是烷氧基。
5.根据权利要求1至3中任一项所述的化合物,其中每个R2是烷基或烯基。
6.一种组合物,其包含:
(a)式(I)小分子半导体
Figure FPA00001310059600022
其中
R1是苯基或萘基,其中所述苯基或萘基是未取代的或被一个或多个选自卤素、羟基、氨基、烷基、烯基、烷氧基、酰氧基、杂芳基、杂烷基或杂芳烷基的取代基取代;并且
每个R2独立地是烷基、烯基、烷氧基、芳基、杂芳基、芳烷基、杂烷基、杂芳烷基或羟烷基;和
(b)有机溶剂。
7.根据权利要求6所述的组合物,其中以所述组合物的总重量计,所述组合物包含至少0.1重量%的溶解的式(I)小分子半导体。
8.根据权利要求6或7所述的组合物,其中R1具有式(II)、(III)或(IV)
Figure FPA00001310059600031
其中
R3是氢、卤素、羟基、氨基、烷基、烯基、烷氧基、酰氧基、杂芳基、杂烷基或杂芳烷基。
9.根据权利要求6至8中任一项所述的组合物,其还包含绝缘聚合物。
10.根据权利要求9所述的组合物,其中所述绝缘聚合物包含聚苯乙烯、聚(α-甲基苯乙烯)、聚(甲基丙烯酸甲酯)、聚(乙烯基苯酚)、聚(乙烯醇)、聚(醋酸乙烯酯)、聚(氯乙烯)、聚(偏二氟乙烯)、氰乙基普鲁兰多糖或聚(二乙烯基四甲基二硅氧烷-双(苯并环丁烯))。
11.根据权利要求6至10中任一项所述的组合物,其中所述有机溶剂包含(a)未取代的或被至少一个烷基取代的苯,(b)被至少一个卤素基团取代的烷烃,(c)被至少一个卤素基团取代的苯,(d)酮,(e)醚,(f)酰胺,(g)烷烃,(h)或它们的混合物。
12.一种半导体器件,其包括含有式(I)小分子半导体的半导体层
Figure FPA00001310059600041
其中
R1是苯基或萘基,其中所述苯基或萘基是未取代的或被一个或多个选自卤素、羟基、氨基、烷基、烯基、烷氧基、酰氧基、杂芳基、杂烷基或杂芳烷基的取代基取代;并且
每个R2独立地是烷基、烯基、烷氧基、芳基、杂芳基、芳烷基、杂烷基、杂芳烷基或羟烷基。
13.根据权利要求12所述的半导体器件,其中所述半导体层还包含绝缘聚合物。
14.根据权利要求12或13所述的半导体器件,其还包括邻近所述半导体层的导电层、介质层或它们的组合。
15.根据权利要求12至14中任一项所述的半导体器件,其还包括邻近所述半导体层的一个表面的导电层以及邻近所述半导体层的相对表面的介质层。
16.根据权利要求12至15中任一项所述的半导体器件,其还包括电极层,所述电极层包括彼此分开且均与所述半导体层接触的源极和漏极。
17.根据权利要求12至16中任一项所述的半导体器件,其中所述半导体器件包括有机薄膜晶体管。
18.一种制备半导体器件的方法,所述方法包括:
提供包含式(I)小分子半导体的半导体层
Figure FPA00001310059600051
其中
R1是苯基或萘基,其中所述苯基或萘基是未取代的或被一个或多个选自卤素、羟基、氨基、烷基、烯基、烷氧基、酰氧基、杂芳基、杂烷基或杂芳烷基的取代基取代;并且
每个R2独立地是烷基、烯基、烷氧基、芳基、杂芳基、芳烷基、杂烷基、杂芳烷基或羟烷基。
19.根据权利要求18所述的方法,其中所述半导体层还包含绝缘聚合物。
20.根据权利要求18或19所述的方法,该方法还包括提供相邻于所述半导体层的第一层,所述第一层包括导电层或介质层。
21.根据权利要求18至20中任一项所述的方法,其中所述半导体器件包括有机薄膜晶体管,所述有机薄膜晶体管包括以如下顺序布置的多个层:
栅电极;
栅介质层;
所述半导体层;和
电极层,所述电极层包括源极和漏极,其中所述源极和所述漏极彼此分开,并且其中所述半导体层既接触所述漏极又接触所述源极。
22.根据权利要求18至20中任一项所述的方法,其中所述半导体器件包括有机薄膜晶体管,所述有机薄膜晶体管包括以如下顺序布置的多个层:
栅电极;
栅介质层;
电极层,所述电极层包括源极和漏极,其中所述源极和所述漏极彼此分开;和
所述半导体层,所述半导体层既与所述源极接触又与所述漏极接触。
23.根据权利要求18至22中任一项所述的方法,其中提供所述半导体层包括将组合物施加至所述半导体器件的另一层的表面,所述组合物包含所述式(I)小分子半导体和溶解所述小分子半导体的至少一部分的有机溶剂。
24.根据权利要求23所述的方法,该方法还包括在施加所述组合物之后,除去至少一部分所述有机溶剂。
CN2009801310799A 2008-06-19 2009-04-28 可溶液处理的有机半导体 Pending CN102119164A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US7400208P 2008-06-19 2008-06-19
US61/074,002 2008-06-19
PCT/US2009/041904 WO2009154877A1 (en) 2008-06-19 2009-04-28 Solution processable organic semiconductors

Publications (1)

Publication Number Publication Date
CN102119164A true CN102119164A (zh) 2011-07-06

Family

ID=40756318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801310799A Pending CN102119164A (zh) 2008-06-19 2009-04-28 可溶液处理的有机半导体

Country Status (5)

Country Link
US (1) US20110079775A1 (zh)
EP (1) EP2318420A1 (zh)
JP (1) JP2011524908A (zh)
CN (1) CN102119164A (zh)
WO (1) WO2009154877A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415526A (zh) * 2011-03-11 2013-11-27 默克专利股份有限公司 二萘并[2,3-a:2’,3’-h]吩嗪类和它们作为有机半导体的用途
CN107628924A (zh) * 2017-09-25 2018-01-26 中国科学院化学研究所 一种蒽类衍生物及其制备方法与应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009079150A1 (en) * 2007-12-17 2009-06-25 3M Innovative Properties Company Solution processable organic semiconductors based on anthracene
WO2009151978A1 (en) * 2008-06-11 2009-12-17 3M Innovative Properties Company Mixed solvent systems for deposition of organic semiconductors
KR20100075100A (ko) * 2008-12-24 2010-07-02 서울대학교산학협력단 잉크젯 프린팅 방법을 이용한 유기 전계효과 트랜지스터의 활성 채널층 형성방법 및 이를 이용한 유기 전계효과 트랜지스터
JP6002158B2 (ja) * 2011-02-19 2016-10-05 ユナイテッド アラブ エミレーツ ユニバーシティUnited Arab Emirates University 半導体材料とストレージデバイス
CN102637825B (zh) * 2012-04-24 2015-03-04 中国科学院苏州纳米技术与纳米仿生研究所 一种有机薄膜晶体管的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006050496A1 (en) * 2004-11-02 2006-05-11 E.I. Dupont De Nemours And Company Substituted anthracenes and electronic devices containing the substituted anthracenes
WO2008120839A1 (en) * 2007-03-30 2008-10-09 Gyeongsang National University Industrial And Academic Collaboration Foundation Novel organic semiconductor compound, and organic thin film transistor using the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433359B1 (en) * 2001-09-06 2002-08-13 3M Innovative Properties Company Surface modifying layers for organic thin film transistors
US6998068B2 (en) * 2003-08-15 2006-02-14 3M Innovative Properties Company Acene-thiophene semiconductors
US6946676B2 (en) * 2001-11-05 2005-09-20 3M Innovative Properties Company Organic thin film transistor with polymeric interface
US6617609B2 (en) * 2001-11-05 2003-09-09 3M Innovative Properties Company Organic thin film transistor with siloxane polymer interface
US20030227014A1 (en) * 2002-06-11 2003-12-11 Xerox Corporation. Process for forming semiconductor layer of micro-and nano-electronic devices
ES2387304T3 (es) * 2003-10-28 2012-09-20 Basf Se Nuevos polímeros de dicetopirrolopirrol
ATE475971T1 (de) * 2003-11-28 2010-08-15 Merck Patent Gmbh Organische halbleiterschicht-formulierungen mit polyacenen und organischen binderpolymeren
KR20070033383A (ko) * 2004-07-02 2007-03-26 짓쏘 가부시끼가이샤 발광 재료 및 이것을 이용한 유기 전계 발광 소자
CN101218539B (zh) * 2005-07-05 2011-07-13 日立化成工业株式会社 感光性粘接剂组合物、以及使用其所得粘接薄膜、粘接薄片、贴有粘接剂层的半导体晶圆、半导体装置及电子零件
JP2007088115A (ja) * 2005-09-21 2007-04-05 Konica Minolta Holdings Inc 有機半導体材料,有機半導体膜,有機半導体デバイス及び有機薄膜トランジスタ
KR101215758B1 (ko) * 2006-01-17 2012-12-26 삼성전자주식회사 Npn-타입의 저분자 방향족 고리 화합물, 이를 이용한유기 반도체 및 전자 소자
US7667230B2 (en) * 2006-03-31 2010-02-23 3M Innovative Properties Company Electronic devices containing acene-thiophene copolymers
US7495251B2 (en) * 2006-04-21 2009-02-24 3M Innovative Properties Company Electronic devices containing acene-thiophene copolymers with silylethynyl groups
WO2008015983A1 (en) * 2006-08-03 2008-02-07 Asahi Kasei Emd Corporation Photosensitive resin composition and laminate
CN101657458B (zh) * 2007-03-07 2014-07-02 肯塔基大学研究基金会 甲硅烷基乙炔化杂并苯和由其制造的电子器件
KR101547702B1 (ko) * 2007-04-19 2015-08-26 메르크 파텐트 게엠베하 치환 펜타센의 제조 방법
WO2008143440A1 (en) * 2007-05-17 2008-11-27 Lg Chem, Ltd. New anthracene derivatives and organic electronic device using the same
JP5466150B2 (ja) * 2007-06-01 2014-04-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 緑色発光材料
WO2009079150A1 (en) * 2007-12-17 2009-06-25 3M Innovative Properties Company Solution processable organic semiconductors based on anthracene

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006050496A1 (en) * 2004-11-02 2006-05-11 E.I. Dupont De Nemours And Company Substituted anthracenes and electronic devices containing the substituted anthracenes
WO2008120839A1 (en) * 2007-03-30 2008-10-09 Gyeongsang National University Industrial And Academic Collaboration Foundation Novel organic semiconductor compound, and organic thin film transistor using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAE SUNG CHUNG ET AL.: "All-organic solution-processed two-terminal transistors fabricated using the photoinduced p-channels", 《APPLIED PHYSICS LETTERS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415526A (zh) * 2011-03-11 2013-11-27 默克专利股份有限公司 二萘并[2,3-a:2’,3’-h]吩嗪类和它们作为有机半导体的用途
CN107628924A (zh) * 2017-09-25 2018-01-26 中国科学院化学研究所 一种蒽类衍生物及其制备方法与应用

Also Published As

Publication number Publication date
JP2011524908A (ja) 2011-09-08
US20110079775A1 (en) 2011-04-07
EP2318420A1 (en) 2011-05-11
WO2009154877A1 (en) 2009-12-23

Similar Documents

Publication Publication Date Title
CN101926017B (zh) 基于蒽的可溶液加工的有机半导体
CN102119164A (zh) 可溶液处理的有机半导体
US7319153B2 (en) 6,13-Bis(thienyl)pentacene compounds
CN101772529B (zh) 芳胺聚合物、其制备方法、油墨组合物、膜、电子器件、有机薄膜晶体管和显示设备
CN104204028A (zh) 有机半导体组合物
DE112009003593T5 (de) Organische Halbleiter
CN101591343A (zh) 二氧杂蒽嵌蒽化合物以及半导体装置
CN101977961A (zh) 取代的低聚-或聚噻吩
DE102011002579A1 (de) Benzodithiophen-basierte Materialzusammensetzungen
US7700787B2 (en) Small molecular thiophene compound
JP2012191193A (ja) キサンテン系半導体組成物
JP2012182460A (ja) 二価結合を有する小分子チオフェン化合物を備える装置
TW201308702A (zh) 有機場效電晶體及有機半導體材料
EP2474551B1 (en) Organic semiconductor compound, and transistor and electronic device including the same
KR20130000323A (ko) 전자 장치
US7102017B2 (en) Processes to prepare small molecular thiophene compounds
KR20070100174A (ko) 폴리(알키닐티오펜) 및 이로부터 제조된 전자 디바이스
CN101348491A (zh) 苯乙烯封端的并四噻吩衍生物及其制备方法与应用
CN110326122B (zh) 有机晶体管
US8399288B2 (en) Semiconductor device, method of manufacturing the same, and method of forming multilayer semiconductor thin film
KR20120099596A (ko) 디티오케토피롤로피롤계 폴리머
CN111808269A (zh) 新型聚三芳基胺及其用途
KR102025390B1 (ko) 반도체 화합물
KR20110104218A (ko) 용액공정용 펜타센 유도체 및 이들의 제조방법과 이를 이용한 유기박막 트렌지스터
KR101831858B1 (ko) 반도체 조성물

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110706