CN1021188C - 磁控管电源 - Google Patents

磁控管电源 Download PDF

Info

Publication number
CN1021188C
CN1021188C CN88102529A CN88102529A CN1021188C CN 1021188 C CN1021188 C CN 1021188C CN 88102529 A CN88102529 A CN 88102529A CN 88102529 A CN88102529 A CN 88102529A CN 1021188 C CN1021188 C CN 1021188C
Authority
CN
China
Prior art keywords
mentioned
magnetron
coil
transformer
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN88102529A
Other languages
English (en)
Other versions
CN1030339A (zh
Inventor
松本孝广
末永治雄
前原直芳
坂本和穗
丹羽孝
别庄大介
楠木慈
下谷毅夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP62106637A external-priority patent/JP2537860B2/ja
Priority claimed from JP62106636A external-priority patent/JP2537859B2/ja
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1030339A publication Critical patent/CN1030339A/zh
Application granted granted Critical
Publication of CN1021188C publication Critical patent/CN1021188C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/666Safety circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B9/00Generation of oscillations using transit-time effects
    • H03B9/01Generation of oscillations using transit-time effects using discharge tubes
    • H03B9/10Generation of oscillations using transit-time effects using discharge tubes using a magnetron
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/043Methods or circuits intended to extend the life of the magnetron

Abstract

在备有变换器电路,高压变压器和磁控管的磁控管供电装置中,为了使从向磁控管的阴极供给电力起到开始振荡达到额定输出为止的时间缩短,而构成备有检出磁控管开始振荡时点的功能并在振荡一开始后即控制到额定输出,在高压变压器上设有输出电压检出用的线圈,用以检出磁控管的振荡。

Description

本发明涉及作成用变换器电路来得到加到磁控管上的高压电源的磁控管供电装置。
使用变换器电路的磁控管供电装置已提出有各种方案,但现以用于高频加热装置的磁控管供电装置为例进行说明。
在图一中表示已有的高频加热装置用的磁控管供电装置的电路图。用二极管桥式电路2对商用电源1进行整流,从而得到单向电源3。单向电源3用含有开关元件4的变换电路5将其变换为高频,并用高压变压器6进行升压,再在整流后加给磁控管7。在此高频加热装置的电力控制方式中使用的输入电流控制方式可将从商用电源1来的输入电流Iin控制成预定值。即变换器控制电路9接受输入电流检出部8的信号,并将输入电流Iin调整为预定值(即通过调整开关元件4的导通时间比)。另一方面,由于磁控管7的阴极温度充分上升到预定温度,并在开始振荡前只有灯丝部分上有电流流动,而在阳极-阴极之间没有电流流过,故一旦将上述输入电流Iin控制成磁控管的振荡动作时的值,则由于在阳极-阴极之间会产生过大电压,而导致耐压不良。此外也会产生在灯丝上流有过大的电流而使磁控管7的寿命缩短那样的所谓不合适的情况。
因而在控制部9上设置时间控制机构,该机构最初将上述输入电流控制成比稳定时的预定值小的值上,然后在经过了开始上述振荡所需的充足的时间之后可将上述输入电流转换为稳定值,从而解决上述问题。
但开始上述振荡所需的时间有着例如在磁控管冷时为4秒,而 热时为2秒那样的不同之处,而在由上述时间控制机构进行的输入电流控制方式中,在这样的场合,必须将上述输入电流限制为很小的值的时间设定成比开始振荡所需的最大时间(4秒)更长,例如5秒左右。
如这样进行设定,则即使在磁控管热时也必须以5秒为将输入电流控制为小电流值的时间。因而,在用这样的控制方式的已有的高频加热装置中此时间差(5-2=3秒)尽管能控制成预定的输入电流,但都成为控制成小的输入电流的期间,且作为高速烹调器来讲却完全成为无效时间,已成为很大的缺点。
在图2中表示有磁控管的振荡开始前的输入电流Iin,磁控管输出Po和阳极-阴极间电压IAK的时间图。在a和b的期间将电流Iin限制为很小的值,故不会产生来自磁控管的预定输出Po。在c期间,磁控管的输出成为预定值。尽管在磁控管的振荡开始所需的时间仅为a的期间,且此a的期间有时几乎为零,但在b的期间也对电流Iin进行限制,故此期间成为无效时间。为了缩短该无效时间,有用和高压变压器6分开设置的灯丝变压器来供给灯丝电力,并预先对磁控管7的阴极进行预热的方法等,但其缺点是装置大型化,且成本提高。
因而由于要缩短在磁控管的阴极冷时的阴极温度的上升时间是非常困难的,故用这样的已有的结构对于缩短上述无效时间自然是有限制的。
又由于在上述无效时间的时间b中将输入电流Iin限制得较小,故对磁控管的灯丝不能充分供给电力,因而磁控管是在阴极温度比所期望的温度低的状态下进行振荡。为此,阴极的发射不足,振荡容易不稳定,容易发生所谓的发射跳模。为此其重大的缺点是磁控管的寿命也缩短的可能性较大。
且本发明的目的在于自动改变输入电流以便与磁控管的冷热无 关,磁控管一旦开始振荡,就可自动地得到额定输出,以消除无效时间。
为了检知磁控管的开始振荡的时间,以去掉起动时的上述无效时间,且防止因跳模而引起的磁控管的劣化,本发明的高频加热装置具备有单向电源、具有将上述单向电源的输出变换为高频的至少一个开关元件及其驱动电路的变换器电路,发生对食品及流体等进行加热用的高频的磁控管,及使上述变换器电路的输出升压且向上述磁控管供给电力的变压器,上述变压器包含接到上述变换器电路上的一次线圈、用以将高压高频电力供给上述磁控管的二次线圈、将低压高频电力供给上述磁控管的阴极灯丝的三次线圈,其特征在于,所述变压器还包含与上述驱动电路相连的四次线圈,且具备的结构作成上述四次线圈和上述二次线圈的耦合系数K24比上述四次线圈和上述一次线圈的耦合系数K14大,上述驱动电路在装置动作开始时主要以磁控管灯丝预热所需输出的某个预定的周期和占空度的电信号驱动上述开关元件,当所述磁控管起振时上述四次线圈中产生的电压下降达预定的电压范围时上述驱动电路以上述磁控管获得预定的输出所用的周期和占空度的电信号驱动上述开关元件。
由于有这样的结构,故在磁控管开始振荡之前的期间,在二次线圈上发生高电压,而通过将结构作成使四次线圈和二次线圈的耦合比四次线圈和一次线圈的耦合强,使四次线圈与二次线圈上发生的高电压的相关性比与发生在一次线圈上的电压的相关性强,因而产生有与二次线圈的高电压成比例的检知电压信号。因而能通过四次线圈的输出信号检知磁控管开始振荡时期,故能将其驱动电路构成为能转换磁控管振荡开始前和振荡后的变换器电路的动作。即在起动时将变换器的动作频率控制成二次线圈的输出高压不会比预定值大出很多,并在磁控管振荡后把动作频率控制成能得到预定的电波输出。因而能控制成在与起动时的磁控管的阴极温度的高低没有 关系的情况下,以在各自的条件下的最短时间使磁控管的电波输出达到预定值。即不论磁控管的阴极的初期温度如何,只要其阴极温度一达到所期望的温度则其电波输出即成为额定值,故能防止在已有方式中的无效时间的发生。此外,还能完全防止在此期间产生的将过大电压和过大电流加到磁控管上的情况,故能防止其寿命的缩短,而实现高可靠性。
图1为已有的磁控管供电装置的电路图;
图2为已有的磁控管开始振荡时的时间图;
图3为根据本发明的磁控管供电装置的电源电路图;
图4为同一磁控管供电装置的变压器的二次线圈的电压波形图;
图5为在同一磁控管供电装置的磁控管的振荡与不振荡时的输入电流和阳极-阴极间电压的特性图。
图6为同一装置的磁控管振荡开始时的时间图;
图7为在同一装置的变压器的一实施例中的透视图;
图8为同一变压器的剖面图;
图9为根据另一实施例的磁控管供电装置的电源电路图;
图10为根据将半波倍电压整流用于高压的本发明的实施例的磁控管供电装置的电源电路图;
图11为在图10的电路中的磁控管的阳极-阴极间电压的波形图;
图12为根据进行次级电流反馈控制的本发明的实施例的磁控管供电装置的电路图。
图3为根据本发明的高频加热装置的高压电源发生部的电路构成图。在图3中商用电源的电力通过二极管桥式电路11进行整流,而形成单向电源12。13为电感线圈、14为电容器,可起到对于变换器电路15的高频开关动作进行滤波的滤波器的作用。
变换器电路15由谐振电容器16,开关用功率晶体管17,二极管18及驱动电路19所构成。功率晶体管17通过由驱动电路19所供给的基极电流以预定的周期和占空度(即接通-断开时间比)进行开关动作。其结果是生成的高频电力被供给到变压器20的一次线圈21,在二次线圈22上作为高频高电压输出显现,并供给到磁控管23的阴极23a和阳极23b之间,在变压器20的三次线圈24上发生有低压高频电力,使磁控管23的阴极23a加热,并使磁控管23工作。
输入电流检出器25检出从商用电源10来的输入电流Iin,检出器25的输出由输入电流信号整流电路26进行整流所得到的信号和电流基准信号27之差通过电流误差放大电路28进行放大后,输入到比较器29。比较器29通过其输入信号和由锯齿波发生电路30产生的锯齿波来作成输出信号31即功率晶体管17的接通-断开脉冲。从该输入电流检出器25到比较器29用来构成输入电流控制部32,一旦输入电流减少,则电流误差放大电路28的输出上升,比较器29的输出信号31的接通时间变长而向输入电流Iin增大的方向进行动作。反之一旦输入电流Iin增大则会向使输入电流减小的方向进行动作。这样通过输入电流控制部32进行控制以使输入电流成为预定值。
又由于设置在变压器20中的四次线圈33和二次线圈22的耦合很强,故能检出高压电压VAK,用输出电压信号整流电路34对其输出进行整流所得到的信号在比较器36中和电压基准信号35进行比较,并将其输出逻辑输入到电流基准信号转换电路部37,根据高压电压VAK的大小而切换电流基准信号27。即在磁控管23开始振荡之前由于高压电压VAK会因较小的输入电流而升高,故应将电流基准信号27压低,并在磁控管23开始振荡而使高压电压VAK降低时设定电压基准信号35,并用晶体管38转换电流基准信号27,以便 使输入电流Iin增加。这换句话说,通过四次线圈33的输出电压下降这一事实来检测出磁控管已开始振荡,并使输入电流Iin符合额定值。39为保险丝,是为了保护其不受在四次线圈33发生短路时所产生的冒烟现象的影响而设置的。
图4为磁控管23振荡时和不振荡时的高压电源VAK的电压波形,两者的不同之处是很明白的。此负向电压是使磁控管23振荡的顺方向电压,以其作为VAK,求出其和输入电流Iin的关系,则成为如图5所示的动作原理图。
在图5中V1为磁控管23的容许电压,I1为磁控管不振荡、且为高压电压VAK小于V1时的从商用电源10来的输入电流Iin。V2为磁控管23的额定输出时的高压电压VAK和当时的输入电流Iin。磁控管23不振荡时的输入电流I1比I2小且振荡时的输出电压V2则比V1小。
因而在图3中如设定输出电压信号整流电路34的整流方向以便输入电流检出器25能检出输入电流,四次线圈33能检出相当于高压电压VAK的电压信号,将电流基准信号27设定成在电流基准信号转换电路部37的晶体管38导通时使输入电流Iin为I1而在其断开时使Iin为I2,以及将电压基准信号35设定成相当于V1和V2之间则从上述的工作原理,在磁控管23开始振荡前输入电流被抑制为I1,而一旦开始振荡则输入电流被控制为I2
可是,为了进行这样的控制,要设定成在比V1小而比V2大的地方相对于电压基准信号35进行转换,故V1>V2是必不可少的。而且V1/V2越大则对磁控管23的振荡的检测就越容易作到。变压器20的二次线圈22和四次线圈33所表现的电压信号不完全相似,但如使二次线圈22和四次线圈33的耦合系数K24大而一次线圈21和四次线圈33的耦合系数K14小则可保持V1>V2的关系。在表1中表示有在改变K24和K14时的V1/V2的值。
表1
K24K14V1/V2
0.704    0.494    1.75
0.531    0.412    1.08
0.451    0.384    1.01
0.372    0.386    0.55
0.524    0.532    0.34
图6为起动特性图,图中表示有从图3的电路开始动作时起的VAK和Iin的值的变化情况。并被控制成磁控管一开始振荡,VAK降低,一超过Vr(此时四次线圈电压降到一相应的电压范围),则Iin的设定值即从I1转换为I2
在图3中将变压器用于输入电流的检出,但也可变更为将电阻接入系统,用电压降来检出电流的方法等,且输入电流控制部32也不限定于图示的电路结构。
且在高压变压器20和磁控管23之间设置电压整流电路时也能以同样的方式相适应。
如用以上结构,由于输入电流的变化与磁控管的冷热无关,且使磁控管一开始振荡就能自动地得到额定输出,故完全不会发生在已有技术中成为问题的那种无效时间,而且能防止向磁控管加过大的电压。因而能实现可靠性高的高频加热装置用的磁控管供电装置。
在图7中表示有本发明的磁控管供电装置的变压器的透视图的一例,在图8中则表示有图7的A-A′方向的剖面图的一例。在图7、图8中和图3相同的构成要素附以相同的符号。变压器的UR型铁心40、41是铁氧体性的、并用高频损耗小的材料构成,并夹以间隙隔片42以构成磁路。铁心40、41用夹紧部分44和放置台45进行固定。各线圈21,22,24,33绕在用树脂材料与间隙隔片作成一体的第一骨架46及第二骨架47上。在此处一次线圈21和二次线圈22 之间设有足够的距离l1。这是因为在高频加热装置中一般使磁控管的阳极和框体同电位,故在一次线圈和二次线圈短路时在框体上会发生高电压故非常危险。为防止此种情况,一次线圈和二次线圈的距离l1与二次线圈22和三次线圈24的距离l2相比较,应取充分大的距离。且根据同样的理由三次线圈24和四次线圈33的距离l3也应足够地大。在此处如上所述由于要使一次线圈21和四次线圈33的耦合系数K14和二次线圈22和四次线圈33的耦合系数K24的关系为K14和K24的关系,故如图8所示,线圈的位置应配置成从四次线圈33的附近起依次为三次线圈24,二次线圈22,一次线圈21的顺序。由于线圈彼此间的距离较近者一般讲耦合系数增大,故在上述配置中由于二次线圈22比一次线圈21距四次线圈要近,故当然可得到K14和K24。再者由于间隙隔片43的位置位于一次线圈21和二次线圈22之间,因而四次线圈33和一次线圈21之间存在着间隙,此间隙的作用是通过泄漏磁通使耦合系数减小,但在四次线圈33和二次线圈22之间则没有间隙,故K14和K24的关系很显著。
一次线圈21为了防止因高频所引起的集肤效应的影响,而使实质上其导体的截面积变小、损耗增大,故使用将各自绝缘的细线进行绞合的所谓绞合线,在一次线圈的引线上为了保护绝缘而加上护管。二次线圈22作成四个分开的线圈。这种结构将使二次线圈22的耐压提高,同时线间的分布电容减小,可抑制无功电流,而使发热减小。二次线圈22的低压侧引线22a与变压器台45及铁心40,41相连,并成同电位,由于使铁心的电位稳定,故在安全方面可靠性较高。
三次线圈24,四次线圈33由于圈数都很少,为了对引出导线进行保护和绝缘,故使用被覆线,并分别使用高压硅酮被膜线和氯乙烯被膜线。
图9是四次线圈33的结构为将中间端子48设在第二线圈22 上的其他实施例。与图3相同的构成要素附以相同符号。
在图9中设置在变压器20中的四次线圈33由于其结构作成在二次线圈上设有中间端子48,故其电压与二次线圈电压VAK成比例。即VAK的电压变化作为在四次线圈33的两端上所分出的电压信号进行表示。将该电压信号用输出电压信号整流电路34进行整流后的信号用比较器36和电压基准信号35进行比较,将其输出逻辑输入到电流基准信号转换电路37的光电耦合器49上,以转换电流基准信号。由于变压器20的初级侧的电位和次级侧的电位不同,在这种结构时通过光电耦合器49所进行的信号的传递是必要的。这样,通过检知磁控管23开始振荡后进行电流控制以去掉上述无效时间。在二次线圈22上设置抽头而构成四次线圈33时,二次线圈22和四次线圈33的耦合K24自然变大。此外由于使四次线圈处于二次线圈的电位,因而其间不需要绝缘,从而具有线圈的结构很容易制作的效果。
图10为在高压上设计有倍电压整流电路50的电路结构的实施例。和图3相同的构成要素附以相同的符号。
在图10的电路中磁控管23的阴极23a、阳极23b之间的电压成为如图11所示那样的波形。和图4所示的不使用倍电压整流电路时相同,由于磁控管23不振荡时与其振荡时相比成为低电压,故能检知磁控管的振荡状态。在图10的电路中如图所示在输出电压信号整流电路34上设有半波整流电路的场合,应在考虑四次线圈的极性下进行连接,以便使输出电压整流电路34的半波整流用二极管51在发生了VAK的电压时导通。在输出电压整流电路34上使用全波整流电路的场合上,即使不考虑极性也能取得同等的效果。对变压器20的二次线圈输出进行倍电压整流后,再加到磁控管23上的该电路构成上不仅能消除磁控管开始振荡时的无效时间,而且为了用倍电压整流电路50使变压器次级侧的电压升压两倍,变压器的 升压比即一次和二次线圈的圈数比只需要大约为一半。换句话说即存在如下效果,二次线圈21的圈数只要一半。
在图12中表示有本发明的实施例即为使装置的输出稳定而使用变压器次线侧的电流反馈进行控制的电路。和图3相同的构成要素附以相同的符号。
在图12的电路中输入电流Iin和磁控管的阳极电流IA是相关的,且大致成比例。且阳极电流IA和变压器的次级电流Is也大致成比例关系。因而代替了检出输入电流Iin,即使检出变压器的次级电流Is也能进行同等的输入输出控制。次级电流检出部52是在次级电流检出电阻53上有电流流过时将电阻两端所发生的电压经绝缘变压器54用次级电流信号整流电路55进行整流,并和电流基准信号27进行比较以控制晶体管17的接通-断开比。图12的电路除通过用与输入电流Iin大致成比例关系的次级电流来取代输入电流Iin对电力进行控制外和图3的电路结构相同。磁控管供电装置可以采用使输出稳定的控制方法,而不采用使输入稳定的控制方法。因而其效果是用次级电流Is对电力进行控制要比用输入电流Iin进行电力控制能进行相当于接近输出部分的更稳定的电力控制。而这不用说用磁控管的阳极电流IA进行控制的手段也有着同等的效果。
1……商用电源    2……二极管桥式电路
3……单向电流    4……开关元件
5……变换器电路    6……高压变压器
7……磁控管    8……输入电流检出部
9……变换器控制电路    10……商用电源
11……二极管桥式电路    12……单向电源
13……电感器    14……电容器
15……变换器电路    16……谐振电容器
17……功率晶体管    18……二极管
19……驱动电路    20……变压器
21……一次线圈    22……二次线圈
23……磁控管    23a……磁控管阴极
23b……磁控管阳极    24……三次线圈
25……输入电流检出器    26……输入电流整流电路
27……电流基准信号    28……电流误差放大电路
29……比较器    30……锯齿波发生电路
31……比较器输出电压    32……输入电流控制部
33……四次线圈    34……输出电压信号整流电路
35……电压基准信号    36……比较器
37……电流基准信号变
换电路部
38……晶体管    39……保险丝
40……铁心    41……铁心
42……间隙隔片    43……间隙隔片
44……夹紧部分    45……放置台
46……第一骨架    47……第二骨架
48……中间端子    49……光电耦合器
50……倍电压整流电路    51……半波整流用二极管
52……次级电流检出部    53……次级电流检出电阻
54……绝缘变压器    55……次级电流信号整流电路

Claims (14)

1、一种磁控管供电装置,备有单向电源,具有将上述单向电源的输出变换为高频的至少一个开关元件及其驱动电路的变换器电路,发生将食品及流体等加热用的高频的磁控管,及使上述变换器电路的输出升压并向上述磁控管供给电力的变压器,上述变压器包含与上述变换器电路相连的一次线圈、用以向上述磁控管供给高压高频电力的二次线圈、向上述磁控管的阴极灯丝供给低压高频电力的三次线圈,其特征在于:所述变压器还包含与上述驱动电路相连的四次线圈,并使上述四次线圈和上述二次线圈的耦合系数比上述四次线圈和上述一次线圈的耦合系数大,上述驱动电路在装置动作开始时主要以磁控管灯丝预热所需输出的某个预定的周期和占空度的电信号驱动上述开关元件,当所述磁控管起振时上述四次线圈中产生的电压下降达预定的电压范围时上述驱动电路主要以上述磁控管获得预定的输出所用的周期和占空度的电信号驱动上述开关元件。
2、如权利要求1所述的磁控管供电装置,其特征在于在四次线圈和一次线圈之间设有二次线圈。
3、如权利要求1或2所述的磁控管供电装置,其特征在于将被膜线用于四次线圈。
4、如权利要求1所述的磁控管供电装置,其特征在于设置有一旦在四次线圈上流过的电流超过预定值就进行熔断的手段。
5、如权利要求1所述的磁控管供电装置,其特征在于在变压器的二次线圈上设有中间端子以构成四次线圈。
6、如权利要求1所述的磁控管供电装置,其特征在于将各线圈按一次线圈、二次线圈、三次线圈、四次线圈的顺序排列配置。
7、如权利要求1、6所述的磁控管供电装置,其特征在于三次线圈和四次线圈的距离比二次线圈和三次线圈的距离大。
8、如权利要求1、6所述的磁控管供电装置,其特征在于在变压器的铁心上备有间隙,上述间隙设置在一次线圈的近旁。
9、如权利要求1、6所述的磁控管供电装置,其特征在于使一次线圈和第二次线圈的距离比二次线圈和三次线圈的距离大。
10、如权利要求1所述的磁控管供电装置,其特征在于使二次线圈的一端子和变压器的铁心同电位。
11、如权利要求1所述的磁控管供电装置,其特征在于在变压器的铁心上设置间隙,上述间隙用和一次线圈的骨架作成一样的隔片构成。
12、如权利要求1所述的磁控管供电装置,其特征在于将二次线圈做成分开的线圈。
13、如权利要求1所述的磁控管供电装置,其特征在于在一次线圈上使用绞合线。
14、一种磁控管供电装置,包括:
将交流电源信号变换为直流电源信号的整流装置;
与驱动电路及上述整流装置相连的开关装置,且该开关装置根据上述驱动电路的输出将上述直流电源信号变换为低压高频信号;及
具有铁芯的变压器,上述变压器与上述开关装置相连,并将上述低压高频信号变换为高压高频信号以驱动上述磁控管;
上述变压器包括与上述开关装置相连的一次线圈,与上述磁控管相连并为其供电的二次线圈,连到上述磁控管的阴极加热器并将加热电力供给上述阴极加热器的三次线圈,上述二次线圈在结构上分成多个线圈,其中每个线圈与其他线圈串联,并且嵌入设在线圈骨架上的相应的槽内,
其特征在于,上述变压器还与上述驱动电路相连,且该变压器的低压一侧的分开的线圈的端点上接有与铁芯的电压相同的电压,上述驱动回路在装置动作开始时主要以磁控管灯丝预热所需输出的某个预定的周期和占空度的电信号驱动上述开关元件,当所述磁控管起振时上述四次线圈中产生的电压下降达预定的电压范围时上述驱动回路以上述磁控管获得预定的输出所用的周期和占空度的电信号驱动上述开关元件。
CN88102529A 1987-04-30 1988-04-29 磁控管电源 Expired - Lifetime CN1021188C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP106637/87 1987-04-30
JP62106637A JP2537860B2 (ja) 1987-04-30 1987-04-30 高周波加熱装置
JP62106636A JP2537859B2 (ja) 1987-04-30 1987-04-30 高周波加熱装置
JP106636/87 1987-04-30

Publications (2)

Publication Number Publication Date
CN1030339A CN1030339A (zh) 1989-01-11
CN1021188C true CN1021188C (zh) 1993-06-09

Family

ID=26446754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN88102529A Expired - Lifetime CN1021188C (zh) 1987-04-30 1988-04-29 磁控管电源

Country Status (8)

Country Link
US (1) US4886951A (zh)
EP (1) EP0289013B1 (zh)
KR (1) KR910001986B1 (zh)
CN (1) CN1021188C (zh)
AU (1) AU592934B2 (zh)
BR (1) BR8802122A (zh)
CA (1) CA1301257C (zh)
DE (1) DE3884258T2 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2227134B (en) * 1989-01-06 1993-07-14 Hitachi Ltd High frequency heating system
JPH0371590A (ja) * 1989-08-09 1991-03-27 Toshiba Corp 電子レンジ
US5274208A (en) * 1990-03-28 1993-12-28 Kabushiki Kaisha Toshiba High frequency heating apparatus
KR920003586Y1 (ko) * 1990-04-14 1992-05-30 주식회사 금성사 마그네트론 구동 전원회로
KR940007474B1 (ko) * 1991-05-16 1994-08-18 삼성전자 주식회사 마그네트론 구동용 전원장치
US5122946A (en) * 1991-06-21 1992-06-16 International Rectifier Corporation Quasi push-pull single switch current-fed fly-back converter
KR940008029B1 (ko) * 1991-06-28 1994-08-31 삼성전자 주식회사 마그네트론 구동용 전원장치
DE19606049C1 (de) * 1996-02-19 1997-04-03 Advanced Ferrite Tech Stromversorgungsschaltung für ein Magnetron
KR100341321B1 (ko) * 1999-07-26 2002-06-21 윤종용 전자렌지용 트랜스포머
WO2003077603A2 (en) * 2002-03-12 2003-09-18 Matsushita Electric Industrial Co., Ltd. Magnetron drive boosting transformer
JP4184179B2 (ja) * 2002-09-17 2008-11-19 松下電器産業株式会社 トランス及びそれを備えたトランスユニット
JP3901669B2 (ja) * 2003-07-04 2007-04-04 松下電器産業株式会社 トランスユニット載置プリント基板
JP4503348B2 (ja) 2004-04-28 2010-07-14 パナソニック株式会社 高周波加熱装置
JP4678340B2 (ja) * 2006-06-19 2011-04-27 パナソニック電工株式会社 荷電粒子供給装置
US20080116198A1 (en) * 2006-11-21 2008-05-22 The Frank Group, Llc Microwave oven with multiple power supply paths
IT1395001B1 (it) * 2009-06-19 2012-08-07 Massa Alimentatore per magnetron a duplicatore di tensione a potenza regolabile
JP5601856B2 (ja) * 2010-03-12 2014-10-08 古野電気株式会社 マイクロ波発生装置、レーダ装置、及びマグネトロンの陰極予熱方法
CN108730597A (zh) * 2018-04-09 2018-11-02 杨东雨 一种电磁阀过压保护启动开关
CN113873704B (zh) * 2021-09-27 2024-03-12 深圳麦格米特电气股份有限公司 一种磁控管的起动方法和变频电源

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973165A (en) * 1975-04-28 1976-08-03 Litton Systems, Inc. Power supply for a microwave magnetron
GB1542662A (en) * 1975-09-12 1979-03-21 Matsushita Electric Ind Co Ltd Power supply
US4318165A (en) * 1980-04-21 1982-03-02 General Electric Company Resonant-flyback power supply with filament winding for magnetron and the like loads
GB8419730D0 (en) * 1984-08-02 1984-09-05 Thorn Emi Domestic Appliances Microwave ovens
US4620078A (en) * 1984-10-24 1986-10-28 General Electric Company Power control circuit for magnetron
US4631511A (en) * 1985-03-01 1986-12-23 Gfs Manufacturing Company, Inc. Toroid transformers and secondary windings
JPS61259488A (ja) * 1985-05-14 1986-11-17 松下電器産業株式会社 高周波加熱装置

Also Published As

Publication number Publication date
AU592934B2 (en) 1990-01-25
KR910001986B1 (ko) 1991-03-30
EP0289013A2 (en) 1988-11-02
EP0289013B1 (en) 1993-09-22
EP0289013A3 (en) 1990-02-07
CA1301257C (en) 1992-05-19
KR880013415A (ko) 1988-11-30
DE3884258D1 (de) 1993-10-28
AU1527788A (en) 1988-12-01
BR8802122A (pt) 1988-12-06
US4886951A (en) 1989-12-12
DE3884258T2 (de) 1994-01-13
CN1030339A (zh) 1989-01-11

Similar Documents

Publication Publication Date Title
CN1021188C (zh) 磁控管电源
CN1199207C (zh) 磁控管驱动升压变压器和磁控管驱动电源的变压器
CN1125578C (zh) 高频加热装置
JPS62107684A (ja) Dc−acコンバ−タ
US20080043506A1 (en) Dc-ac converter
JP2003520407A (ja) 多ランプ動作用の電力帰還力率修正方式
CN1040599C (zh) 电源装置
CN1059295C (zh) 电源装置
CN1324141A (zh) 具有有源箝位电路的开关电源装置
CN1078065C (zh) 电吸尘器
JP2691626B2 (ja) 高周波加熱装置用スイッチング電源
CN1270128C (zh) 微波炉及其控制方法
US20050110431A1 (en) Low frequency inverter fed by a high frequency ac current source
US5181160A (en) Driving circuit for inverter microwave oven
JPS61259488A (ja) 高周波加熱装置
JP2004319296A (ja) 電磁誘導加熱装置
KR960002050B1 (ko) 형광램프용 전자안정저항기
CN1166254C (zh) 带灯丝预热的单个晶体管镇流器
CN1163697C (zh) 微波炉
JP2005535086A (ja) ガス放電ランプのためのドライバ
US11742752B2 (en) DC-DC converter having two resonant circuits and method for control and operation of a DC-DC converter
JP3654067B2 (ja) 電源装置
JPH0896982A (ja) 照明装置
CN1348675A (zh) 具有气隙分路松耦合变压器的频率受控镇流器及使用方法
JPH03236189A (ja) 電子レンジ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C17 Cessation of patent right
CX01 Expiry of patent term