CN102099403B - 增强的热固性聚合物复合物的制备方法 - Google Patents

增强的热固性聚合物复合物的制备方法 Download PDF

Info

Publication number
CN102099403B
CN102099403B CN2009801275704A CN200980127570A CN102099403B CN 102099403 B CN102099403 B CN 102099403B CN 2009801275704 A CN2009801275704 A CN 2009801275704A CN 200980127570 A CN200980127570 A CN 200980127570A CN 102099403 B CN102099403 B CN 102099403B
Authority
CN
China
Prior art keywords
fiber
carbon nanotube
coating
base material
thermosetting polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009801275704A
Other languages
English (en)
Other versions
CN102099403A (zh
Inventor
L·梅佐
A·高达拉
O·罗齐兹
F·路易斯
A·瓦莱尔
I·威尔伯斯特
S·罗默韦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanocyl SA
Original Assignee
Katholieke Universiteit Leuven
Nanocyl SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katholieke Universiteit Leuven, Nanocyl SA filed Critical Katholieke Universiteit Leuven
Publication of CN102099403A publication Critical patent/CN102099403A/zh
Application granted granted Critical
Publication of CN102099403B publication Critical patent/CN102099403B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C09D171/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/51Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond
    • D06M13/513Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond with at least one carbon-silicon bond
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/56Polyhydroxyethers, e.g. phenoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • Y10T428/292In coating or impregnation

Abstract

本发明涉及增强的热固性聚合物复合物的制备方法,所述热固性聚合物复合物包含经涂覆的纤维,该涂料用作用于向热固性聚合物中引入碳纳米管的媒介,所述增强的热固性聚合物复合物的制备包含下列步骤:-提供纤维;-制备包含碳纳米管和聚合物基料的涂料;-将所述涂料施加到所述纤维上以获得经涂覆的纤维;-将所述经涂覆的纤维用热固性聚合物的前体浸渍,并使部分碳纳米管从该涂料转移到热固性聚合物的前体中;-将含有经涂覆的纤维和转移的碳纳米管的所述前体固化,以获得增强的热固性聚合物复合物。

Description

增强的热固性聚合物复合物的制备方法
技术领域
本发明涉及增强的热固性聚合物复合物的制备方法。
本发明的另一方面涉及纤维涂料组合物。
背景技术
复合物的制备通常基于下述的工艺:其中将基材用聚合物组合物浸渍,该聚合物组合物在浸渍后通过交联固化,形成聚合物基质。
通常,该基材为纤维形式,如织造的或非织造的纤维垫。
在浸渍工艺过程中聚合物组合物(基质)的粘度对于大多数工艺是关键参数,所述工艺为例如用于实施增强的结构复合物的预浸渍(pre-preg)、树脂传递模塑(RTM)、树脂注射模塑(RIM)、真空辅助树脂传递模塑(VARTM)、真空导入(VI)、手糊成型、挤拉成型、拉挤缠绕和长丝缠绕。
对于所有这些工艺,用于浸渍纤维的聚合物组合物的粘度越低,得到的基材浸渍越均匀,这导致更好的复合物结构最终性能以及更高的浸渍工艺效率(更高的速度)。
通常,对于所有种类的基质,尤其是对于热固性树脂,聚合物基质的前体的粘度越低,得到的固化基质的最终的化学和物理性能越低(基质脆性、低Tg、低化学耐性等)。具有最高的物理和化学性能的固化基质通常也在液体前体状态下具有最高的粘度,这导致其可加工性方面的限制。
在某些情况下,可以通过使用溶剂降低用于浸渍基材的前体聚合物组合物的总体粘度(例如预浸渍、长丝缠绕、挤拉成型和拉挤缠绕)。缺点是由于需要在开始前体的交联之前将溶剂从最终复合物中去除。
溶剂在某些情况下保留在基质中,它通常充当增塑剂并使所述基质的最终性能劣化。
在其它情况下,溶剂在基质固化后从基质蒸发,导致最终复合物的高孔隙率(更高的脆性,并且在基质中存在微裂纹)。
在载体浸渍之后,溶剂还需要额外的能量以便完全蒸发(与例如热熔法相比更高的成本)。
有机溶剂(例如甲乙酮或丙酮)还需要在其蒸发后被回收或燃烧,这导致更高的生产成本和对于参与基材浸渍工艺的工人而言更高的风险。
对于完全不使用溶剂的工艺,通过提高温度获得前体的可加工性所需的粘度。然而,对于手糊成型工艺,不能提高温度,或者,对于所有其它工艺,仅能略微提高温度。根据基质中的聚合物的类型,在某个温度界限以上,开始降解或者开始交联(在热固性基质的情况下),从而降低浸渍时间窗。
用于提高基质的物理和化学性能的一些添加剂也显著提高液态下基质前体的粘度(例如环氧树脂基质中的聚(亚芳基醚砜)),使得该组合物不适合用于低粘度工艺。不显著提高液态下基质的粘度的添加剂(例如PBS和苯氧树脂(phenoxy))降低固化后其物理性能中的一些,例如Tg,并且/或者提高热膨胀系数(CTE)。
发明内容
本发明旨在提供增强的热固性聚合物复合物的制备方法,该方法不具有现有技术中的缺点。
更具体地说,本发明旨在提供实施增强的复合材料的方法,该方法提高所述复合材料的某些物理性能,例如机械性能和/或电导率,而不提高浸渍工艺的难度。
本发明涉及增强的热固性聚合物复合物的制备方法,所述热固性聚合物复合物包含经涂覆的纤维,该涂料用作用于向热固性聚合物中引入碳纳米管的媒介,所述增强的热固性聚合物复合物的制备包含下列步骤:
-提供纤维;
-制备包含碳纳米管和聚合物基料的涂料;
-将所述涂料施加到所述纤维上以获得经涂覆的纤维;
-将所述经涂覆的纤维用热固性聚合物的前体浸渍,并使部分碳纳米管从该涂料转移到热固性聚合物的前体中;
-将含有经涂覆的纤维和转移的碳纳米管的所述前体固化,以获得增强的热固性聚合物复合物。
根据特别优选的实施方案,本发明进一步公开下列特征的至少一个或合适的组合:
-该热固性聚合物包含选自环氧树脂、乙烯基酯、不饱和聚酯、酚醛树脂及其共混物和共聚物的聚合物;
-涂料中碳纳米管和聚合物基料之间的重量比大于或等于1∶9,更优选大于或等于1∶4;
-增强的复合物中碳纳米管和热固性聚合物之间的重量比大于1∶1000;
-聚合物基料选自芳族聚(羟基醚)(苯氧树脂)、硅烷及其共混物和/或共聚物;
-碳纳米管在分散于涂料中之前分散于溶剂中;
-在浸渍之前,热固性聚合物的前体包含碳纳米管;
-纤维选自碳、聚芳酰胺、玻璃及其混合物;
-纤维选自碳纤维、玻璃纤维及其混合物。
本发明的另一方面涉及纤维涂料组合物,其包含:
-聚合物基料,该基料选自芳族聚(羟基醚)(苯氧树脂)、硅烷及其共混物和/或共聚物;
-碳纳米管,
其中碳纳米管和聚合物基料之间的重量比大于1∶9,并且优选大于1∶4。
附图说明
图1表示根据本发明的经涂覆的纤维。
图2表示纤维增强的复合物,其中具有已部分迁移到基质(第二聚合物组合物)中的碳纳米管(CNT)。
图3表示未涂覆的玻璃纤维的扫描电子显微图(SEM)。
图4表示根据本发明的经涂覆的玻璃纤维的扫描电子显微图(SEM)。
附图标记:
1经涂覆的纤维。
2纤维。
3包含碳纳米管(CNT)的涂料。
4增强的热固性聚合物复合物。
5包含从纤维涂料3转移的CNT的热固性聚合物基质。
具体实施方式
本发明的目的是最终复合结构的生产方法,该复合结构具有增强的静态和动态机械和物理性能,例如抗冲击性、断裂韧性、压缩、电导率等,而不明显影响浸渍用聚合物组合物(基质)的其它物理特性,例如粘度(可加工性的限制),以及最终复合材料的其它物理特性,例如玻璃化转变温度(Tg)(操作限制)。
本发明涉及增强的热固性聚合物复合物的制备方法,所述热固性聚合物复合物包含经涂覆(施胶)的纤维,该涂料(胶料)用作用于向热固性聚合物中引入碳纳米管的媒介,所述增强的热固性聚合物复合物的制备包含下列步骤:
-提供纤维;
-制备包含碳纳米管和聚合物基料的涂料(胶料);
-将所述涂料施加到所述纤维上以获得经涂覆(施胶)的纤维;
-将所述经涂覆的纤维用热固性聚合物的前体浸渍;
-使部分碳纳米管从该涂料转移到热固性聚合物的前体中;
-将含有经涂覆的纤维和扩散的碳纳米管的所述前体固化,以获得增强的热固性聚合物复合物。
该纤维优选为非织造或织造的纤维垫的形式。
本发明还涉及下述的方法:其中将碳纳米管置于纤维的表面上,该纤维将要用热固性聚合物的前体进一步浸渍,以获得用其基质中的CNT增强的最终复合材料。
本发明中所述的纤维优选选自碳、聚芳酰胺和玻璃。
本发明中所述的碳纳米管可以是单壁(SWCNTs)或多壁(MWCNTs)的,并且其特征在于0.5至75nm的直径。
优选地,本发明中所述的聚合物基料包含选自聚(羟基醚)(苯氧树脂)、硅烷及其共混物的聚合物。
用于浸渍经涂覆的纤维的热固性聚合物选自环氧树脂、乙烯基酯、不饱和聚酯、酚醛树脂、它们的共混物和共聚物。
根据用于浸渍基材的方法以及固化工艺,最经常使用的用热固性前体浸渍载体(基材)的技术可以分为四类,尤其如果该载体具有纤维结构。
第一类的代表是预浸渍(pre-preg)工艺。在那些工艺中,将纤维载体通过热熔法(将热固性聚合物前体熔融以形成膜,然后将该膜结合到基材上)或通过溶剂法(将热固性聚合物前体溶解于溶剂中,以降低其粘度水平并改善浸渍质量)用热固性聚合物前体(基质)浸渍。当基质具有太高的粘度而不能通过热熔法成膜时,经常使用溶剂法。
然后将经浸渍的载体的多个层置于模具中,然后使基质固化。在热固性基质的情况下,它在该阶段(B阶段)不完全地固化,并且它随后在用于基质进一步固结(固化)的模具中通常在更高的温度和压力下形成最终形状。
第二类在于使用封闭模具的工艺,例如树脂传递模塑(RTM)、树脂注射模塑(RIM)、真空辅助树脂传递模塑(VARTM)和真空导入(VI)。在那些工艺中,首先将纤维基材置于封闭模具中,并将浸渍用聚合物组合物(基质)在压力下注射(RTM和RIM),通过在模具中实现的超真空(extravacuum)辅助浸渍,从而帮助浸渍的进行(VARTM),或者将浸渍用聚合物组合物(基质)仅通过形成于模具中的真空进行吸入(VI)。然后通过提高模具温度使浸渍用聚合物组合物(前体)固结(固化)。
第三类浸渍技术是手糊成型(热固性树脂)。在这一类中,将纤维载体置于开放模具中,并手工浸渍。然后要么通过与大气组分的反应要么通过在即将浸渍时混合反应物而将基质在室温下固结。
第四类浸渍技术对应于挤拉成型、拉挤缠绕和长丝缠绕。在这些技术中,首先将纤维载体用热固性聚合物前体浸渍,并在此之后立即围绕着旋转形状放置(长丝缠绕)或者通过模头挤出(挤拉成型和拉挤缠绕)。然后在载体的浸渍后立即将前体固结(固化),这通常借助于升温。
包含纤维(基材)的增强的结构复合物可以分成三个区域,这些区域中的每一个为增强的结构复合物提供特定的机械性能。
第一区域是其中纤维将主要的机械性能传递给增强的结构复合物的结构复合物部分。该第一区域位于纤维自身占据的空间中。在各向异性纤维的情况下,可以通过在与基材的取向(即纤维方向)平行的方向上测量机械性能而测量纤维赋予的性能。
第二区域是其中基质将主要的机械性能传递给增强的结构材料的结构复合物部分。该第二区域位于基质占据的结构复合物空间中。G1c测试的结果受到该第二区域(基质)的性能的支配,该测试在于测量结构复合物的断裂韧性。
然而,G1c测试仅在脆性基质例如固化的环氧树脂等的情况下给出相关结果。在韧性基质例如聚丙烯的情况下,并且通常在处于其Tg以上的热塑性树脂的情况下,挠曲模量给出基质性能的更好的指标。
第三区域是其中基材和基质之间的界面产生结构复合物的机械性能的结构复合物部分。界面产生的机械性能可以通过层间剪切强度(ILSS)测量。
碳纳米管是具有有利的电学性能、热性能和机械性能的公知产品。CNT可以将其有利性能传递给其中(均匀地)分散着这样的CNT的材料。
如上所述,浸渍用前体聚合物组合物(随后形成基质)的粘度也是获得具有高机械性能的增强的结构材料的重要参数。粘度水平可以影响用于实施增强的结构复合物的工艺的使用。
高粘度材料可以阻止需要低粘度材料来实施增强的结构复合物的工艺(例如RTM、RIM等)的使用。在浸渍步骤过程中,通过浸渍用前体聚合物组合物的粘度来产生该粘度水平。如上所述,添加剂例如CNT的使用影响粘度(提高浸渍用前体聚合物组合物的粘度)。
本发明中所述的方法使得可以将CNT引入结构复合物中,同时保持前体的粘度水平接近纯基质的前体的粘度水平。
在本发明中,CNT的引入基本上通过具有涂料的纤维实现,该涂料含有碳纳米管。将CNT通过该涂料工艺置于基材的表面上。
本发明的涂料进一步包含聚合物基料,碳纳米管分散于该基料中。
其中分散有CNT的聚合物基料可以基于热固性或热塑性聚合物或其共混物。该涂料优选为分散体或乳液的形式。
然后用于浸渍经涂覆的纤维基材的热固性聚合物前体可以在浸渍工艺之前不含或几乎不含CNT。在浸渍工艺过程中,由于CNT从涂料向基质的扩散,CNT至少部分地转移到热固性聚合物(基质)中。
在这样的工艺中,避免了浸渍步骤过程中CNT提高热固性聚合物前体的粘度。
由于CNT在热固性聚合物前体(基质)中的分散(转移),通过本发明方法实现了CNT的性能向结构材料的转移。CNT的分散(转移)导致至少两种不同的机理:
-纤维基材和基质之间的界面处的界面性能(例如界面剪切强度IFSS)的提高,这是由于仍然局限于涂料中的CNT;以及
-基质的性能(例如断裂韧性和/或挠曲模量)的提高,这来自于纤维载体的浸渍步骤后在热固性聚合物(基质)中分散(迁移)的CNT。
选择CNT以及将其置于纤维基材表面上的技术的类型,以获得在CNT和纤维基材之间的足够的相互作用,以使得在用热固性聚合物前体对纤维的进一步浸渍后,CNT的一部分仍然附着于纤维表面上而另一部分迁移到热固性聚合物(基质)的前体中。
仍然在纤维表面的CNT也导致增强的复合物的宏观传导性(macroscopic conductivity)的大大提高,这可以在其中需要电磁屏蔽的应用中是有利的。
基于环氧树脂的复合物的实施例
实施例1
使用实验室规模的装置浸渍预切割的单向玻璃纤维织物(300mm×300mm),通过首先将其浸入涂料浴中然后挤出多余的涂料而进行。
然后,将经浸渍的织物在炉中在120℃干燥3分钟,然后在150℃处理3分钟。
该涂料是苯氧树脂(商品名为Hydrosize HP3-02)聚合物基料的水分散体,其中分散有多壁碳纳米管。涂料中固体(苯氧树脂+CNT)的浓度为约32%,并且苯氧树脂基料与碳纳米管之比为2∶1。
纤维表面上干燥的涂料的最终量为约1.12wt%(涂料重量/纤维重量)。玻璃纤维表面上CNT的最终量因而为约0.38%(CNT重量/纤维重量)。经施胶的玻璃纤维的外观表现出均匀的涂层以及CNT在基料中的均匀分散,如图4所示。
然后将这些经涂覆的玻璃纤维(SGF)用标准的基于双酚A的环氧树脂进一步浸渍,该树脂用于热熔预浸渍工艺,由Huntsman生产。该浸渍通过缠绕式提升设备(drum winder device)进行,以获得单向预浸料,得到约50重量%的树脂含量。
在该阶段观察到环氧树脂前体已在浸渍过程中变黑,表明至少一部分碳纳米管从纤维涂料转移到环氧树脂前体中。
将预浸料切成300mm×250mm的尺寸,并在120℃固化1小时,然后在140℃进行2小时的后固化。获得厚度为约2.0mm的复合层压片,其最终纤维体积分数在45至50%范围内。根据标准ASTM5528和ASTM D790进行针对断裂韧性(G1c)和挠曲性能的机械测试。
使用流变仪(来自Anton Paar)分析粘度。使用具有1mm的间隙和25mm的直径的平行板几何构造。
使样品在加载后停留5分钟,以使得它们能够从引起的任何应力中恢复。
对于环氧树脂,在室温下(25℃)以动态模式进行测量。使用恒定频率下的动态应变扫描找到线性粘弹性区域(LVR),在该区域中储能模量(G’)和损失模量(G”)独立于应变幅度。测量了G’(MPa)和G”(MPa)以及复数粘度(Pas)的值。
纯环氧树脂的粘度为约13Pa.s。如果在浸渍前将相同量的碳纳米管混入基质中,环氧树脂/纳米管混合物将具有约0.6重量%纳米管的纳米管浓度。这样的浓度会将粘度提高一个以上数量级。
实施例2(对比)
使用与实施例1中相同的程序,不同之处在于不向纤维施加涂料。
实施例3(对比)
使用与实施例1中相同的程序,不同之处在于不向施加于纤维上的涂料中加入碳纳米管。
实施例4
使用具有300g/m2的空气重量(aerial weight)的100%单向(UD)碳纤维。首先将纤维浸入涂料浴中然后挤出多余的涂料。
然后,将经涂覆的纤维在炉中在120℃干燥3分钟,然后在150℃处理3分钟。
该涂料是苯氧树脂(商品名为Hydrosize HP3-02)聚合物基料和碳纳米管的水分散体。涂料中固体(苯氧树脂+CNT)的浓度为约32%,并且苯氧树脂基料与碳纳米管之比为2∶1。
然后将纤维置于模具中并通过RTM用环氧树脂(Epikote 828)浸渍。将环氧树脂前体与硬化剂在室温下混合,然后进行脱气步骤15-30分钟。在开始时通过施加真空将树脂引入,随后通过真空和压力的组合引入。
再次观察到环氧树脂已在浸渍过程中变黑,表明至少一部分碳纳米管从涂料转移到环氧树脂前体中。
产生的测试样品具有与实施例1中相同的尺寸。
碳纤维在最终复合物中的重量分数估计为56wt%。碳纳米管在最终复合物中的浓度为0.2wt%。
实施例5(对比)
使用与实施例4中相同的程序,不同之处在于不向纤维施加涂料。
实施例6
使用与实施例4相同的程序,不同之处在于使用具有250g/m2的空气重量的聚对苯二甲酸乙二醇酯(PET)纺织品代替玻璃纤维。由于PET的固有的高韧性,没有进行G1c测量。纤维占总复合物的57wt%,并且碳纳米管占复合物的0.2wt%。
实施例7(对比)
使用与实施例6中相同的程序,不同之处在于不向纤维施加涂料。
表1基于环氧树脂的复合物的机械和电学测量结果
Figure BDA0000043998950000091
在表1中所示的G1c测试中,使用经涂覆的玻璃纤维(SGF/EP)获得的层压片表现出比未涂覆的玻璃纤维(VGF/EP)更好的结果。发现碳纳米颗粒在玻璃纤维的涂料中的存在改善分层萌生所需的能量。
对于增强的热固性聚合物复合物中的经涂覆的玻璃纤维,层间破裂能(GI)也显示出相对于具有未涂覆的玻璃纤维的复合物10%的改善。这是由于CNT网络导致的强的纤维/基质界面粘附。
CNT的存在防止纤维/基质界面的分层的萌生和进一步传播。有利地观察到,通过在纤维涂料中的CNT以外再在基质中加入CNT(在基质中0.5重量%),开裂能量表现出进一步的改善(SGF/EP-CNT)。
改变碳纳米管含量的其他实施例表明,对于纤维涂料中的低至1∶9的CNT/聚合物基料之比,观察到G1c的改善。
还测试了包含PET纤维的实施例6和7的复合物的挠曲模量和挠曲强度。实施例6中包含CNT的涂料的存在将挠曲模量改善10%,从实施例7中的3.3GPa到实施例6中的3.5GPa。将挠曲强度改善20%,从实施例7中的93MPa到实施例6中的122MPa。

Claims (11)

1.增强的热固性聚合物复合物的制备方法,所述热固性聚合物复合物包含经涂覆的纤维,涂料用作用于向热固性聚合物中引入碳纳米管的媒介,所述增强的热固性聚合物复合物的制备包含下列步骤:
-提供纤维;
-制备包含碳纳米管和聚合物基料的涂料;
-将所述涂料施加到所述纤维上以获得经涂覆的纤维;
-将所述经涂覆的纤维用热固性聚合物的前体浸渍,并使部分碳纳米管从该涂料转移到热固性聚合物的前体中;
-将含有经涂覆的纤维和转移的碳纳米管的所述前体固化,以获得增强的热固性聚合物复合物。
2.根据权利要求1的方法,其中该热固性聚合物包含选自环氧树脂、乙烯基酯、不饱和聚酯、酚醛树脂及其共混物和共聚物的聚合物。
3.根据权利要求1或2任一项的方法,其中涂料中碳纳米管和聚合物基料之间的重量比大于或等于1:9。
4.根据权利要求1或2任一项的方法,其中涂料中碳纳米管和聚合物基料之间的重量比大于或等于1:4。
5.根据权利要求1或2任一项的方法,其中增强的复合物中碳纳米管和热固性聚合物之间的重量比大于1:1000。
6.根据权利要求1或2任一项的方法,其中聚合物基料选自芳族聚羟基醚苯氧树脂、硅烷及其共混物和/或共聚物。
7.根据权利要求1或2任一项的方法,其中碳纳米管在分散于涂料中之前分散于溶剂中。
8.根据权利要求1或2任一项的方法,其中在浸渍之前,热固性聚合物的前体包含碳纳米管。
9.根据权利要求1或2任一项的方法,其中纤维选自碳、聚芳酰胺、玻璃及其混合物。
10.根据权利要求1或2任一项的方法,其中纤维选自碳纤维、玻璃纤维及其混合物。
11.纤维涂料组合物,其包含:
-聚合物基料,该基料选自芳族聚羟基醚苯氧树脂、硅烷及其共混物和/或共聚物;
-碳纳米管,
其中碳纳米管和聚合物基料之间的重量比大于1:9。
CN2009801275704A 2008-07-17 2009-07-17 增强的热固性聚合物复合物的制备方法 Active CN102099403B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US8155408P 2008-07-17 2008-07-17
US61/081,554 2008-07-17
PCT/EP2009/059247 WO2010007163A1 (en) 2008-07-17 2009-07-17 Method for the preparation of a reinforced thermoset polymer composite

Publications (2)

Publication Number Publication Date
CN102099403A CN102099403A (zh) 2011-06-15
CN102099403B true CN102099403B (zh) 2013-07-03

Family

ID=41120105

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801275704A Active CN102099403B (zh) 2008-07-17 2009-07-17 增强的热固性聚合物复合物的制备方法

Country Status (7)

Country Link
US (2) US8613980B2 (zh)
EP (1) EP2300517B1 (zh)
JP (1) JP2011528056A (zh)
KR (1) KR20110041469A (zh)
CN (1) CN102099403B (zh)
IL (1) IL210640A (zh)
WO (1) WO2010007163A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US20100227134A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation Method for the prevention of nanoparticle agglomeration at high temperatures
FR2945549B1 (fr) * 2009-05-12 2012-07-27 Arkema France Substrat fibreux, procede de fabrication et utilisations d'un tel substrat fibreux.
EP2461953A4 (en) 2009-08-03 2014-05-07 Applied Nanostructured Sols USE OF NANOPARTICLES IN COMPOSITE FIBERS
CA2779489A1 (en) * 2009-11-02 2011-05-05 Applied Nanostructured Solutions, Llc Cnt-infused aramid fiber materials and process therefor
KR101181791B1 (ko) * 2010-05-19 2012-09-11 경희대학교 산학협력단 탄소, 실란화 탄소나노튜브 및 에폭시 3상 복합소재
US20120149802A1 (en) * 2010-12-14 2012-06-14 The Boeing Company Composites having distortional resin coated fibers
US9012533B2 (en) 2010-12-14 2015-04-21 The Boeing Company Fiber-reinforced resin composites and methods of making the same
CN102120866B (zh) * 2011-01-12 2012-12-05 同济大学 石墨及功能化碳纤维改性环氧树脂复合材料的制备方法
KR101318113B1 (ko) * 2011-12-05 2013-10-18 주식회사 데크 내열 복합재 및 이를 제조하는 방법
EP2788542B1 (de) * 2011-12-07 2017-06-14 Toho Tenax Europe GmbH Kohlenstofffaser für verbundwerkstoffe mit verbesserter leitfähigkeit
GB201122296D0 (en) 2011-12-23 2012-02-01 Cytec Tech Corp Composite materials
US20130216390A1 (en) * 2012-02-20 2013-08-22 Bayer Materialscience Llc Reinforced composites produced by a vacuum infusion or pultrusion process
MX2015001757A (es) * 2012-08-09 2016-01-22 Kenneth Gauthier Ii Trinder Superficies solidas antimicrobianas y tratamientos y procesos para la preparacion de las mismas.
WO2014039509A2 (en) 2012-09-04 2014-03-13 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
CN103159413B (zh) * 2012-12-19 2015-11-18 东华大学 一种玻璃纤维用添加碳纳米管的浸润剂及其制备
JP6835393B2 (ja) * 2015-03-31 2021-02-24 ニッタ株式会社 炭素繊維強化成形体の製造方法
KR102017278B1 (ko) * 2015-10-02 2019-09-03 주식회사 엘지화학 탄소나노튜브 고분자 복합체를 이용한 탄소섬유 코팅방법
PL3580265T3 (pl) * 2017-02-13 2023-01-02 Norske Skog Saubrugs As Sposób dyspergowania nanocelulozy w organicznych prekursorach polimerowych
WO2019002907A1 (en) * 2017-06-26 2019-01-03 Nano-Tech S.P.A. POLYMERIC COMPOSITIONS CHARGED WITH CARBON NANOTUBES, THEIR PRODUCTION AND THEIR USE
JP7084706B2 (ja) * 2017-09-27 2022-06-15 ニッタ株式会社 複合素材、プリプレグ、炭素繊維強化成形体、および複合素材の製造方法
JP6926925B2 (ja) * 2017-10-17 2021-08-25 信越化学工業株式会社 シリカ被覆シリコーンエラストマー球状粒子の製造方法及びシリカ被覆シリコーンエラストマー球状粒子
KR20210019059A (ko) * 2018-06-11 2021-02-19 니타 가부시키가이샤 복합 소재, 프리프레그, 탄소 섬유 강화 성형체 및 복합 소재의 제조 방법
KR102197235B1 (ko) * 2019-08-28 2020-12-31 도레이첨단소재 주식회사 바인더 분말 및 기능성 입자를 포함하는 기능성 탄소섬유 직물 및 그의 제조방법
JP2023504455A (ja) * 2019-11-28 2023-02-03 カーボンエックス・アイピー・6・ビー.ブイ. カーボンナノファイバー含有カーボンネットワークの使用
US11898062B2 (en) 2020-09-09 2024-02-13 Illinois Tool Works Inc. Method for repairing surface defect with a fast curing patch
CN112375335A (zh) * 2020-11-11 2021-02-19 得一传动科技(辽宁)有限公司 一种具有吸波-电磁屏蔽复合功能的预浸料及其制备方法
WO2022159979A1 (en) 2021-01-24 2022-07-28 Kraton Polymers Llc Electrode binders for batteries

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274211A (ja) * 2005-03-30 2006-10-12 Gsi Creos Corp プリプレグの製造方法、プリプレグの製造装置およびプリプレグ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3542733A (en) * 1965-08-20 1970-11-24 Asahi Denka Kogyo Kk Method of preparing poly (hydroxy-ethers) based polyesters
JPS6359473A (ja) * 1986-08-26 1988-03-15 宇部興産株式会社 複合材料用無機繊維の製造法
US6020063A (en) * 1997-07-31 2000-02-01 Virginia Tech Intellectual Properties, Inc. Composites of thermosetting resins and carbon fibers having polyhydroxyether sizings
JP4107475B2 (ja) * 2002-02-22 2008-06-25 三菱レイヨン株式会社 繊維強化複合材料用の補強繊維
CA2532190C (en) * 2003-06-16 2012-08-21 William Marsh Rice University Sidewall functionalization of carbon nanotubes with hydroxyl-terminated moieties
US8541322B2 (en) * 2003-07-28 2013-09-24 William Marsh Rice University Sidewall functionalization of carbon nanotubes with organosilanes for polymer composites
US7141184B2 (en) * 2003-12-08 2006-11-28 Cts Corporation Polymer conductive composition containing zirconia for films and coatings with high wear resistance
WO2005116757A2 (en) * 2004-03-23 2005-12-08 Sierracin Corporation Coatings containing nanotubes, methods of applying the same and transparencies incorporating the same
FR2880353B1 (fr) * 2005-01-05 2008-05-23 Arkema Sa Utilisation de nanotubes de carbone pour la fabrication d'une composition organique conductrice et applications d'une telle composition
PT1836239E (pt) * 2005-01-13 2009-02-02 Cinv Ag Materiais compósitos contendo nanopartículas de carbono
JP2008545026A (ja) * 2005-07-01 2008-12-11 シンベンション アーゲー 多孔性網状化複合材料の作製のためのプロセス
JP4233560B2 (ja) * 2005-08-12 2009-03-04 株式会社Gsiクレオス プリプレグの製造方法
US8148276B2 (en) * 2005-11-28 2012-04-03 University Of Hawaii Three-dimensionally reinforced multifunctional nanocomposites
ES2393622T3 (es) * 2006-04-28 2012-12-26 Toho Tenax Europe Gmbh Fibras de carbono
EP2022886B1 (en) * 2006-05-02 2013-10-16 Goodrich Corporation Methods of making nanoreinforced carbon fiber and aircraft components comprising nanoreinforced carbon fiber
WO2008046165A2 (fr) 2006-10-18 2008-04-24 Nanocyl S.A. Composition anti-adhesive et antistatique
US20080139722A1 (en) * 2006-12-08 2008-06-12 3M Innovative Properties Company Vibration damping polymer composites

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274211A (ja) * 2005-03-30 2006-10-12 Gsi Creos Corp プリプレグの製造方法、プリプレグの製造装置およびプリプレグ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特開2006-274211A 2006.10.12

Also Published As

Publication number Publication date
IL210640A (en) 2014-05-28
EP2300517A1 (en) 2011-03-30
US20110200755A1 (en) 2011-08-18
EP2300517B1 (en) 2015-06-24
CN102099403A (zh) 2011-06-15
US8613980B2 (en) 2013-12-24
WO2010007163A1 (en) 2010-01-21
US20140087185A1 (en) 2014-03-27
JP2011528056A (ja) 2011-11-10
KR20110041469A (ko) 2011-04-21
IL210640A0 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
CN102099403B (zh) 增强的热固性聚合物复合物的制备方法
Sarker et al. Ultrahigh performance of nanoengineered graphene-based natural jute fiber composites
Jamir et al. Natural lightweight hybrid composites for aircraft structural applications
Cisneros-López et al. Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding
Yang et al. Effect of fiber surface modification on water absorption and hydrothermal aging behaviors of GF/pCBT composites
Vu et al. Environmentally benign green composites based on epoxy resin/bacterial cellulose reinforced glass fiber: Fabrication and mechanical characteristics
Goud et al. Mechanical and electrical performance of Roystonea regia/glass fibre reinforced epoxy hybrid composites
Martins et al. Dynamic mechanical, thermal, and morphological study of ABS/textile fiber composites
Alessi et al. Effects of Nylon 6, 6 nanofibrous mats on thermal properties and delamination behavior of high performance CFRP laminates
Indira et al. Mechanical properties and failure topography of banana fiber PF macrocomposites fabricated by RTM and CM techniques
Yang et al. Molding method, thermal and mechanical properties of jute/PLA injection molding
Liu et al. Bio-based nanocomposites by in situ cure of phenolic prepolymers with cellulose whiskers
Marrakchi et al. Biocomposites based on polycaprolactone reinforced with alfa fibre mats
Guo et al. Mechanical, dynamic mechanical and thermal properties of TiO2 nanoparticles treatment bamboo fiber-reinforced polypropylene composites
Liu et al. Interface and its effect on the interlaminate shear strength of novel glass fiber/hyperbranched polysiloxane modified maleimide-triazine resin composites
CN110114393A (zh) 碳纤维预浸料或碳纤维增强塑料以及包含其的内部和外部材料
Ganesh et al. Experimental investigation on mechanical properties of Basalt/Jute/SiC reinforced hybrid polymer composites
KR20160026831A (ko) 열가소성 복합 재료 제조용 조성물 및 열가소성 복합 재료의 제조 방법
Katagiri et al. Enhancement of mechanical properties of CFRP manufactured by using electro-activated deposition resin molding method with the application of CNF without hydrophobic treatment
Singh et al. Polyester moulding compounds of natural fibres and wollastonite
Nigrawal et al. Influence of surface modification technique on the properties of jute–Sisal fibre filled epoxy composites
Chunzheng Improving the interfacial property of carbon fiber/PI resin composite by grafting modification of carbon fiber surface
Shi et al. Bamboo fiber‐reinforced epoxy composites fabricated by vacuum‐assisted resin transfer molding (VARTM): Effect of molding sequence and fiber content
Balla et al. Influence of soybean hull fiber concentration on the water absorption and mechanical properties of 3D-printed thermoplastic copolyester/soybean hull fiber composites
Duhovic et al. Improving the interface strength in flax fibre poly (lactic) acid composites

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Free format text: FORMER OWNER: CATHOLIC UNIVERSITY OF LEUVEN

Effective date: 20131031

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20131031

Address after: Wiley, Belgium

Patentee after: Nanocyl Sa

Address before: Wiley, Belgium

Patentee before: Nanocyl Sa

Patentee before: Univ Leuven Kath