CN102010011A - 一种制备三维有序大孔结构的多晶SrFeO3的新方法 - Google Patents

一种制备三维有序大孔结构的多晶SrFeO3的新方法 Download PDF

Info

Publication number
CN102010011A
CN102010011A CN 201010532428 CN201010532428A CN102010011A CN 102010011 A CN102010011 A CN 102010011A CN 201010532428 CN201010532428 CN 201010532428 CN 201010532428 A CN201010532428 A CN 201010532428A CN 102010011 A CN102010011 A CN 102010011A
Authority
CN
China
Prior art keywords
dimensional ordered
macroporous structure
ordered macroporous
temperature
constant temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010532428
Other languages
English (en)
Other versions
CN102010011B (zh
Inventor
戴洪兴
吉科猛
张晗
石凤娟
张磊
刘雨溪
袁静
邓积光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN 201010532428 priority Critical patent/CN102010011B/zh
Publication of CN102010011A publication Critical patent/CN102010011A/zh
Application granted granted Critical
Publication of CN102010011B publication Critical patent/CN102010011B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一种制备三维有序大孔结构的多晶SrFeO3的新方法。按照摩尔比1/1将硝酸锶和硝酸铁溶解在水中,并添加柠檬酸形成络合溶液,控制金属离子浓度约为1.5mol/L;上述溶液可引入添加剂或者碳源如赖氨酸、蔗糖等;将PMMA微球模板倾入溶液中浸渍、抽滤、干燥,然后置于管式炉中,先在氮气气氛中以1℃/min的速率升至600℃并恒温2h,待降至70℃以下切换成空气气氛,再以1℃/min的速率升温至300℃恒温1h,再继续升温至750℃恒温3h,即得到三维有序大孔结构的钙钛矿型多晶氧化物SrFeO3。本发明制备的三维有序大孔结构的多晶SrFeO3材料结晶度好,原料廉价易得,产物热稳定性好。

Description

一种制备三维有序大孔结构的多晶SrFeO3的新方法
技术领域
本发明涉及一种三维有序大孔结构的多晶钙钛矿型氧化物的制备方法,具体地说涉及将柠檬酸络合法与硬模板法联用来制备三维有序大孔结构的多晶钙钛矿型氧化物SrFeO3的方法,属于纳微米功能材料合成领域。
背景技术
五十年代以来,钙钛矿型氧化物(ABO3)作为一种新型的催化材料,由于其热稳定性好,存在丰富的结构缺陷和多种氧化态金属离子,在氧化消除有机物、一氧化碳等污染物方面表现出良好的催化活性,因而在催化燃烧、汽车尾气净化及烟气脱硫等领域引起了广泛关注。又由于其具有比常见的光催化材料TiO2(3.2eV)更窄的能隙,通常小于3.0eV,从而可在更宽的波长范围内表现出良好的光催化活性。铁酸锶是一种重要的钙钛矿型氧化物,含有较多的氧空位、优越的电导性、良好的铁磁性及反铁磁性等诸多特性,因此在多相催化、电化学催化、固体燃料电池、氧气分离薄膜、气感元件等方面具有广阔的应用前景。目前,钙钛矿型氧化物的制备方法主要有固相法、共沉淀法、柠檬酸络合法、溶胶凝胶法、微乳液法、水热法、模板法等。SrFeO3的制备方法主要采用固相法。例如,Yokota等采用固相法制得了具有不同氧缺陷结构的SrFeO3-x,研究了其磁性(T.Yokota et al.,Vacuum,2010,84:663-665);Maljuk等通过柠檬酸高温煅烧法制得了棒状SrFeO3单晶(A.Maljuk et al.,Journal of CrystalGrowth,2006,291:412-415),发现在高压下用氧气处理得到的样品可以制得完全被氧化的单晶;Yang等通过燃烧法合成SrFeO3并对其光催化活性进行了研究(Y.Yang et al.,Materials Science and Engineering B,2006,132:311-314);等在高温高压下煅烧前驱体固溶胶制得了立方相的SrFe0.5Co0.5O3-δ(A.et al.,Journal of Solid State Chemistry,2006,179,3365-3370),并对其晶相、磁性结构及磁导性进行了研究;Zhang等通过固相法制备了薄膜粉末SrFe(Cu)O3-δ(Heng Zhang et al.,Journal of NaturalGas Chemistry,2009,18:45-48),并发现随着Cu掺入量的增大氧渗透流动性显著增强;杨秋华等分别通过溶胶凝胶法(杨秋华等,实验室科学,2009,5:61-64)和柠檬酸法(杨秋华等,硅酸盐通报,2003,第三期专题论文)合成了SrFeO3和LaFeO3纳米粒子,并发现SrFeO3对染料降解的光催化活性远好于LaFeO3的;宋等以硝酸锶和硝酸铁为原料,采用水热及柠檬酸和水热相结合两种方法分别制备了球状或椭圆状的SrFeO3-x(0<x<0.5)纳米粒子,并研究了其光催化性质及其在可见光下的光催化活性(宋慧娟,硕士学位论文,湖南师范大学,2007)。
本课题组采用表面活性剂软模板辅助聚甲基丙烯酸甲酯(PMMA)硬模板的双模板法制备出了三维有序大孔结构的铈锆固溶体Ce1-xZrxO2(中国发明专利,专利号:ZL 200810104987.6);采用以硝酸铁为原料、以三嵌段共聚物P123为软模板和以PMMA微球为硬模板的双模板法制备出了具有介孔孔壁的三维有序大孔结构的Fe2O3(中国发明专利,申请号:200910243650.8);采用乙二醇-甲醇为溶剂,柠檬酸为络合剂,浸渍硬模板PMMA微球后制备出了三维有序四方状大孔结构的LaMnO3(中国发明专利,申请号:201010152354.X),然后在此基础上通过改进,以甲醇和水为溶剂,添加L-赖氨酸或P123为软模板,浸渍PMMA微球硬模板后,采用两步焙烧法制备出具有介孔孔壁的三维有序大孔结构的LaMnO3(中国发明专利,申请号:201010241853.6);采用乙二醇-甲醇为溶剂,柠檬酸为络合剂,浸渍硬模板PMMA微球后制备出了具有三维有序大孔或三维蠕虫状大孔结构的La2CuO4(中国发明专利,申请号:201010103399.8)等;但由于不同物质金属元素的物化性质有很大区别,单纯采用上述专利所述方法无法得到具有三维有序大孔和类似晶体结构的其它物质。迄今为止,国内外文献和专利尚无报道过采用硬模板法制备出具有三维有序大孔结构的多晶SrFeO3
发明内容
本发明的目的在于提供一种具有三维有序大孔结构钙钛矿型氧化物的制备方法,具体涉及将柠檬酸络合法和模板法联用以制备具有三维有序大孔结构的多晶钙钛矿型氧化物SrFeO3
本发明提供的制备具有三维有序大孔结构SrFeO3的方法,其特征在于,将柠檬酸络合与模板联用,具体包括以下步骤:(1)按摩尔比1/1称取硝酸锶和硝酸铁溶于去离子水中,按照总的金属盐与柠檬酸摩尔比为1/0.6或1/1.2的比例加入柠檬酸作为络合剂,常温搅拌得到均匀金属离子络合溶液后用去离子水定容,将金属离子浓度控制在1.5mol/L附近;(2)将PMMA浸渍在上述溶液中,常压下浸渍12h;(3)经抽滤及室温下充分干燥(干燥时间≥12h)后,将所得固体物质置于管式炉中,先在氮气气氛中以1℃/min的速率升至600℃并恒温3h,待降至70℃以下切换成空气气氛,再以1℃/min的速率先升至300℃并恒温1h,再继续升至750℃并恒温3h,即得到三维有序大孔结构的多晶钙钛矿型氧化物SrFeO3
上述步骤(1)中还可引入乙二醇、甲醇等作为添加剂,使定容后添加剂体积分数为5~15%;上述步骤(1)还可按柠檬酸与碳源质量比为5/1引入赖氨酸、蔗糖等碳源。聚甲基丙烯酸甲酯的用量按每毫升溶液中加入0.1g聚甲基丙烯酸甲酯(PMMA)微球模板的比例将PMMA倾入溶液中浸渍。
本发明前驱体盐溶液的浓度、溶剂的选择和柠檬酸的加入量对制得上述结构的SrFeO3起到了关键作用,灼烧阶段中在氮气氛围下的灼烧决定了钙钛矿物质有序三维结构的形成。此外,本发明方法不但不需要通常固相合成法下的高压条件,而且制备多晶SrFeO3的灼烧温度较传统固相法低很多,传统固相法中SrFeO3的制备温度一般要高于800℃。
本发明制备的三维有序大孔结构的多晶SrFeO3材料具有多孔结构、结晶度好,原料廉价易得,产物热稳定性好,在催化、电、磁等领域皆具有巨大的应用前景。
利用D8ADVANCE型X射线衍射仪(XRD)、ZEISS SUPRA 55型扫描电子显微镜(SEM)、选区电子衍射仪(SAED,JEOL 2010透射电子显微镜的附件)等仪器测定所得目标产物SrFeO3的晶体结构和粒子形貌。结果表明,采用本方法所制得的样品为单相多晶SrFeO3,并且具有三维有序大孔结构。
附图说明
为了进一步了解释本发明,下面以实施例作详细说明,并给出附图描述本发明得到具有三维有序大孔结构的多晶钙钛矿型氧化物SrFeO3。其中:
图1为所制得的钙钛矿型氧化物SrFeO3样品的XRD谱图,其中曲线(a)、(b)、(c)、(d)分别为实施例1、实施例2、实施例3、实施例4所得样品的XRD谱图。
图2为所制得的钙钛矿型氧化物SrFeO3样品的SEM照片和电子衍射图SAED,其中图(a)、(b)、(c)、(d)中各大图分别为实施例1、实施例2、实施例3、实施例4所得样品的SEM照片,图(a)、(c)、(d)中右下角小图为各样品所对应的SAED图。
具体实施方式
实施例1:在搅拌条件下,将0.015mol Sr(NO3)2和0.015mol Fe(NO3)3·9H2O溶解在11mL去离子水中,先加入3.6g柠檬酸,待完全溶解后再加入0.72g赖氨酸,之后加入1mL甲醇,将溶液体积定容为20mL,持续搅拌直至形成均一的金属离子络合溶液;称取2g PMMA微球作为硬模板,缓慢倾入盛有上述混合溶液的烧杯中浸渍12h后抽滤,将得到的样品在室温下干燥12h以上;最后将样品装入磁舟置于管式炉中,先在N2气氛下以1℃/min的速率从室温升至600℃并恒温2h,待温度降至70℃以下切换成空气气氛,再以1℃/min的速率先升至300℃并恒温1h,然后继续升温至750℃并恒温3h,即得到具有三维有序大孔结构的SrFeO3,其XRD谱图见图1,SEM照片和电子衍射图SAED见图2,晶体结构为四方相钙钛矿,呈多晶态,大孔孔径为80~120nm,孔壁厚度为40~60nm。
实施例2:在搅拌条件下,将0.015mol Sr(NO3)2和0.015mol Fe(NO3)3·9H2O溶解在11mL去离子水中,先加入3mL乙二醇,混溶完全先后再加入3.6g柠檬酸,持续搅拌直至形成均一的金属离子络合溶液,此时溶液体积为21mL;称取2g聚甲基丙烯酸甲酯(PMMA)微球作为硬模板,缓慢倾入盛有上述混合溶液的烧杯中浸渍12h后抽滤,将得到的样品在室温下干燥12h以上;最后将样品装入磁舟置于管式炉中,先在N2气氛下以1℃/min的速率从室温升至600℃并恒温2h,待温度降至70℃以下切换成空气气氛,再以1℃/min的速率先升至300℃并恒温1h,然后继续升温至750℃并恒温3h,即得到具有三维有序大孔结构的SrFeO3,其XRD谱图见图1,SEM照片见图2,其晶体结构为四方相钙钛矿,呈多晶态,大孔孔径为100~150nm,孔壁厚度为20~40nm。
实施例3:在搅拌条件下,将0.015mol Sr(NO3)2和0.015mol Fe(NO3)3·9H2O溶解在10mL去离子水中,先加入3mL乙二醇,混溶完全先后再加入3.6g柠檬酸和0.72g蔗糖,持续搅拌直至形成均一的金属离子络合溶液,此时溶液体积为20mL;称取2g PMMA微球作为硬模板,缓慢倾入盛有上述混合溶液的烧杯中浸渍12h后抽滤,将得到的样品在室温下干燥12h以上;最后将样品装入磁舟置于管式炉中,先在N2气氛下以1℃/min的速率从室温升至600℃并恒温2h,待温度降至70℃以下切换成空气气氛,再以1℃/min的速率先升至300℃并恒温1h,然后继续升温至750℃并恒温3h,即得到具有三维有序大孔结构的SrFeO3,其XRD谱图见图1,SEM照片和电子衍射图SAED见图2,其晶体结构为四方相钙钛矿,呈多晶态,大孔孔径为90~110nm,孔壁厚度为20~40nm。
实施例4:在搅拌条件下,将0.015mol Sr(NO3)2和0.015mol Fe(NO3)3·9H2O溶解在10mL去离子水中,先加入3mL乙二醇,混溶完全先后再加入7.2g柠檬酸,持续搅拌直至形成均一的金属离子络合溶液,此时溶液体积为22mL;称取2g PMMA微球作为硬模板,缓慢倾入盛有上述混合溶液的烧杯中浸渍12h后抽滤,将得到的样品在室温下干燥12h以上;最后将样品装入磁舟置于管式炉中,先在N2气氛下以1℃/min的速率从室温升至600℃并恒温2h,待温度降至70℃以下切换成空气气氛,再以1℃/min的速率先升至300℃并恒温1h,然后继续升温至750℃并恒温3h,即得到具有三维有序大孔结构的SrFeO3,其XRD谱图见图1,SEM照片和电子衍射图SAED见图2,大孔结构由直径约为50nm的纳米颗粒整齐排列而成,其晶体结构为四方相钙钛矿,呈多晶态,大孔孔径为80~120nm。

Claims (4)

1.一种制备三维有序大孔结构的多晶SrFeO3的新方法,其特征在于,将柠檬酸络合法与模板法联用,具体包括以下步骤:(1)按摩尔比1/1称取硝酸锶和硝酸铁溶于去离子水中,按照总的金属盐与柠檬酸摩尔比为1/0.6或1/1.2的比例加入柠檬酸作为络合剂,常温搅拌得到均匀金属离子络合溶液后用去离子水定容,将金属离子浓度控制在1.5mol/L;(2)将PMMA浸渍在上述溶液中,常压下浸渍12h;(3)经抽滤及室温下充分干燥后,将所得固体物质置于管式炉中,先在氮气气氛中以1℃/min的速率升至600℃并恒温3h,待降至70℃以下切换成空气气氛,再以1℃/min的速率先升至300℃并恒温1h,再继续升至750℃并恒温3h,即得到三维有序大孔结构的多晶钙钛矿型氧化物SrFeO3
2.按照权利要求1所述的方法,其特征在于,步骤(1)中还可引入乙二醇、甲醇等作为添加剂,使定容后添加剂体积分数为5~15%。
3.按照权利要求1所述的方法,其特征在于,步骤(1)还可按柠檬酸与碳源质量比为5/1引入碳源。
4.按照权利要求1所述的方法,其特征在于,聚甲基丙烯酸甲酯的用量按每毫升溶液中加入0.1g聚甲基丙烯酸甲酯微球模板的比例将PMMA加入溶液中浸渍。
CN 201010532428 2010-10-29 2010-10-29 一种制备三维有序大孔结构的多晶SrFeO3的方法 Expired - Fee Related CN102010011B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010532428 CN102010011B (zh) 2010-10-29 2010-10-29 一种制备三维有序大孔结构的多晶SrFeO3的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010532428 CN102010011B (zh) 2010-10-29 2010-10-29 一种制备三维有序大孔结构的多晶SrFeO3的方法

Publications (2)

Publication Number Publication Date
CN102010011A true CN102010011A (zh) 2011-04-13
CN102010011B CN102010011B (zh) 2013-01-16

Family

ID=43840371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010532428 Expired - Fee Related CN102010011B (zh) 2010-10-29 2010-10-29 一种制备三维有序大孔结构的多晶SrFeO3的方法

Country Status (1)

Country Link
CN (1) CN102010011B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515096A (zh) * 2011-11-22 2012-06-27 中国科学院广州能源研究所 三维有序大孔钙钛矿型氧化物用于含碳燃料化学链制氢的用途
CN102600855A (zh) * 2012-01-10 2012-07-25 北京工业大学 一种三维有序大孔结构的La0.6Sr0.4Fe0.8Bi0.2O3、合成方法和用途
CN103537285A (zh) * 2013-08-12 2014-01-29 江苏大学 模板水热法制备三维有序大孔铁/钛复合氧化物及其应用
CN105457647A (zh) * 2015-12-10 2016-04-06 复旦大学 纳米钙钛矿型催化剂La1-XBiXCoO3及其制备方法和应用
CN106622274A (zh) * 2016-10-26 2017-05-10 上海纳米技术及应用国家工程研究中心有限公司 一种三维有序大孔钴锰复合氧化物及其制备方法
CN108565127A (zh) * 2018-03-26 2018-09-21 云南大学 一种可提高超级电容器比容量的电极材料、制备新方法及应用
CN112221506A (zh) * 2020-09-29 2021-01-15 广州大学 一种催化剂及其制备方法与应用
CN113996310A (zh) * 2021-10-22 2022-02-01 武汉工程大学 一种多孔型多重掺杂钙钛矿催化剂及其制备方法
CN115621473A (zh) * 2022-10-31 2023-01-17 苏州科技大学 一种固体氧化物燃料电池阳极材料及其制备方法和应用
CN116282237A (zh) * 2022-12-30 2023-06-23 兰州大学 三维有序大孔金属硫化物的制备方法及其产物和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176346A (ja) * 2004-12-21 2006-07-06 Dowa Mining Co Ltd 酸素ストレージ材
CN101798103A (zh) * 2010-01-29 2010-08-11 北京工业大学 一种制备三维大孔结构的正交晶相La2CuO4的胶质晶模板法
CN101870498A (zh) * 2010-04-16 2010-10-27 北京工业大学 三维有序大孔和链条状LaMnO3的聚乙二醇和柠檬酸辅助模板法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176346A (ja) * 2004-12-21 2006-07-06 Dowa Mining Co Ltd 酸素ストレージ材
CN101798103A (zh) * 2010-01-29 2010-08-11 北京工业大学 一种制备三维大孔结构的正交晶相La2CuO4的胶质晶模板法
CN101870498A (zh) * 2010-04-16 2010-10-27 北京工业大学 三维有序大孔和链条状LaMnO3的聚乙二醇和柠檬酸辅助模板法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《Chem. Mater》 20050628 Masahiro Sadakane et al. Facile Procedure To Prepare Three-Dimensionally Ordered Macroporous (3DOM) Perovskite-type Mixed Metal Oxides by Colloidal Crystal Templating Method 第3546-3551页 1-4 第17卷, 第13期 2 *
《实验室科学》 20091031 杨秋华等 《纳米LaFeO3和SrFeO3制备、表征及光催化活性研究》 第61-64页 1-4 , 第5期 2 *
《硅酸盐通报》 20031231 杨秋华等 钙钛矿型LaFeO3 和SrFeO3 的光催化性能 第15-18页 1-4 , 第3期 2 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515096A (zh) * 2011-11-22 2012-06-27 中国科学院广州能源研究所 三维有序大孔钙钛矿型氧化物用于含碳燃料化学链制氢的用途
CN102600855A (zh) * 2012-01-10 2012-07-25 北京工业大学 一种三维有序大孔结构的La0.6Sr0.4Fe0.8Bi0.2O3、合成方法和用途
CN102600855B (zh) * 2012-01-10 2013-11-20 北京工业大学 一种三维有序大孔结构的La0.6Sr0.4Fe0.8Bi0.2O3、合成方法和用途
CN103537285A (zh) * 2013-08-12 2014-01-29 江苏大学 模板水热法制备三维有序大孔铁/钛复合氧化物及其应用
CN103537285B (zh) * 2013-08-12 2015-09-02 江苏大学 模板溶剂热法制备三维有序大孔铁/钛复合氧化物及其应用
CN105457647B (zh) * 2015-12-10 2021-02-26 复旦大学 纳米钙钛矿型催化剂La1-XBiXCoO3及其制备方法和应用
CN105457647A (zh) * 2015-12-10 2016-04-06 复旦大学 纳米钙钛矿型催化剂La1-XBiXCoO3及其制备方法和应用
CN106622274A (zh) * 2016-10-26 2017-05-10 上海纳米技术及应用国家工程研究中心有限公司 一种三维有序大孔钴锰复合氧化物及其制备方法
CN108565127A (zh) * 2018-03-26 2018-09-21 云南大学 一种可提高超级电容器比容量的电极材料、制备新方法及应用
CN112221506A (zh) * 2020-09-29 2021-01-15 广州大学 一种催化剂及其制备方法与应用
CN113996310A (zh) * 2021-10-22 2022-02-01 武汉工程大学 一种多孔型多重掺杂钙钛矿催化剂及其制备方法
CN113996310B (zh) * 2021-10-22 2023-01-31 武汉工程大学 一种多孔型多重掺杂钙钛矿催化剂及其制备方法
CN115621473A (zh) * 2022-10-31 2023-01-17 苏州科技大学 一种固体氧化物燃料电池阳极材料及其制备方法和应用
CN115621473B (zh) * 2022-10-31 2023-09-22 苏州科技大学 一种固体氧化物燃料电池阳极材料及其制备方法和应用
CN116282237A (zh) * 2022-12-30 2023-06-23 兰州大学 三维有序大孔金属硫化物的制备方法及其产物和应用

Also Published As

Publication number Publication date
CN102010011B (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
CN102010011B (zh) 一种制备三维有序大孔结构的多晶SrFeO3的方法
Walton Perovskite oxides prepared by hydrothermal and solvothermal synthesis: a review of crystallisation, chemistry, and compositions
Huang et al. Synthesis and applications of nanoporous perovskite metal oxides
CN102060534B (zh) 具有介孔孔壁的三维有序大孔La1-xSrxCrO3的制备方法
Tarancón et al. Synthesis of nanocrystalline materials for SOFC applications by acrylamide polymerisation
CN101857260A (zh) 水热法制备四方片状表面结构球状二氧化铈纳米材料的方法
CN101798103B (zh) 一种制备三维大孔结构的正交晶相La2CuO4的胶质晶模板法
CN104387059A (zh) 一种钪和铈混合掺杂氧化锆粉体及其制备方法
CN1837053A (zh) 一种制备介孔二氧化铈的方法
Yuan et al. Engineering well-defined rare earth oxide-based nanostructures for catalyzing C1 chemical reactions
CN101905903B (zh) 具有介孔孔壁的三维有序大孔锰酸镧的双模板制备法
CN111099650A (zh) CeO2纳米球形颗粒的熔盐法合成方法
JP2003509323A (ja) メソ細孔性金属酸化物組成物の製造方法および固体酸化物燃料電池
CN109336161B (zh) 一种CeO2纳米管的制备方法、CeO2纳米管及应用
Rivas-Vázquez et al. Preparation of calcium doped LaCrO3 fine powders by hydrothermal method and its sintering
CN103373743A (zh) 一种多元醇辅助水热法合成氧化锆纳米粉体的方法
CN103303980B (zh) 木质素磺酸盐模板法制备纳米氧化铁的方法
CN107039649A (zh) 一种铜基复合金属氧化物多级中空微球、其制备方法及用途
CN101074490B (zh) 球状、蝴蝶结状和八面体状多晶Ce0.6Zr0.3Y0.1O2微米粒子制备方法
Choudhary et al. La2Ce2O7 based materials for next generation proton conducting solid oxide cells: Progress, opportunity and future prospects
CN110639521A (zh) 暴露高指数面的氧化铁十二面体纳米晶体催化剂的制备方法
CN101979327B (zh) 一种钙钛矿型氧化物LaMnO3空心球的制备方法
CN105642131A (zh) 一种纳米粒子稳定钙钛矿结构透氧膜的方法
Gonell et al. Experimental descriptors for the synthesis of multicationic nickel perovskite nanoparticles for oxygen reduction
Chang et al. Syntheses of LiCoO2 for cathode materials of secondary batteries from reflux reactions at 130–200 C

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130116

Termination date: 20131029