CN101803085A - 燃料电池设备和使用燃料电池设备的电子装置 - Google Patents

燃料电池设备和使用燃料电池设备的电子装置 Download PDF

Info

Publication number
CN101803085A
CN101803085A CN200880107751A CN200880107751A CN101803085A CN 101803085 A CN101803085 A CN 101803085A CN 200880107751 A CN200880107751 A CN 200880107751A CN 200880107751 A CN200880107751 A CN 200880107751A CN 101803085 A CN101803085 A CN 101803085A
Authority
CN
China
Prior art keywords
gas
fuel cell
path
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880107751A
Other languages
English (en)
Other versions
CN101803085B (zh
Inventor
山本忠夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Publication of CN101803085A publication Critical patent/CN101803085A/zh
Application granted granted Critical
Publication of CN101803085B publication Critical patent/CN101803085B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种燃料电池设备,其包括多个发电机电池,用于通过氧化剂和还原剂的电化学反应来产生电力,其中,所述多个发电机电池包括:多个气体流动路径,分别用于向所述多个发电机电池传送所述电化学反应的反应气体;以及,多个流入端口,分别被提供在所述反应气体流入所述多个气体流动路径的每一个的位置处,并且其中,在所述多个流入端口中,在所述反应气体的流动方向的下游侧提供的流入端口的横截面尺寸小于在所述反应气体的所述流动方向的上游侧提供的流入端口的横截面尺寸。

Description

燃料电池设备和使用燃料电池设备的电子装置
技术领域
本发明涉及燃料电池设备和包括所述燃料电池设备的电子装置,所述燃料电池设备用于通过氧化剂和还原剂的电化学反应来从其提取电力。
背景技术
发电设备包括燃料电池设备,其配备了发电机电池,所述发电机电池通过诸如甲醇、乙醇或者二甲醚这样的燃料与氧气的电化学反应而产生电力。燃料电池设备被大致划分为两种类型:平板类型和圆柱类型。要求通过层叠多个发电机电池而配置的平板型燃料电池抑制提供给每个发电机电池中反应气体流动路径的反应气体的流量扩散,以便提高燃料电池的发电效率。例如,日本专利申请公报公开出版物No.2006-294503描述了一种通过下述方式来抑制在气体流动路径中的气体流量扩散的方法:将在气体供应传输部中的反应气体的压力损耗与在气体排出传输部中的反应气体的压力损耗之和设置为大于在所述气体流动路径中的反应气体的压力损耗。
但是,因为多个气体流动路径彼此并联地连接到一个气体供应传输部,因此在关注多个气体流动路径的情况下,提供给每个气体流动路径的反应气体的流量不均匀,并且日本专利申请公报公开出版物No.2006-294503未描述在上述情况下抑制扩散的任何方法。
发明内容
根据本发明一个方案的一种燃料电池设备包括多个发电机电池,用于通过氧化剂和还原剂的电化学反应来产生电力,其中
所述多个发电机电池包括:
多个气体流动路径,分别用于向所述多个发电机电池传送所述电化学反应的反应气体;以及
多个流入端口,分别被提供在所述反应气体流入所述多个气体流动路径的每一个的位置处,并且其中
在所述多个流入端口中,在所述反应气体的流动方向的下游侧提供的流入端口的横截面尺寸小于在所述反应气体的所述流动方向的上游侧提供的流入端口的横截面尺寸。
根据本发明另一方案的一种燃料电池设备包括多个发电机电池,用于通过氧化剂和还原剂的电化学反应来产生电力,其中
所述多个发电机电池包括:
多个电解质层,使得预定物质渗透其中;
多个阳极,其分别被提供在所述多个电解质层的每一个的一个表面中;
多个阳极集电极,其分别与所述多个阳极的每一个邻接,其中,多个阳极气体流动路径分别形成在所述阳极集电极和所述阳极之间的每一个邻接表面上,以便包括所述还原剂的阳极气体流过其中;
多个阴极,其分别被提供在所述多个电解质层的每一个的另一个表面中;
多个阴极集电极,其分别与所述多个阴极的每一个邻接,其中,多个阴极气体流动路径分别形成在所述阴极集电极和所述阴极之间的每一个邻接表面上,以便包括所述氧化剂的阴极气体流过其中;
多个阳极气体流入端口,其分别被提供在所述阳极气体流入所述多个阳极气体流动路径的每一个中的位置处;以及
多个阴极气体流入端口,其分别被提供在所述阴极气体流入所述多个阴极气体流动路径的每一个中的位置处,并且其中
在所述多个阳极气体流入端口中,在所述阳极气体的流动方向的下游侧提供的流入端口的横截面尺寸小于在所述阳极气体的所述流动方向的上游侧提供的流入端口的横截面尺寸。
根据本发明再一方案的一种燃料电池设备包括多个发电机电池,用于通过氧化剂和还原剂的电化学反应来产生电力,其中
所述多个发电机电池包括:
多个电解质层,使得预定物质渗透其中;
多个阳极,其分别被提供在所述多个电解质层的每一个的一个表面中;
多个阳极集电极,其分别与所述多个阳极的每一个邻接,其中,多个阳极气体流动路径分别形成在所述阳极集电极和所述阳极之间的每一个邻接表面上,以便包括所述还原剂的阳极气体流过其中;
多个阴极,其分别被提供在所述多个电解质层的每一个的另一个表面中;
多个阴极集电极,其分别与所述多个阴极的每一个邻接,其中,多个阴极气体流动路径分别形成在所述阴极集电极和所述阴极之间的每一个邻接表面上,以便包括所述氧化剂的阴极气体流过其中;
多个阳极气体流入端口,其分别被提供在所述阳极气体流入所述多个阳极气体流动路径的每一个中的位置处;以及
多个阴极气体流入端口,其分别被提供在所述阴极气体流入所述多个阴极气体流动路径的每一个中的位置处,并且其中
在所述多个阴极气体流入端口中,在所述阴极气体的流动方向的下游侧提供的流入端口的横截面尺寸小于在所述阴极气体的所述流动方向的上游侧提供的流入端口的横截面尺寸。
根据本发明又一方案的一种电子装置包括:
燃料电池设备,其包括多个发电机电池,用于通过氧化剂和还原剂的电化学反应来产生电力,其中
所述多个发电机电池包括:
多个气体流动路径,分别用于向所述多个发电机电池传送所述电化学反应的反应气体;以及
多个流入端口,分别被提供在所述反应气体流入所述多个气体流动路径的每一个的位置处,并且其中
在所述多个流入端口中,在所述反应气体的流动方向的下游侧提供的流入端口的横截面尺寸小于在所述反应气体的所述流动方向的上游侧提供的流入端口的横截面尺寸;以及
电子装置主体,其通过由所述燃料电池设备产生的电力而工作。
根据本发明再又一方案的一种电子装置包括:
燃料电池设备,其包括多个发电机电池,用于通过氧化剂和还原剂的电化学反应来产生电力,其中
所述多个发电机电池包括:
多个电解质层,使得预定物质渗透其中;
多个阳极,其分别被提供在所述多个电解质层的每一个的一个表面中;
多个阳极集电极,其分别与所述多个阳极的每一个邻接,其中,多个阳极气体流动路径分别形成在所述阳极集电极和所述阳极之间的每一个邻接表面上,以便包括所述还原剂的阳极气体流过其中;
多个阴极,其分别被提供在所述多个电解质层的每一个的另一个表面中;
多个阴极集电极,其分别与所述多个阴极的每一个邻接,其中,多个阴极气体流动路径分别形成在所述阴极集电极和所述阴极之间的每一个邻接表面上,以便包括所述氧化剂的阴极气体流过其中;
多个阳极气体流入端口,其分别被提供在所述阳极气体流入所述多个阳极气体流动路径的每一个中的位置处;以及
多个阴极气体流入端口,其分别被提供在所述阴极气体流入所述多个阴极气体流动路径的每一个中的位置处,并且其中
在所述多个阳极气体流入端口中,在所述阳极气体的流动方向的下游侧提供的流入端口的横截面尺寸小于在所述阳极气体的所述流动方向的上游侧提供的流入端口的横截面尺寸;以及
电子装置主体,其通过由所述燃料电池设备产生的电力而工作。
根据本发明再另一方案的一种电子装置包括:
燃料电池设备,其包括多个发电机电池,用于通过氧化剂和还原剂的电化学反应来产生电力,其中
所述多个发电机电池包括:
多个电解质层,使得预定物质渗透其中;
多个阳极,其分别被提供在所述多个电解质层的每一个的一个表面中;
多个阳极集电极,其分别与所述多个阳极的每一个邻接,其中,多个阳极气体流动路径分别形成在所述阳极集电极和所述阳极之间的每一个邻接表面上,以便包括所述还原剂的阳极气体流过其中;
多个阴极,其分别被提供在所述多个电解质层的每一个的另一个表面中;
多个阴极集电极,其分别与所述多个阴极的每一个邻接,其中,多个阴极气体流动路径分别形成在所述阴极集电极和所述阴极之间的每一个邻接表面上,以便包括所述氧化剂的阴极气体流过其中;
多个阳极气体流入端口,其分别被提供在所述阳极气体流入所述多个阳极气体流动路径的每一个中的位置处;以及
多个阴极气体流入端口,其分别被提供在所述阴极气体流入所述多个阴极气体流动路径的每一个中的位置处,并且其中
在所述多个阴极气体流入端口中,在所述阴极气体的流动方向的下游侧提供的流入端口的横截面尺寸小于在所述阴极气体的所述流动方向的上游侧提供的流入端口的横截面尺寸;以及
电子装置主体,其通过由所述燃料电池设备产生的电力而工作。
附图说明
通过下面的详细说明和附图,将充分地理解本发明,但是它们仅仅被提供来用于说明,而不用于限制本发明的范围。
图1是示出其中安装了燃料电池设备的便携式电子装置的框图。
图2是发电机电池的示意图
图3是发电机电池组的示例的示意图。
图4是热绝缘封装的透视图。
图5是在图4中从箭头方向来看的、沿线V-V所取的剖视图。
图6是示出热绝缘封装的内部结构的透视图。
图7是示出当从其下侧来看时图6的热绝缘封装的内部结构的透视图。
图8是示出顺序布置的连接部、重整器、连接部、燃料电池部的底视图。
图9是示出当从图8中的箭头方向来看时沿图8的线IX-IX所取的图8的连接部的剖视图。
图10是示出当从图9中的箭头方向来看时沿图9的线X-X所取的图8的连接部的剖视图。
图11是示出发电机电池的阳极气体流动路径的形状的剖视图。
图12是示出发电机电池的阳极气体流动路径的形状的平面图。
图13是示出发电机电池的阴极气体流动路径的形状的剖视图。
图14是示出发电机电池的阴极气体流动路径的形状的平面图。
图15是示出在将发电机电池形成为电池组的情况下的阳极气体流动路径和阴极气体流动路径的配置的剖视图。
图16是示出在外壳内容纳的电池组的透视图。
图17是示出当从上方来看时的电池组的透视图。
图18是示出当从下方来看时的电池组的透视图。
图19是在概念上示出电池组的主要部分的固体形状的放大图。
图20是电池组的剖面侧视图。
图21是示出电池组的流入端口、流出端口和阴极气体流动路径的平面图。
图22是示出电池组的每个流入端口的变窄节距的剖面侧视图。
图23是示出在电池组的每个流入端口的变窄节距的平面图。
图24是示出每个发电机电池的阴极气流速度的流体仿真结果的图。
图25是其中使得发电机电池的阴极气流的高度高于阳极气流的高度的示例的剖视图。
具体实施方式
将参照附图来说明本发明的实施例。
[电子装置]
图1是示出其上安装了燃料电池设备1的便携式电子装置100的框图。电子装置100是便携式电子装置,诸如笔记本大小的个人计算机、个人数字助理(PDA)、个人电子记事本、数码相机、便携式电话、腕表、记录器和投影仪。
电子装置100由电子装置主体901、直流/直流转换器902和蓄电池903等以及燃料电池设备1构成。电子装置主体901由从直流/直流转换器902或蓄电池903提供的电力驱动。直流/直流转换器902将由燃料电池设备1产生的电力转换为适当的电压,然后将所转换的电压的电力提供给电子装置主体901。此外,直流/直流转换器902使用由燃料电池设备1产生的电力来对蓄电池903充电,并且在燃料电池设备1未工作期间,将蓄电池903中累积的电力提供给电子装置主体901。
[燃料电池设备]
燃料电池设备1配备了燃料容器2、泵3和热绝缘封装(热绝缘容器)10等。燃料电池设备1的燃料容器2例如以可拆装状态被提供到电子装置100。泵3和热绝缘封装10例如被包含在电子装置100的主体中。
燃料容器2保存液态原燃料(诸如甲醇、乙醇或者二甲醚)和水的混合液体。顺便提及,可以在分立的容器中存储液态原燃料和水。泵3吸取燃料容器2中的混合液体,以将所吸取的液体传送到热绝缘封装10中的汽化器4。
在热绝缘封装10中容纳了汽化器4、重整器6、发电机电池8和催化剂燃烧室9。热绝缘封装10的内部空间的气压被保持在小于大气压力的气压(例如10帕或者更小),以便提高内部空间的隔热效果。
汽化器4、重整器6和催化剂燃烧室9分别具有电子加热器与温度传感器4a、6a和9a。因为电子加热器与温度传感器4a、6a和9a的电阻值依赖于温度,因此电子加热器与温度传感器4a、6a和9a也作为温度传感器来分别测量汽化器4、重整器6和催化剂燃烧室9的温度。
从泵3传送到汽化器4的混合液体被电子加热器与温度传感器4a的热量和从催化剂燃烧室9传递的热量加热到大约110℃到大约160℃,由此汽化混合液体。于是产生汽化的混合气体。在汽化器4中产生的混合气体被传送到重整器6。
在重整器6中形成流动路径,并且催化剂被承载在该流动路径的壁表面上。从汽化器4传送到重整器6的混合气体流过重整器6的流动路径,并且被电子加热器与温度传感器6a的热量、发电机电池8的反应热量和催化剂燃烧室9的热量加热到大约300℃到大约400℃,以便借助于催化剂来引起重整反应。通过原燃料和水的重整反应来产生混合气体(重整气体),该混合气体包括作为燃料的氢气,和作为副产品的二氧化碳与微量的一氧化碳等。顺便提及,当原燃料是甲醇时,则在重整器6中主要引起下面的化学方程式(1)所示的流重整反应。
CH3OH+H2O→3H2+CO2...(1)
根据诸如下面的化学方程式(2)的化学方程式,微量产生作为副产品的一氧化碳,化学方程式(2)是在化学反应方程式(1)后依序引起的。
H2+CO2→H2O+CO...(2)
根据化学反应方程式(1)和(2)产生的气体(重整气体)被传送到发电机电池8。
图2是示出发电机电池8的示意图,而图3是示出发电机电池组的示例的示意图。如图2中所示,发电机电池8是固态氧化物燃料电池(SOFC),其由以下项构成:固体氧化物电解质81;燃料电极82(阳极)和氧化物电极83(阴极),它们分别形成在固体氧化物电解质81的两侧;阳极集电极84,其与燃料电极82邻接,并且在阳极集电极84的邻接侧主平面(邻接表面)上形成阳极气体流动路径86;以及阴极集电极85,其与氧化物电极83邻接,并且在阴极集电极85的邻接侧主平面(邻接表面)上形成阴极气体流动路径87。此外,发电机电池8被容纳在外壳90内。
基于氧化锆的(Zr1-xYx)O2-X/2(YSZ)和基于镓酸镧的(La1-XSrx)(Ga1-y-zMgyCoz)O3等可以被用作固体氧化物电解质81;La0.84Sr0.16MnO3、La(Ni,Bi)O3、(La,Sr)MnO3、In2O3+SnO2、LaCoO3等可以被用作燃料电极82;Ni和Ni+YSZ等可以被用作氧化物电极83;并且,LaCr(Mg)O3、(La,Sr)CrO3、NiAl+Al2O3等可以被用作阳极集电极84和阴极集电极85。
发电机电池8被电子加热器与温度传感器9a和催化剂燃烧室9的热量加热到大约500℃到1000℃,并且引起由下面的化学方程式(3)-(5)表达的每个反应。
空气(反应气体、阴极气体)通过阴极集电极85的阴极气体流动路径87被传送到氧化物电极83。通过由氧气(氧化剂)和阴极输出电极21b提供的电子来在氧化物电极83中产生氧离子,如下面的化学方程式(3)所示。
O2+4e-→2O2-...(3)
固体氧化物电解质81具有氧离子可渗透性,并且允许根据化学反应方程式(3)在氧化物电极83中产生的氧离子渗透固体氧化物电解质81到达燃料电极82。
从重整器6排出的重整气体(反应气体、阳极气体)通过阳极集电极84的阳极气体流动路径86被传送到燃料电极82。在燃料电极82中,引起已经渗透固体氧化物电解质81的氧离子与在重整气体中的氢气(还原剂)和一氧化碳反应,该反应通过下面的化学方程式(4)和(5)来表达。
H2+O2-→H2O+2e-...(4)
CO+O2-→CO2+2e-...(5)
根据化学反应方程式(4)和(5)发出的电子通过燃料电极82、阳极输出电极21a和诸如直流/直流转换器902这样的外部电路从阴极输出电极21b被提供到氧化物电极83。
阳极输出电极21a和阴极输出电极21b被分别连接到阳极集电极84和阴极集电极85,并且阳极输出电极21a和阴极输出电极21b穿过外壳90而被拉出。在此,如下所述,通过例如基于Ni(镍)的合金来形成外壳90,并且阳极输出电极21a和阴极输出电极21b以用诸如玻璃或者陶瓷这样的绝缘材料而与外壳90绝缘的状态被拉出。如图1中所示,阳极输出电极21a和阴极输出电极21b连接到例如直流/直流转换器902。
图3是示出由多个发电机电池8构成的电池组80的示例的示意图。在本发明中,如此附图中所示,层叠了多个发电机电池8,其中每个发电机电池8由阳极集电极84、燃料电极82、固体氧化物电解质81、氧化物电极83和阴极集电极85构成,并且所述多个发电机电池8的每一个串联地彼此电连接以形成电池组80。在这种情况下,发电机电池8在串联的集电极84的一端的阳极集电极84连接到阳极输出电极21a,而发电机电池8在另一端的阴极集电极85连接到阴极输出电极21b。此外,电池组80被容纳在外壳90中。
已经通过阳极集电极84的阳极气体流动路径86的重整气体(以下,通过的重整气体被称为废气)还包括未反应的氢气。废气被提供到催化剂燃烧室9。
已经通过阴极集电极85的阴极气体流动路径87的空气与废气一起被提供到催化剂燃烧室9。在催化剂燃烧室9中形成流动路径,并且基于Pt(铂)的催化剂被承载在该流动路径的壁表面上。在催化剂燃烧室9上提供由电子加热材料构成的电子加热器与温度传感器9a。因为电子加热器与温度传感器9a的电阻值依赖于温度,因此电子加热器与温度传感器9a也用作温度传感器来测量催化剂燃烧室9的温度。
由废气和空气构成的混合气体(燃烧气体)流过催化剂燃烧室9的流动路径,并且被电子加热器与温度传感器9a加热。流过催化剂燃烧室9的流动路径的燃烧气体中的氢气被催化剂燃烧,并由此产生燃烧热量。燃烧后的排气从催化剂燃烧室9被排出到热绝缘封装10外部。
在催化剂燃烧室9中产生的燃烧热量用于将发电机电池8的温度保持在高温(大约500℃到大约1000℃)。然后,发电机电池8的热量传导到重整器6和汽化器4,并且用于在汽化器4中的汽化和重整器6中的流重整反应。
[热绝缘封装]
接着,描述热绝缘封装10的具体配置。
图4是热绝缘封装10的透视图,而图5是当从箭头方向来看时,沿图4中的线V-V所取的剖视图。图6是示出热绝缘封装10的内部结构的透视图,而图7是当从其下侧来看时,图6的热绝缘封装10的内部结构的透视图。
如图4中所示,连接部5、阳极输出电极21a和阴极输出电极21b从热绝缘封装10的一个壁表面突出。顺便提及,如图5中所示,分别使用绝缘材料10a和10b来使热绝缘封装10的部分与电极21a和21b绝缘,在所述部分处,阳极输出电极21a和阴极输出电极21b穿过热绝缘封装10。
如图5-7中所示,汽化器4和连接部5、重整器6、连接部7和燃料电池部20被布置在热绝缘封装10中,其中后四项以此顺序布置。顺便提及,通过将容纳发电机电池8的外壳90与催化剂燃烧室9集成来形成燃料电池部20,并且废气从发电机电池8的燃料电极82被提供到催化剂燃烧室9。
汽化器4、连接部5、重整器6、连接部7、燃料电池部20的容纳发电机电池8外壳90和催化剂燃烧室9、阳极输出电极21a以及阴极输出电极21b由耐高温和具有适中导热率的金属制成,并且可以通过使用基于Ni的合金(诸如因科镍合金(Inconel)783)来形成。具体而言,为了抑制阳极输出电极21a和阴极输出电极21b的破损,优选的是,至少形成与外壳90的材料相同材料的阳极输出电极21a和阴极输出电极21b,其中,阳极输出电极21a和阴极输出电极21b分别连接到在燃料电池部20中的阳极集电极84和阴极集电极85,并且由于接收发电机电池8的升温伴有的热胀系数的差别导致的应力而从外壳90被拉出。此外,为了减少在汽化器4、连接部5、重整器6、连接部7以及燃料电池部20的外壳90和催化剂燃烧室9之间伴随升温而产生的应力,优选的是,使用相同的材料来形成它们。
在热绝缘封装10的内壁表面上形成防辐射膜11,并且分别在汽化器4、连接部5、重整器6、连接部7、阳极输出电极21a、阴极输出电极21b以及燃料电池部20的外壁表面上形成防辐射膜12。防辐射膜11和12防止通过辐射进行热传递,并且例如可以将Au(金)和Ag(银)等用于防辐射膜11和12。优选的是,提供有防辐射膜11和12的至少一个,并且更为优选的是,具有防辐射膜11和12两者。
连接部5穿过热绝缘封装10。连接部5的一端连接到在热绝缘封装10外部的泵3,而其另一端连接到重整器6。汽化器4位于连接部5的中部。重整器6和燃料电池部20彼此连接,并且在其间放置有连接部7。
如图6和7中所示,集成地形成汽化器4、连接部5、重整器6、连接部7和燃料电池部20,并且它们的下表面形成为齐平。
图8是连接部5、重整器6、连接部7和燃料电池部20的底视图。顺便提及,在图8中未示出阳极输出电极21a和阴极输出电极21b。
如图8中所示,在使用陶瓷等执行了连接部5、重整器6、连接部7和燃料电池部20的绝缘处理后,在它们的下表面上形成布线图案。所述布线图案以曲折状态被形成在汽化器4的下部、重整器6的下部和燃料电池部20的下部,以分别作为电子加热器与温度传感器4a、6a和9a。电子加热器与温度传感器4a、6a和9a的每一个的一端连接到公共端子13a,而它们的另一端分别连接到三个独立的端子13b、13c和13d。所述四个端子13a、13b、13c和13d被形成在连接部5的在热绝缘封装10外侧的端部上。
图9是当从箭头方向来看时,沿图8的线IX-IX所取的剖视图,而图10是当从箭头方向来看时,沿图9的线X-X所取的剖视图。
在连接部5中形成要从催化剂燃烧室9排出的排气的排出流动路径51和52。此外,在连接部5中形成要从汽化器4传送到重整器6的混合气体的供应流动路径53。
类似地,在连接部7中形成要从催化剂燃烧室9排出的排气的排出流动路径(未示出),所述排出流动路径分别与排出流动路径51和52连通。此外,在连接部7中形成要从重整器6传送到发电机电池8的燃料电极82的重整气体的供应流动路径(未示出)。通过连接部5和7,保证了原燃料、混合气体和重整气体向汽化器4、重整器6和燃料电池部20的供应流动路径和排气的排出流动路径。
顺便提及,为了将要从催化剂燃烧室9排出的排气的流动路径直径充分地扩大为提供给催化剂燃烧室9的废气和空气的流动路径直径,在连接部7中形成的三个流动路径中,将两个流动路径用作来自催化剂燃烧室9的排气的流动路径,而将另一个流动路径用作重整气体向发电机电池8的燃料电极82的供应流动路径。
阳极输出电极21a和阴极输出电极21b的每一个的一端从燃料电池部20的在其连接到连接部7的一侧的表面上被拉出,如图6和7中所示。阳极输出电极21a和阴极输出电极21b的每一个的另一端从热绝缘封装10的与连接部5从中突出的壁表面相同的壁表面突出到外部,如图4中所示。
顺便提及,在本实施例中,连接部7连接到燃料电池部20的一个表面的中央部分,并且阳极输出电极21a和阴极输出电极21b从该表面的相对部被拉出。因此,在连接部7、阳极输出电极21a和阴极输出电极21b的三个点支撑燃料电池部20,由此,可以将燃料电池部20稳固地保持在热绝缘封装10中。
阳极输出电极21a和阴极输出电极21b包括弯曲部分21c和21d,它们在热绝缘封装10的内壁表面和燃料电池部20之间的空间中弯曲,如图6和7中所示。弯曲部分21c和21d起到减轻源自燃料电池部20和热绝缘封装10的热胀量之间的差的应力的作用,热绝缘封装10处于比燃料电池部20的温度更低的温度,所述应力通过阳极输出电极21a和阴极输出电极21b在燃料电池部20和热绝缘封装10之间作用。
从发电机电池8的阳极集电极84拉出阳极输出电极21a,并且从发电机电池8的阴极集电极85拉出阴极输出电极21b。阳极输出电极21a和阴极输出电极21b每个都形成为空心管,并且阳极输出电极21a和阴极输出电极21b的内部形成为空气供应流动路径22a和22b,用于将空气提供给发电机电池8的氧化物电极83。
图11和12分别是示出发电机电池8中的阳极气体流动路径86的形状的剖视图和平面图,而图13和14分别是示出发电机电池8中的阴极气体流动路径87的形状的剖视图和平面图。图15是示出在将发电机电池8进行层叠而形成电池组80的情况下的阳极气体流动路径86和阴极气体流动路径87的配置的剖视图。
在阳极集电极84中形成的阳极气体流动路径86被形成为曲折形状,如图11和12中所示。在阴极集电极85中形成的阴极气体流动路径87被类似地形成为曲折形状,如图13和14中所示。
阴极气体流动路径87的一端通过下述的阴极气体供应歧管(manifold)(公共供应路径)连接到空气供应流动路径22a和22b,并且阴极气体流动路径87将从空气供应流动路径22a和22b提供的空气提供到氧化物电极83,使空气通过其内部。阴极气体流动路径87的另一端具有将在随后描述的阴极气体排出歧管(公共排出路径),其与催化剂燃烧室9连通。还未在氧化物电极83中用于化学反应方程式(3)的反应而保留在其中的空气从阴极气体排出歧管被提供到催化剂燃烧室9。
当多个发电机电池8被层叠而形成电池组80时,从降低气体流动路径的压力损耗的视点看,与以彼此串联地布置发电机电池的气体流动路径的方式叠放发电机电池8相比较,更有利的是以彼此并联地布置发电机电池8的气体流动路径的方式来叠放发电机电池8,如图15中所示。通过将气体流动路径彼此并联布置,可以缩短气体流动路径,并且适当地降低它们的压力损耗。
考虑到这一点,本实施例的电池组80具有:阳极气体供应歧管810,用于将包括氢气的重整气体均匀地扩散到层叠的发电机电池8的每个阳极气体流动路径86中,以执行重整气体的并联供应;以及,阳极气体排出歧管820,用于汇合已经通过每个阳极气体流动路径86的包括未反应的氢气的重整气体,以排出所汇合的气体。
此外,电池组80具有:阴极气体供应歧管830,用于将包括氧气的空气均匀地扩散到层叠的发电机电池8的每个阴极气体流动路径87中,以执行空气的并联供应;以及,阴极气体排出歧管840,用于汇合已经通过每个阴极气体流动路径87的包括未反应的氧气的空气,以排出所汇合的空气。
图16是在外壳90中容纳的电池组80的透视图。图17是当从上方来看时的电池组80的透视图,而图18是当从下方来看时的电池组80的透视图。图19是在概念上示出电池组80的主要部分的固体形状的放大图。
阳极集电极84和阴极集电极85都是平矩形。形成气体供应歧管的一部分的突出部分84a和85a被形成在该平矩形四个角之间的对角线方向上彼此相对的两个角之一上,并且形成气体排出歧管的一部分的突出部分84b和85b被形成在彼此相对的两个角的另一个上(参见图19)。
在本实施例中,阳极气体供应歧管810和阴极气体供应歧管830被布置在阳极集电极84和阴极集电极85的一侧上,而阳极气体排出歧管820和阴极气体排出歧管840被布置在阳极集电极84和阴极集电极85的另一侧上。
图20是电池组的剖面侧视图,而图21是示出电池组的流入端口、流出端口和阴极气体流动路径的平面图。图22是示出电池组的每个流入端口的变窄节距的剖面侧视图。此外,图23是示出电池组的每个流入端口的变窄节距的平面图。阳极气体供应歧管810和阴极气体供应歧管830在电池组80的厚度方向(发电机电池8的层叠方向)上直线延伸。阳极气体排出歧管820和阴极气体排出歧管840也在电池组80的厚度方向上直线延伸。图18、20和22中的箭头示出了作为阴极气体流动路径87中的气体的空气的流入和流出。
在电池组80中的阴极气体供应歧管830和发电机电池8的阴极气体流动路径87之间的阴极集电极85中形成用于调整流量的阴极气体流入端口831,如图20-23中所示。因此,从阴极气体供应歧管830到发电机电池8的阴极气体流动路径87依次形成阴极气体流入端口831。
每个阴极气体流入端口831形成为具有彼此不同的横截面面积的平矩形。即,阴极气体流入端口831形成为具有大小以从位于阴极气体供应歧管830的上游侧到位于其下游侧的顺序变小的横截面。阴极气体流入端口831的横截面的形状不限于平矩形,而可以是圆形、三角形和四角或者更多角的多边形中的一些。
顺便提及,通过未示出的空气泵从空气供应流动路径22a和22b提供(排放)到阴极气体供应歧管830的空气排放方向被设置为面向发电机电池8的层叠方向(阴极气体供应歧管的长度方向),如图22中所示。设置空气排放方向的原因是,通过下述方式可以使得在每个阴极气体流动路径87中的空气流量几乎是均匀的,而没有任何扩散:将空气排放方向设置为阴极气体供应歧管的长度方向,并且将阴极气体流入端口831的横截面的大小形成为以从位于阴极气体供应歧管830的上游侧到位于其下游侧的顺序变小。在此,空气供应流动路径22a和22b、空气泵等构成空气供应部。
此外,在本实施例中,还在电池组80中在阳极气体供应歧管810和发电机电池8的阳极气体流动路径86之间形成用于调整流量的阳极气体流入端口811(参见图15)。
在每个阴极气体流动路径87和阴极气体排出歧管840之间形成阴极气体流出端口832。在本实施例中,阴极气体流出端口832的横截面大小被形成为彼此相等。此外,还在每个阳极气体流动路径86和阳极气体排出歧管820之间形成阳极气体流出端口812。阳极气体流出端口812的横截面大小也被形成为彼此相等。通过将流出端口832和812的横截面大小设置为常量,不仅可以使得在气体流动路径87和86中的空气流量几乎均匀而不引起任何扩散,而且使得设置流入端口831和811的横截面大小变得更容易。
在此,假定从空气循环的上游侧(即从阴极气体供应歧管830的空气供应侧)到第n个发电机电池8的阴极气体流动路径87中的阴极气体流入端口831的横截面大小被设置为En×Fn,如图21中所示。假定En和Fn是2毫米,并且在阴极气体流动路径87的弯曲流动路径的横截面尺寸是5mm×0.3mm、流动路径87中的分隔壁的数量是5并且叠层数量是10的情况下,通过流体仿真来计算7700ccm空气流量在每个发电机电池8中的空气流速。在图24中的图内示出了结果。在此,图例gr-x表示在En的方向上与2毫米的初始值之差(流动路径变窄的节距),而图例gr-y表示在Fn的方向上与2毫米的初始值之差(流动路径变窄的节距)。
如从图24所显而易见地,gr-x=0和gr-y=0的情况指示当所有阴极气体流入端口831的横截面尺寸相同时叠层之间的流速分布,所述分布为其中流速从空气循环的上游侧向下游侧变快的分布。在这样的流速分布中,发电机电池8的输出变得不均匀,并且不能充分地达到电池组80的固有性能。
此外,当通过改变gr-x和gr-y而逐渐地缩小阴极气体流入端口831的大小时,则发现叠层之间的流量分布根据图24改变。在本实施例中,大约在gr-x=0.2且gr-y=0.05时,情形为几乎均匀。如上所述,根据本实施例,在多个发电机电池8的每个阴极气体流动路径87中流动的空气流量在发电机电池8的流动路径87之间的扩散可以被抑制。此外,在每个阳极气体流动路径86中流动的重整气体的流量在发电机电池8的流动路径86之间的扩散也可以被抑制。
顺便提及,还与上述方法类似地设置在阳极气体供应歧管810和发电机电池8的阳极气体流动路径86之间形成的用于进行流量调整的阳极气体流入端口811的大小。但是,反应气体的流速在阳极气体流动路径86中比在阴极气体流动路径87中更小,一般约为阴极气体流动路径87中流速的1/3到1/10。因此,因为反应气体的流量的扩散也更小,因此根据更小的扩散来设置阳极气体流入端口811的横截面大小。
现在,在本实施例中,当废气中的氢气已经完全燃烧时,从催化剂燃烧室9排出CO2、H2O、N2和O2。在此,存在以下两个向发电机电池8供应反应气体的流动路径的系统:阳极气体流动路径86,用于传送重整气体;以及阴极气体流动路径87,用于传送空气。但是,存在一个流动路径的系统作为从发电机电池8排出反应后的气体的流动路径。在这种情况下,因为排出系统的气体流量大于供应系统的气体流量,因此,当供应系统和排出系统的管道数量的每一个是1时,并且当这些管道的直径相同时,排出系统的流动路径中的压力损耗扩大。期望将排出系统的管道直径扩大为大于供应系统的管道直径,以便抑制排出系统的流动路径中的压力损耗。或者,期望将供应系统和排出系统的管道直径设置为相同,并且将排出系统的流动路径的数量设置为多于供应系统的流动路径的数量。在本实施例中,因为针对包括供应流动路径53这一个流动路径的供应系统,采用了包括排出流动路径51和52这两个流动路径的排出系统,因此可以有效地抑制排出系统的流动路径中的压力损耗。
此外,在如本实施例中这样的固态氧化物燃料电池内,需要使比重整气体的流量更多的空气流过阴极气体流动路径。因此,当阴极气体流动路径87和阳极气体流动路径86的横截面面积相同时,则阴极气体流动路径87中空气的压力损耗大于阳极气体流动路径86中的重整气体的压力损耗。在此,因为具有矩形横截面的流动路径中的压力损耗几乎与该流动路径的横截面的短边的立方成反比地减少,因此通过与图25中所示的阳极气体流动路径86的高度相对地扩大阴极气体流动路径87的高度,可以有效地防止流过阴极气体流动路径87的空气的压力损耗。
顺便提及,虽然在如上所述的本实施例中示出了使用阳极气体流动路径86和阴极气体流动路径87两者(它们形成为具有内部流动路径分隔壁的曲折流动路径)的示例,但是可以使用所谓的池状流动路径,而没有内部流动路径分隔壁。在这种情况下,获得下述优点:简化了要连接到阴极气体流动路径87的空气供应流动路径22a和22b的连接位置与连接结构的改变。而且,在这种情况下,通过与阳极气体流动路径86的高度相对地扩大阴极气体流动路径87的高度,可以有效地防止流过阴极气体流动路径87的空气的压力损耗。此外,虽然提供给燃料电池设备的发电机电池是固态氧化物燃料电池,但是发电机电池并不限于此。也可以使用溶融碳酸盐燃料电池和固态聚合物燃料电池。
2007年9月21日提交的日本专利申请No.2007-244968的包括说明书、权利要求、附图和摘要的整个公开,其全部内容通过引用被并入本文。

Claims (16)

1.一种燃料电池设备,包括多个发电机电池,用于通过氧化剂和还原剂的电化学反应来产生电力,其中
所述多个发电机电池包括:
多个气体流动路径,分别用于向所述多个发电机电池传送所述电化学反应的反应气体;以及
多个流入端口,分别被提供在所述反应气体流入所述多个气体流动路径的每一个的位置处,并且其中
在所述多个流入端口中,在所述反应气体的流动方向的下游侧提供的流入端口的横截面尺寸小于在所述反应气体的所述流动方向的上游侧提供的流入端口的横截面尺寸。
2.根据权利要求1所述的燃料电池设备,还包括公共供应路径,其通过所述多个流入端口的每一个连接到所述多个气体流动路径的每一个。
3.根据权利要求2所述的燃料电池设备,还包括供应部,用于向所述公共供应路径供应所述反应气体,其中
所述多个发电机电池彼此层叠,并且
在所述公共供应路径中的所述反应气体在与所述发电机电池的层叠方向相同的方向上流动。
4.根据权利要求1所述的燃料电池设备,其中
所述多个发电机电池包括多个流出端口,所述多个流出端口分别被提供在从所述多个气体流动路径的每一个排出所述反应气体的位置处,并且
所述多个流出端口的横截面尺寸彼此相同。
5.根据权利要求1所述的燃料电池设备,其中,所述反应气体是包括所述氧化剂的阴极气体或者是包括所述还原剂的阳极气体。
6.一种燃料电池设备,包括多个发电机电池,用于通过氧化剂和还原剂的电化学反应来产生电力,其中
所述多个发电机电池包括:
多个电解质层,使得预定物质渗透其中;
多个阳极,其分别被提供在所述多个电解质层的每一个的一个表面中;
多个阳极集电极,其分别与所述多个阳极的每一个邻接,其中,多个阳极气体流动路径分别形成在所述阳极集电极和所述阳极之间的每一个邻接表面上,以便包括所述还原剂的阳极气体流过其中;
多个阴极,其分别被提供在所述多个电解质层的每一个的另一个表面中;
多个阴极集电极,其分别与所述多个阴极的每一个邻接,其中,多个阴极气体流动路径分别形成在所述阴极集电极和所述阴极之间的每一个邻接表面上,以便包括所述氧化剂的阴极气体流过其中;
多个阳极气体流入端口,其分别被提供在所述阳极气体流入所述多个阳极气体流动路径的每一个中的位置处;以及
多个阴极气体流入端口,其分别被提供在所述阴极气体流入所述多个阴极气体流动路径的每一个中的位置处,并且其中
在所述多个阳极气体流入端口中,在所述阳极气体的流动方向的下游侧提供的流入端口的横截面尺寸小于在所述阳极气体的所述流动方向的上游侧提供的流入端口的横截面尺寸。
7.根据权利要求6所述的燃料电池设备,还包括公共供应路径,其通过所述多个阳极气体流入端口的每一个连接到所述多个阳极气体流动路径的每一个。
8.一种燃料电池设备,包括多个发电机电池,用于通过氧化剂和还原剂的电化学反应来产生电力,其中
所述多个发电机电池包括:
多个电解质层,使得预定物质渗透其中;
多个阳极,其分别被提供在所述多个电解质层的每一个的一个表面中;
多个阳极集电极,其分别与所述多个阳极的每一个邻接,其中,多个阳极气体流动路径分别形成在所述阳极集电极和所述阳极之间的每一个邻接表面上,以便包括所述还原剂的阳极气体流过其中;
多个阴极,其分别被提供在所述多个电解质层的每一个的另一个表面中;
多个阴极集电极,其分别与所述多个阴极的每一个邻接,其中,多个阴极气体流动路径分别形成在所述阴极集电极和所述阴极之间的每一个邻接表面上,以便包括所述氧化剂的阴极气体流过其中;
多个阳极气体流入端口,其分别被提供在所述阳极气体流入所述多个阳极气体流动路径的每一个中的位置处;以及
多个阴极气体流入端口,其分别被提供在所述阴极气体流入所述多个阴极气体流动路径的每一个中的位置处,并且其中
在所述多个阴极气体流入端口中,在所述阴极气体的流动方向的下游侧提供的流入端口的横截面尺寸小于在所述阴极气体的所述流动方向的上游侧提供的流入端口的横截面尺寸。
9.根据权利要求8所述的燃料电池设备,还包括公共供应路径,其通过所述多个阴极气体流入端口的每一个连接到所述多个阴极气体流动路径的每一个。
10.根据权利要求6所述的燃料电池设备,其中,所述多个阳极气体流动路径的每一个的横截面形状和所述多个阴极气体流动路径的每一个的横截面形状是矩形,并且
所述多个阳极气体流动路径的每一个的横截面形状的两条边中的短边比所述多个阴极气体流动路径的每一个的横截面形状的两条边中的短边更短。
11.根据权利要求8所述的燃料电池设备,其中,所述多个阳极气体流动路径的每一个的横截面形状和所述多个阴极气体流动路径的每一个的横截面形状是矩形,并且
所述多个阳极气体流动路径的每一个的横截面形状的两条边中的短边比所述多个阴极气体流动路径的每一个的横截面形状的两条边中的短边更短。
12.根据权利要求6所述的燃料电池设备,其中,
所述多个发电机电池包括多个阳极气体流出端口,所述多个阳极气体流出端口分别被提供在从所述多个阳极气体流动路径的每一个排出所述阳极气体的位置处,并且
所述多个阳极气体流出端口的横截面尺寸彼此相同。
13.根据权利要求8所述的燃料电池设备,其中,
所述多个发电机电池包括多个阴极气体流出端口,所述多个阴极气体流出端口分别被提供在从所述多个阴极气体流动路径的每一个排出所述阴极气体的位置处,并且
所述多个阴极气体流出端口的横截面尺寸彼此相同。
14.一种电子装置,包括:
根据权利要求1所述的燃料电池设备;以及
电子装置主体,其通过由所述燃料电池设备产生的电力而工作。
15.一种电子装置,包括:
根据权利要求6所述的燃料电池设备;以及
电子装置主体,其通过由所述燃料电池设备产生的电力而工作。
16.一种电子装置,包括:
根据权利要求8所述的燃料电池设备;以及
电子装置主体,其通过由所述燃料电池设备产生的电力而工作。
CN2008801077516A 2007-09-21 2008-09-08 燃料电池设备和使用燃料电池设备的电子装置 Expired - Fee Related CN101803085B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007-244968 2007-09-21
JP2007244968 2007-09-21
PCT/JP2008/066496 WO2009038019A1 (en) 2007-09-21 2008-09-08 Fuel cell device and electronic equipment using fuel cell device

Publications (2)

Publication Number Publication Date
CN101803085A true CN101803085A (zh) 2010-08-11
CN101803085B CN101803085B (zh) 2013-07-03

Family

ID=40084406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801077516A Expired - Fee Related CN101803085B (zh) 2007-09-21 2008-09-08 燃料电池设备和使用燃料电池设备的电子装置

Country Status (7)

Country Link
US (1) US8101323B2 (zh)
JP (1) JP4985600B2 (zh)
KR (1) KR101148438B1 (zh)
CN (1) CN101803085B (zh)
DE (1) DE112008002508T5 (zh)
TW (1) TWI389386B (zh)
WO (1) WO2009038019A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5504018B2 (ja) 2010-03-15 2014-05-28 本田技研工業株式会社 燃料電池スタック
JP5504017B2 (ja) 2010-03-15 2014-05-28 本田技研工業株式会社 燃料電池
US20130108896A1 (en) * 2011-10-31 2013-05-02 Brammo, Inc. Methods and apparatus for combined thermal management, temperature sensing, and passive balancing for battery systems in electric vehicles
KR101406520B1 (ko) 2012-08-14 2014-06-12 주식회사 포스코 연료전지 스택
JP6403908B2 (ja) * 2016-11-04 2018-10-10 日本特殊陶業株式会社 電気化学反応セルスタック
DE202020106459U1 (de) 2020-11-11 2022-02-16 Reinz-Dichtungs-Gmbh Anordnung für ein elektrochemisches System, Stapel sowie elektrochemisches System
WO2023074561A1 (ja) * 2021-10-25 2023-05-04 Connexx Systems株式会社 複合電池、およびそれを備えた複合電池システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355061A (ja) * 1991-05-31 1992-12-09 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池
JPH10177864A (ja) * 1996-10-18 1998-06-30 Toshiba Corp 燃料電池
JP4318771B2 (ja) * 1998-11-06 2009-08-26 本田技研工業株式会社 燃料電池スタック
JP2002184428A (ja) * 2000-12-11 2002-06-28 Toyota Motor Corp 燃料電池
JP2004192893A (ja) * 2002-12-10 2004-07-08 Toyota Motor Corp 積層型燃料電池、積層型燃料電池の製造方法および積層型燃料電池の製造装置
US20040247980A1 (en) * 2003-06-03 2004-12-09 Christopher Beatty Structurally yieldable fuel cell seal
JP2006032328A (ja) * 2004-06-17 2006-02-02 Mitsubishi Materials Corp 燃料電池
JP2006202524A (ja) * 2005-01-18 2006-08-03 Nissan Motor Co Ltd 燃料電池スタックのマニホールド構造
JP2006294503A (ja) 2005-04-13 2006-10-26 Nippon Soken Inc 燃料電池及び燃料電池用ガスセパレータ
DE602006016389D1 (de) 2005-10-20 2010-10-07 Samsung Sdi Co Ltd Teilpassives Brennstoffzellensystem
JP2007141574A (ja) 2005-11-16 2007-06-07 Paloma Ind Ltd 燃料電池スタック
JP2007244968A (ja) 2006-03-15 2007-09-27 Toppan Printing Co Ltd インク吐出部のフラッシング装置
JP4407681B2 (ja) * 2006-09-27 2010-02-03 カシオ計算機株式会社 燃料電池装置及びこれを備える電子機器

Also Published As

Publication number Publication date
TWI389386B (zh) 2013-03-11
US20090081521A1 (en) 2009-03-26
JP4985600B2 (ja) 2012-07-25
KR20100045495A (ko) 2010-05-03
DE112008002508T5 (de) 2010-07-15
US8101323B2 (en) 2012-01-24
KR101148438B1 (ko) 2012-05-21
JP2009094058A (ja) 2009-04-30
WO2009038019A1 (en) 2009-03-26
CN101803085B (zh) 2013-07-03
TW200924275A (en) 2009-06-01

Similar Documents

Publication Publication Date Title
CN101803085B (zh) 燃料电池设备和使用燃料电池设备的电子装置
US11018361B2 (en) Fuel cell stack device and fuel cell device
US20100086824A1 (en) Assemblies of hollow electrode electrochemical devices
JP7037313B2 (ja) 燃料電池セルスタック装置
US7507489B2 (en) Honeycomb type solid electrolytic fuel cell
US7335432B2 (en) Solid oxide fuel cell portable power source
US20090130533A1 (en) Fuel cell
JP2007227125A (ja) 燃料電池セルスタック及び集電体
JP4407681B2 (ja) 燃料電池装置及びこれを備える電子機器
JP2011222136A (ja) 燃料電池モジュール
JP5066927B2 (ja) 燃料電池装置及び電子機器
US8080346B2 (en) Current collector for solid oxide fuel cell tube with internal fuel processing
KR100965436B1 (ko) 반응장치
JP5071454B2 (ja) 燃料電池装置
US7247402B2 (en) Power generator and method for forming the same
JP6407069B2 (ja) 燃料電池スタック
JP4285522B2 (ja) 燃料電池セル、燃料電池セルスタック、燃料電池装置及び電子機器
WO2010103269A1 (en) A fuel cell system
JP2016207270A (ja) 燃料電池スタックおよび発電モジュール
JP4311430B2 (ja) 燃料電池装置及びこれを備える電子機器
JP2011044244A (ja) 燃料電池スタック装置
JP2019102121A (ja) 燃料電池スタック
JP2009123711A (ja) 燃料電池セル、燃料電池セルスタック、燃料電池装置及び電子機器
JP2013077485A (ja) 燃料電池装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130703

Termination date: 20190908

CF01 Termination of patent right due to non-payment of annual fee