CN101800230A - 电荷检测装置及方法、固态成像装置及其驱动方法以及成像装置 - Google Patents
电荷检测装置及方法、固态成像装置及其驱动方法以及成像装置 Download PDFInfo
- Publication number
- CN101800230A CN101800230A CN201010111064A CN201010111064A CN101800230A CN 101800230 A CN101800230 A CN 101800230A CN 201010111064 A CN201010111064 A CN 201010111064A CN 201010111064 A CN201010111064 A CN 201010111064A CN 101800230 A CN101800230 A CN 101800230A
- Authority
- CN
- China
- Prior art keywords
- charge
- region
- conductivity type
- area
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007787 solid Substances 0.000 title claims abstract description 89
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000003384 imaging method Methods 0.000 title claims abstract description 14
- 238000009825 accumulation Methods 0.000 claims abstract description 138
- 239000000758 substrate Substances 0.000 claims abstract description 73
- 230000008859 change Effects 0.000 claims abstract description 28
- 238000001514 detection method Methods 0.000 claims abstract description 26
- 230000004888 barrier function Effects 0.000 claims abstract description 25
- 238000005259 measurement Methods 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims description 25
- 230000004044 response Effects 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 claims description 3
- 230000035508 accumulation Effects 0.000 description 114
- 108091006146 Channels Proteins 0.000 description 73
- 238000012546 transfer Methods 0.000 description 63
- 230000005540 biological transmission Effects 0.000 description 45
- 239000002800 charge carrier Substances 0.000 description 27
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 26
- 229910052710 silicon Inorganic materials 0.000 description 26
- 239000010703 silicon Substances 0.000 description 26
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 25
- 229920005591 polysilicon Polymers 0.000 description 25
- 108090000699 N-Type Calcium Channels Proteins 0.000 description 14
- 102000004129 N-Type Calcium Channels Human genes 0.000 description 14
- 238000010586 diagram Methods 0.000 description 11
- 230000005571 horizontal transmission Effects 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 230000005693 optoelectronics Effects 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000005036 potential barrier Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 108010075750 P-Type Calcium Channels Proteins 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- -1 cyclic n nitroso compound Chemical class 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/148—Charge coupled imagers
- H01L27/14806—Structural or functional details thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/762—Charge transfer devices
- H01L29/765—Charge-coupled devices
- H01L29/768—Charge-coupled devices with field effect produced by an insulated gate
- H01L29/76816—Output structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/148—Charge coupled imagers
- H01L27/14825—Linear CCD imagers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/148—Charge coupled imagers
- H01L27/14831—Area CCD imagers
- H01L27/14843—Interline transfer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/148—Charge coupled imagers
- H01L27/14887—Blooming suppression
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/762—Charge transfer devices
- H01L29/765—Charge-coupled devices
- H01L29/768—Charge-coupled devices with field effect produced by an insulated gate
- H01L29/76866—Surface Channel CCD
- H01L29/76875—Two-Phase CCD
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Electromagnetism (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
本发明涉及一种电荷检测装置和电荷检测方法、固态成像装置及其驱动方法、以及成像装置。该电荷检测装置包括:基板,具有第一导电型的预定区域;第二导电型漏极区域,设置在基板的预定区域中;第二导电型源极区域,设置在基板的预定区域中;第二导电型沟道区域,设置在漏极区域和源极区域之间;栅极,经由在沟道区域上的绝缘膜形成;第二导电型电荷累积区域,设置在基板的预定区域中并且通过累积作为测量目标的信号电荷来改变具有漏极区域、源极区域以及栅极的晶体管的阈值电压;第一导电型沟道势垒区域,设置在沟道区域和电荷累积区域之间;以及电荷清除区域,清除在电荷累积区域中所累积的信号电荷。
Description
相关申请的参考
本申请包含涉及于2009年2月10日向日本专利局提交的日本优先专利申请JP 2009-028892中所公开的主题,其全部内容结合于此作为参考。
技术领域
本发明涉及电荷检测装置和电荷检测方法、固态成像装置和其驱动方法以及成像装置。更具体地,本发明涉及通过改变晶体管的阈值电压来检测累积的信号电荷的电荷检测装置和电荷检测方法,使用电荷检测装置的固态成像装置和其驱动方法,以及使用固态成像装置的成像装置。
背景技术
可以将固态成像装置大致分成CCD(电荷耦合装置)型图像传感器和CMOS(互补金属氧化物半导体)型图像传感器。在固态成像装置中,当将信号电荷转换成为电压信号时,将FD(浮置扩散)、FG(浮置栅极)或者BCD(体电荷检测)用于电荷检测装置。
这里,FD因为其结构原因而不能避免由于电荷的热波动(thermal fluctuation)所导致的KTC噪声。相反,BCD为非破坏性读取,从而去除了该KTC噪声。
图9为使用相关技术的BCD的固态成像装置的配置的示意图。
这里,在所示的固态成像装置中,形成构成晶体管的环状栅极101,并且在与栅极之间的中心开口相对应的P型基板102的N型阱103的表面上形成N+型源极区域104。在与栅极101的外围相对应的N型阱103上形成N+型漏极区域105。在源极区域104和漏极区域105之间形成环状P型沟道区域106,并且在沟道区域106以下形成环状N+型电荷累积区域107(例如,参见JP-A-10-41493)。
在如上所述所构成的固态成像装置中,通过在电荷累积区域107中所累积的信号电荷来改变晶体管的阈值电压,并改变栅极和漏极之间的电阻值。因此,可以通过测量源极电势来检测在电荷累积区域107中所累积的信号电荷。当完成检测时,通过对其施加复位电压使信号电荷清除到漏极区域105。
发明内容
然而,栅极区域增大,并且在以环形状构成栅极的BCD中降低了从信号电荷转换成为电压的效率。
因此,期望提供可以实现高转换效率的电荷检测装置和电荷检测方法、固态成像装置和其驱动方法以及成像装置。
根据本发明的一个实施例,电荷检测装置包括:基板,具有第一导电型预定区域;第二导电型漏极区域,设置在基板的预定区域中;第二导电型源极区域,设置在基板的预定区域中;第二导电型沟道区域,设置在漏极区域和源极区域之间;栅极,经由在沟道区域上的绝缘膜形成;第二导电型电荷累积区域,设置在基板的预定区域中并且通过累积作为测量目标的信号电荷来改变具有漏极区域、源极区域以及栅极的晶体管的阈值电压;第一导电型沟道势垒(barrier)区域,设置在沟道区域和电荷累积区域之间;以及电荷清除区域,清除在电荷累积区域中所累积的信号电荷。
根据本发明的另一实施例,电荷累积方法包括以下步骤:在设置在基板中的第一导电型预定区域中所设置的第二导电型电荷累积区域中累积信号电荷作为要测量的目标;检测由于在电荷累积区域中累积信号电荷而在晶体管中出现的阈值电压的改变,其中,晶体管包括:设置在基板的预定区域中的第二导电型漏极区域、设置在基板的预定区域中的第二导电型源极区域、以及经由设置在漏极区域和源极区域之间的第二导电型沟道区域上的绝缘膜而形成的栅极,其中,将第一导电型沟道势垒区域设置在沟道区域和电荷累积区域之间;以及将在电荷累积区域中所累积的信号电荷清除到与漏极区域不同的电荷清除区域。
仍根据本发明的另一实施例,固态成像装置包括:基板,具有第一导电型预定区域;光电转换元件,设置在基板的预定区域中并且在响应入射光而产生信号电荷;第二导电型漏极区域,设置在基板的预定区域中;第二导电型源极区域,设置在基板的预定区域中;第二导电型沟道区域,设置在漏极区域和源极区域之间;栅极,经由在沟道区域上的绝缘膜形成;第二导电型电荷累积区域,设置在基板的预定区域中并且通过累积由光电转换元件所产生的信号电荷来改变具有漏极区域、源极区域以及栅极的晶体管的阈值电压;第一导电型沟道势垒区域,设置在沟道区域和电荷累积区域之间;以及电荷清除区域,清除在电荷累积区域中所累积的信号电荷。
仍根据本发明的另一实施例,固态成像装置的驱动方法包括以下步骤:通过设置在基板中的第一导电型预定区域中的光电转换元件响应入射光来产生信号电荷;在设置在基板的预定区域中的第二导电型电荷累积区域中累积由光电转换元件所产生的信号电荷;检测由于在电荷累积区域中累积信号电荷而在晶体管中出现的阈值电压的改变,其中,晶体管包括:设置在基板的预定区域中的第二导电型漏极区域、设置在基板的预定区域中的第二导电型源极区域、以及经由设置在漏极区域和源极区域之间的第二导电型沟道区域上的绝缘膜而形成的栅极,其中,将第一导电型沟道势垒区域设置在沟道区域和电荷累积区域之间;以及将在电荷累积区域中所累积的信号电荷清除到与漏极区域不同的电荷清除区域。
根据本发明的又一实施例,成像装置包括:固态成像装置和将入射光引导至光电转换元件的光学系统,其中,固态成像装置包括:基板,具有第一导电型预定区域;光电转换元件,被设置在基板的预定区域中并且响应入射光而产生信号电荷;第二导电型漏极区域,被设置在基板的预定区域中,第二导电型源极区域,被设置在基板的预定区域中;第二导电型沟道区域,被设置在漏极区域和源极区域之间;栅极,经由在沟道区域上的绝缘膜形成;第二导电型电荷累积区域,被设置在基板的预定区域中并且通过累积由光电转换元件所产生的信号电荷来改变具有漏极区域、源极区域以及栅极的晶体管的阈值电压;第一导电型沟道势垒区域,被设置在沟道区域和电荷累积区域之间;以及电荷清除区域,清除在电荷累积区域中所累积的信号电荷。
这里,沟道区域和电荷累积区域均构成为第二导电型,并且将第一导电型沟道势垒区域设置在沟道区域和电荷累积区域之间,以使沟道区域和电荷累积区域的载流子可以相同,并且无需以环状构成栅极即可实现BCD。
在根据本发明的实施例的电荷检测装置和电荷检测方法、固态成像装置和其驱动方法以及成像装置中,由于无需以环状构成栅极即可构成BCD,并且可以实现栅极区域减小,所以能够将信号电荷高效地转换成为电压。
附图说明
图1A和图1B为作为根据本发明的实施例的固态成像装置的实例的CCD固态成像装置的示意图;
图2A和图2B为BCD单元的示意图;
图3为各种时钟脉冲的时序图;
图4A和图4B为作为根据本发明的实施例的固态成像装置的另一实例的CCD固态成像装置的示意图;
图5为作为根据本发明的实施例的固态成像装置的又一实例的背光型CMOS固态成像装置的示意性配置图;
图6为像素单元的单位像素的电路配置的实例的示意图;
图7为作为根据本发明的实施例的固态成像装置的又一实例的背光型CMOS固态成像装置的像素单元的主要元件的截面图;
图8为作为根据本发明的实施例的摄像装置的实例的相机的示意图;以及
图9为使用相关技术的BCD的固态成像装置的配置的示意图。
具体实施方式
下文中,将描述本发明的实施例。将按照以下顺序给出描述。
1.第一实施例(CCD固态成像装置(区域传感器))
2.第二实施例(CCD固态成像装置(线性传感器))
3.第三实施例(CCD固态成像装置)
4.第四实施例(成像装置)
1.第一实施例
固态成像装置的配置
图1A为作为根据本发明的实施例的固态成像装置的实例的CCD固态成像装置(区域传感器)的示意性平面图。图1B为作为根据本发明的实施例的固态成像装置的实例的CCD固态成像装置(区域传感器)的水平传送寄存器的最后输出级(由图1A中的符号a表示的区域)的示意性截面图。下文中,BCD配置的电荷检测装置还用作根据本发明的实施例的电荷检测装置的实例。
这里,CCD固态成像装置(区域传感器)具有在硅基板内以矩阵形式设置的多个光接收单元1和与光接收单元邻近设置以读取通过光接收单元1所接收的信号电荷的读栅极2。该CCD固态成像装置具有:与读栅极2相邻近设置以在垂直方向上传输通过读栅极2所读取的信号电荷的垂直传送寄存器3,以及水平传送寄存器4,其在水平方向上传输通过垂直传送寄存器3所传输的信号电荷。将沟道停止区域5设置为与光接收单元1的读栅极2相对,并且抑制色混合。
水平传送寄存器4具有多个电荷累积单元,其累积从光接收单元1所获得的信号电荷。进行配置以通过将传输时钟施加给在水平传送寄存器4上的传输电极,改变电荷累积单元的电势并且在电荷累积单元之间水平传输信号电荷。
在水平传送寄存器4中,经由P型阱7在N型硅基板6的表面侧上形成N型沟道区域8。在N型沟道区域8的表面部、在图的左方向上和右方向上以恒定间距形成N-型传输(TR)区域,并且在传输区域9和9之间的沟道区域成为存储(ST)区域10。
分别经由绝缘膜(未示出)在存储区域10之上形成由第一层的多晶硅所制成的电极H1和在传输区9之上形成由第二层的多晶硅所制成的电极H2。相邻电极H1和H2形成电极对,并且通过将两相传输时钟Hφ1和Hφ2交替地施加给在其配置方向上的电极对H1和H2来实现两相驱动水平传输。
在水平传送寄存器4的最后一级形成由第二层的多晶硅所制成的HOG电极14,并且将HOG电极14电连接至地(接地)电势作为参照电势。HOG电极14与下面的沟道区域一起构成输出栅极单元15。
与输出栅极单元15邻近地形成BCD单元17,并且在BCD单元17的侧部处形成N+型复位漏极(RD)单元19。在复位漏极单元19之上,经由绝缘膜(未示出)形成由多晶硅所制成的电极20。
即,通过BCD单元17、复位漏极(RD)单元19和电极20来实现BCD配置的电荷检测装置。通过BCD配置的电荷检测装置来检测从输出栅极单元15所输出的信号电荷。
图2A为BCD单元17的示意性平面图,图2B为BCD单元17的示意性截面图。在图2A的情况下,在通过符号A所指出的方向上传输从输出栅极单元15所输出的信号电荷,并从在图2B中的纸的前侧至后侧进行传输,以使将信号电荷输入BCD单元17。
这里所示的BCD单元17具有累积从输出栅极单元15所输出的信号电荷的N+型电荷累积区域21和设置在电荷累积区域21之上的区域(硅基板的前侧区域)中的P型沟道势垒区域22。BCD单元17具有在P型沟道势垒区域22之上的区域(硅基板的前侧区域)的、嵌入P型阱7中的N型沟道区域23。将N+型漏极区域24和N+型源极区域25设置为夹置沟道区域23。
分别经由绝缘膜(未示出)在漏极区域24之上形成由多晶硅所制成的电极26,在源极区域25之上形成由多晶硅所制成的电极27,在沟道区域23之上形成由多晶硅所制成的电极28。将恒定电压Vd施加给电极26,而将恒定电压Vg施加给电极28。
这里,进行配置以将恒定电压Vd施加给电极26,而将恒定电压Vg施加给电极28,从而可以通过来自电极27的输出信号(电压值)而检测出在电荷累积区域21中所累积的信号电荷量。
即,当电荷累积区域21中累积信号电荷时,沟道区域23的电阻值发生改变,并且具有漏极区域24、源极区域25以及用作栅极的电极28的晶体管的阈值发生改变。因此,进行配置以将恒定电压施加给电极26和电极28,以使可以通过电极27的电压值的改变来检测晶体管的阈值电压的改变。以这种方法,可以通过来自电极27的输出电荷(电压值)来检测在电荷累积区域21中所累积的信号电荷量。
固态成像装置的操作
下文中,将描述如上所述构成的固态成像装置(区域传感器)的操作。即,将描述根据本发明的实施例的固态成像装置的驱动方法的实例。上述BCD配置的电荷检测装置的操作为根据本发明的实施例的电荷检测方法的实例。
在根据本发明的实施例的固态成像装置(区域传感器)的驱动方法中,首先,从定时信号生成电路(未示出)至垂直传送寄存器3施加垂直传输时钟。
通过施加垂直传输时钟,将从光接收单元1所读取的信号电荷在垂直方向上传输至垂直传送寄存器3。将通过垂直传送寄存器3垂直传输的信号电荷传输至水平传送寄存器4。
接下来,通过将传输时钟施加给在水平传送寄存器4上的传输电极H1、H2以及LH而在输出方向上传输向水平传送寄存器4所传输的信号电荷。
具体地,将通过在图3中的符号Hφ1所表示的传输时钟施加给通过在图1B中的符号H1所表示的传输电极,将通过在图3中的符号Hφ2所表示的传输时钟施加给通过在图1B中的符号H2所表示的传输电极,将通过在图3中的符号LHφ所表示的传输时钟施加给通过在图1B中的符号LH所表示的传输电极。通过施加传输时钟并且增大/减小水平传送寄存器4的电荷累积单元的电势来在输出方向上(在图1A的情况下从右至左的方向上)传输信号电荷。
在第一实施例中,“Hφ1的幅值/Hφ2的幅值”约为3~5V,Hφ1和Hφ2相位彼此相反,并且Hφ1和LHφ为相同的传输时钟。
连续地,将通过水平传送寄存器4所传输的信号电荷传输至电荷累积区域21,并且检测传输至电荷累积区域21的信号电荷量作为电极27的电压值。
在通过电极27检测信号电荷量以后,通过将复位脉冲φRG施加给电极20使在电荷累积区域21中所累积的信号电荷清除到复位漏极单元19。
可以通过执行一系列操作来获得通过在图3中的符号X所表示的CCD固态成像装置(区域传感器)的输出信号。
在根据本发明的实施例的固态成像装置中,电荷累积区域21被构成为N+型并且沟道区域23被构成为N型,使得这两个区域的载流子全部为电子。因此,可以减少电荷检测装置的栅极区域而无需以环形状构成用作栅极的电极28。通过减小电荷检测装置的栅极区域来增大从信号电荷转换成为电压的效率。
根据本发明的实施例的固态成像装置被这样样构成,在检测电荷累积区域21中所累积的信号电荷量后,将信号电荷清除到与漏极区域24不同的复位漏极单元19。因此,还可以降低能耗。
即,在相关技术的BCD配置中,由于信号电荷清除区域与电荷检测装置中检测信号电荷量的晶体管的漏极区域一样,所以在检测信号电荷量以后,在清除操作中电流在源极和漏极之间流动。另一方面,在根据本发明的实施例的固态成像装置的电荷检测装置中,由于将漏极区域24和复位漏极单元19分开设置,所以在检测信号电荷量以后,在清除操作中在源极和漏极之间没有电流流动。因此,如上所述,可以降低能耗。
由于可以分开地设置漏极区域24和复位漏极单元19,由此可以独立地制作漏极区域24和复位漏极单元19,所以在制造电荷检测装置时具有优势。
即,当制造电荷检测装置时,可以同时形成漏极区域24和复位漏极单元19,或者可以分别形成漏极区域24和复位漏极单元19。因此,可以根据制造电荷检测装置时的情况,选择形成方法,如上所述制造电荷检测装置时具有优势。
由于采用将沟道区域23嵌入在P型阱7中的配置,所以能够促使随机电报信号噪声(RTS噪声)减少,RTS噪声被认为是硅基板界面中的电压降的因素。
修改实例1
在第一实施例中,描述了将N+型电荷累积区域21、P型沟道势垒区域22、N型沟道区域23、N+型漏极区域24以及N+型源极区域25设置在P型阱7中的实例。即,描述了电荷累积区域21和沟道区域23的载流子全部为电子的实例。然而,期望电荷累积区域21和沟道区域23的载流子相同,载流子不必一定为电子,载流子也可以为空穴。
修改实例2
在第一实施例中,描述了嵌入在P型阱7中构成沟道区域23的实例。然而,如果沟道区域23的载流子与电荷累积区域21的载流子一样就足够了,因此,沟道区域23不必一定嵌入在P型阱7中。关于这一点,由于如上所述可以通过将沟道区域23嵌入在P型阱7中来降低RTS噪声,所以考虑到降低RTS噪声,期望将沟道区域23嵌入P型阱7中。
2.第二实施例
固态成像装置的配置
图4A为作为根据本发明的实施例的固态成像装置的另一实例的CCD固态成像装置(线性传感器)的示意性平面图。图4B为作为根据本发明的实施例的固态成像装置的第二实例的CCD固态成像装置(线性传感器)的传送寄存器的最后输出级的示意性截面图。下文中,BCD配置的电荷检测装置还用作根据本发明的实施例的电荷检测装置的实例。
这里所示的CCD固态成像装置(线性传感器)31的第一CCD线性传感器32具有第一传感器阵列34。在传感器阵列34中,线性地设置具有光敏二极管的多个光电转换单元(光接收单元)33。将从每个光接收单元读取光电转换的信号电荷的第一读电极35和将通过第一读电极35所读取的信号电荷传输至输出单元的第一传送寄存器36设置在第一传感器阵列34的一侧。将第一溢出控制势垒(overflow control barrier)37和第一溢出漏极38设置在第一传感器阵列34的另一侧。
如图4B所示,第一传送寄存器36具有累积从光接收单元33所获得的信号电荷的多个电荷累积单元。进行配置以通过将传输时钟施加给在第一传送寄存器36上的传输电极来改变电荷累积单元的电势并且传输在电荷累积单元之间的信号电荷。
在第一传送寄存器36中,在N型硅基板6的表面侧上经由P型阱7形成N型沟道区域8。在N型沟道区域8的表面部上在图的左方向上和右方向上以恒定间距形成N-型传输(TR)区域9并且在传输区域9和9之间的沟道区域变成存储(ST)区域10。
分别经由绝缘膜(未示出)在存储区域10之上形成由第一层的多晶硅所制成的电极H1并且在传输区域9之上形成由第二层的多晶硅所制成的电极H2。相邻电极H1和H2形成电极对,并且通过将两相传输时钟Hφ1和Hφ2交替地施加给在其配置方向上的电极对H1和H2来实现两相驱动水平传输。
在第一传送寄存器36的最后级处形成由第二层的多晶硅所制成的HOG电极14A,并且将HOG电极14A电连接至地(接地)电势作为参照电势。HOG电极14A与下面的沟道区域一起构成输出栅极单元15A。
与输出栅极单元15A邻近地形成BCD单元17A,并且在BCD单元17A的侧面形成N+型复位漏极(RD)单元19A。在复位漏极单元19A之上,经由绝缘膜(未示出)形成由多晶硅所制成的电极20A。
即,通过BCD单元17A、复位漏极(RD)单元19A和电极20A来实现BCD配置的电荷检测装置。通过BCD配置的电荷检测装置来检测从输出栅极单元15A所输出的信号电荷。
这里,BCD单元17A具有累积从输出栅极单元15A所输出的信号电荷的N+型电荷累积区域21A和设置在电荷累积区域21A之上的区域(硅基板的前侧区域)中的P型沟道势垒区域22A。BCD单元17A具有在P型沟道势垒区域22A之上的区域(硅基板的前侧区域)、嵌入P型阱7中的N型沟道区域23A。将N+型漏极区域24A和N+型源极区域25A设置为夹置沟道区域23A(参见图2A和图2B)。
分别经由绝缘膜(未示出)在漏极区域24A之上形成由多晶硅所制成的电极26A,在源极区域25A之上形成由多晶硅所制成的电极27A。经由绝缘膜(未示出)在沟道区域23A之上形成由多晶硅所制成的电极28A。将恒定电压Vd施加给电极26A,而将恒定电压Vg施加给电极28A。
这里,进行配置以将恒定电压Vd施加给电极26A,而将恒定电压Vg施加给电极28A,从而可以通过来自电极27A的输出信号(电压值)而检测出在电荷累积区域21A中所累积的信号电荷量。
即,当在电荷累积区域21A中累积信号电荷时,沟道区域23A的电阻值发生改变,并且具有漏极区域24A、源极区域25A以及用作栅极的电极28A的晶体管的阈值电压发生改变。因此,进行配置以将恒定电压施加给电极26A和电极28A,以使可以通过电极27A的电压值的改变来检测晶体管的阈值电压的改变。以这种方法,可以通过来自电极27A的输出电荷(电压值)来检测在电荷累积区域21A中所累积的信号电荷量。
与第一CCD线性传感器32一样,CCD固态成像装置(线性传感器)31的第二CCD线性传感器39具有第二传感器阵列40,其中,线性地设置具有光敏二极管的多个光电转换单元(光接收单元)。将从每个光接收单元读取光电转换的信号电荷的第二读电极41和将由第二读电极41所读取的信号电荷传输至输出单元的第二传送寄存器42设置在第二传感器阵列40的一侧。将第二溢出控制势垒43和第二溢出漏极38设置在第二传感器阵列40的另一侧。
如图4B所示,第二传送寄存器42具有累积从光接收单元33所获得的信号电荷的多个电荷累积单元。进行配置以通过将传输时钟施加给在第二传送寄存器42上的传输电极来改变电荷累积单元的电势并且传输在电荷累积单元之间的信号电荷。
在第二传送寄存器42中,在N型硅基板6的表面侧上经由P型阱7形成N型沟道区域8。在N型沟道区域8的表面部上在图的左方向上和右方向上以恒定间距形成N-型传输(TR)区域9并且在传输区域9和9之间的沟道区域变成存储(ST)区域10。
分别经由绝缘膜(未示出)在存储区域10之上形成由第一层的多晶硅所制成的电极H1并且在传输区域9之上形成由第二层的多晶硅所制成的电极H2。相邻电极H1和H2形成电极对,并且通过将两相传输时钟Hφ1和Hφ2交替地施加给在其配置方向上的电极对H1和H2来实现两相驱动水平传输。
在第二传送寄存器42的最后级形成由第二层的多晶硅所制成的HOG电极14B,并且将HOG电极14B电连接至地(接地)电势作为参照电势。HOG电极14B与下面的沟道区域一起构成输出栅极单元15B。
与输出栅极单元15B邻近地形成BCD单元17B,并且在BCD单元17B的侧面形成N+型复位漏极(RD)单元19B。在复位漏极单元19B之上,经由绝缘膜(未示出)形成由多晶硅所制成的电极20B。
即,通过BCD单元17B、复位漏极(RD)单元19B和电极20B来实现BCD配置的电荷检测装置。通过BCD配置的电荷检测装置来检测从输出栅极单元15B所输出的信号电荷。
这里,BCD单元17B具有累积从输出栅极单元15B所输出的信号电荷的N+型电荷累积区域21B和设置在电荷累积区域21B之上的区域(硅基板的前侧区域)中的P型沟道势垒区域22B。BCD单元17B具有在P型沟道势垒区域22B之上的区域(硅基板的前侧区域)、嵌入P型阱7中的N型沟道区域23B。将N+型漏极区域24B和N+型源极区域25B设置为夹置沟道区域23B(参见图2A和图2B)。
分别经由绝缘膜(未示出)在漏极区域24B之上形成由多晶硅所制成的电极26B,并且在源极区域25B之上形成由多晶硅所制成的电极27B。经由绝缘膜(未示出)在沟道区域23B之上形成由多晶硅所制成的电极28B。将恒定电压Vd施加给电极26B,而将恒定电压Vg施加给电极28B。
这里,进行配置以将恒定电压Vd施加给电极26B,而将恒定电压Vg施加给电极28B,从而可以通过来自电极27B的输出信号(电压值)而检测出电荷累积区域21B中所累积的信号电荷量。
即,当在电荷累积区域21B中累积信号电荷时,沟道区域23B的电阻值改变,具有漏极区域24B、源极区域25B以及用作栅极的电极28B的晶体管的阈值电压改变。因此,进行配置以将恒定电压施加给电极26B和电极28B,以使可以通过电极27B的电压值的改变来检测晶体管的阈值电压的改变。以这种方法,可以通过来自电极27B的输出电荷(电压值)来检测在电荷累积区域21B中所累积的信号电荷量。
固态成像装置的操作
下文中,将描述如上所述构成的固态成像装置(线性传感器)的操作。即,将描述根据本发明的实施例的固态成像装置的驱动方法的另一实例。上述BCD配置的电荷检测装置的操作为根据本发明的实施例的电荷检测方法的实例。
在根据本发明的实施例的固态成像装置(线性传感器)的第一CCD线性传感器32中,首先,响应入射光,经由第一读电极35将在第一传感器阵列34的每个光接收单元中所累积的信号电荷读出并且输出至第一传送寄存器36。
接下来,通过将传输时钟施加给在第一传送寄存器36上的传输电极H1、H2以及LH,在输出方向上传输向第一传送寄存器36所传输的信号电荷。
具体地,将通过在图3中的符号Hφ1所表示的传输时钟施加给通过在图4B中的符号H1所表示的传输电极,将通过在图3中的符号Hφ2所表示的传输时钟施加给通过在图4B中的符号H2所表示的传输电极,并且将通过在图3中的符号LHφ所表示的传输时钟施加给通过在图4B中的符号LH所表示的传输电极。通过施加传输时钟并且增大/减小第一传送寄存器36的电荷累积单元的电势来在输出方向上(在图4A的情况下从右至左的方向上)传输信号电荷。
连续地,将通过第一传送寄存器36所传输的信号电荷传输至电荷累积区域21A,并且检测传输至电荷累积区域21A的信号电荷量作为电极27A的电压值。
在通过电极27A检测信号电荷量以后,通过将复位脉冲φRG施加给电极20A使在电荷累积区域21A中所累积的信号电荷清除到复位漏极单元19A。
可以通过执行一系列操作从第一CCD线性传感器32获得输出信号。
在根据本发明的实施例的固态成像装置(线性传感器)的第二CCD线性传感器39中,首先,响应入射光,经由第二读电极41读取在第二传感器阵列40的每个光接收单元中所累积的信号电荷并且输出至第二传送寄存器42。
接下来,通过将传输时钟施加给在第二传送寄存器42上的传输电极H1、H2以及LH,在输出方向上传输向第二传送寄存器42所传输的信号电荷。
具体地,将通过在图3中的符号Hφ1所表示的传输时钟施加给通过在图4B中的符号H1所表示的传输电极,将通过在图3中的符号Hφ2所表示的传输时钟施加给通过在图4B中的符号H2所表示的传输电极,并且将通过在图3中的符号LHφ所表示的传输时钟施加给通过在图4B中的符号LH所表示的传输电极。通过施加传输时钟并且增大/减小第二传送寄存器42的电荷累积单元的电势来在输出方向上(在图4A的情况下从右至左的方向上)传输信号电荷。
连续地,将通过第二传送寄存器42所传输的信号电荷传输至电荷累积区域21B,并且检测传输至电荷累积区域21B的信号电荷量作为电极27B的电压值。
在通过电极27B检测信号电荷量以后,通过将复位脉冲φRG施加给电极20B使在电荷累积区域21B中所累积的信号电荷清除到复位漏极单元19B。
可以通过执行一系列操作从第二CCD线性传感器39获得输出信号。
在根据本发明的实施例的固态成像装置的第一CCD线性传感器32中,电荷累积区域21A构成为N+型,而沟道区域23A构成为N型,以使这两个区域的载流子全部为电子。因此,可以减少电荷检测装置的栅极区域而没有以环形状构成用作栅极的电极28A。通过减小电荷检测装置的栅极区域来增大从信号电荷转换成为电压的效率。
同样地,在根据本发明的实施例的固态成像装置的第二CCD线性传感器39中,电荷累积区域21B被构成为N+型,而沟道区域23B被构成为N型,以使这两个区域的载流子全部为电子。因此,可以减少电荷检测装置的栅极区域而没有以环形状构成用作栅极的电极28B。通过减小电荷检测装置的栅极区域来增大从信号电荷转换成为电压的效率。
根据本发明的实施例的固态成像装置的第一CCD线性传感器32被这样样构成,在检测在电荷累积区域21A中所累积的信号电荷量以后,使信号电荷清除到与漏极区域24A不同的复位漏极单元19A。因此,还可以降低能耗。
即,在相关技术的BCD配置的电荷检测装置中,由于信号电荷清除区域与检测信号电荷量的晶体管的漏极区域一样,所以在检测信号电荷量以后,在清除操作中电流在源极和漏极之间流动。另一方面,在根据本发明的实施例的固态成像装置中的第一CCD线性传感器32的电荷检测装置中,将漏极区域24A和复位漏极单元19A分开设置。因此,在检测信号电荷量以后,在清除操作中源极和漏极之间没有电流流动。因此,如上所述,可以降低能耗。
同样地,根据本发明的实施例的固态成像装置的第二CCD线性传感器39被这样样构成,在检测在电荷累积区域21B中所累积的信号电荷量以后,将信号电荷清除到与漏极区域24B不同的复位漏极单元19B。因此,还可以降低能耗。
即,在相关技术的BCD配置的电荷检测装置中,由于信号电荷清除区域与检测信号电荷量的晶体管的漏极区域一样,所以在检测信号电荷量以后,在清除操作中电流在源极和漏极之间流动。另一方面,在根据本发明的实施例的固态成像装置中的第二CCD线性传感器39的电荷检测装置中,将漏极区域24B和复位漏极单元19B分开设置。因此,在检测信号电荷量以后,在清除操作中源极和漏极之间没有电流流动。因此,如上所述,可以降低能耗。
由于在根据本发明的实施例的固态成像装置的第一CCD线性传感器32中,可以分开地设置漏极区域24A和复位漏极单元19A,由此可以独立地制作这两者,所以在制造电荷检测装置时具有优势。
即,当制造电荷检测装置时,可以同时形成漏极区域24A和复位漏极单元19A,或者可以分别形成漏极区域24A和复位漏极单元19A。因此,可以根据制造电荷检测装置时的情况,选择形成方法,并且如上所述制造电荷检测装置时具有优势。
同样地,由于在根据本发明的实施例的固态成像装置的第二CCD线性传感器39中,可以分开地设置漏极区域24B和复位漏极单元19B,由此可以独立地制作这两者,所以在制造电荷检测装置时具有优势。
即,当制造电荷检测装置时,可以同时形成极区域24B和复位漏极单元19B,或者可以分别形成漏极区域24B和复位漏极单元19B。因此,可以根据制造电荷检测装置时的情况,选择形成方法,并且当如上所述制造电荷检测装置时具有优势。
根据本发明的实施例的固态成像装置的第一CCD线性传感器32采用将沟道区域23A嵌入在P型阱7中的配置。因此,能够促使随机电报信号噪声(RTS噪声)减少,RTS噪声被认为是硅基板界面中的电压降的因素。
同样地,根据本发明的实施例的固态成像装置的第二CCD线性传感器39采用将沟道区域23B嵌入在P型阱7中的配置。因此,能够促使随机电报信号噪声(RTS噪声)减少,RTS噪声被认为是硅基板界面中的电压降的因素。
修改实例1
在第二实施例中,描述了将N+型电荷累积区域21A、P型沟道势垒区域22A、N型沟道区域23A、N+型漏极区域24A以及N+型源极区域25A设置在P型阱7中的实例。即,描述了电荷累积区域21A和沟道区域23A的载流子全部为电子的实例。然而,期望电荷累积区域21A和沟道区域23A的载流子相同,载流子不必一定为电子,载流子也可以为空穴。
同样地,在第二实施例中,描述了将N+型电荷累积区域21B、P型沟道势垒区域22B、N型沟道区域23B、N+型漏极区域24B以及N+型源极区域25B设置在P型阱7中的实例。即,描述了电荷累积区域21B和沟道区域23B的载流子全部为电子的实例。然而,期望电荷累积区域21B和沟道区域23B的载流子相同,载流子不必一定为电子,载流子也可以为空穴。
修改实例2
在第二实施例中,描述了嵌入在P型阱7中构成沟道区域23A或者23B的实例。然而,如果沟道区域23A或者23B的载流子与电荷累积区域21A或者21B的载流子一样就足够了,因此,沟道区域23A或者23B不必一定嵌入在P型阱7中。关于这一点,由于如上所述可以通过将沟道区域23A或者23B嵌入在P型阱7中来降低RTS噪声,所以考虑到降低RTS噪声,期望将沟道区域23A或者23B嵌入P型阱7中。
3.第三实施例
固态成像装置的配置
图5为作为根据本发明的实施例的又一实例的背光型CMOS固态成像装置的示意性配置图。这里所示的固态成像装置51具有像素单元52和外围电路单元。将这些单元安装在同一硅基板上。在第三实施例中,外围电路单元包括:垂直选择电路53、与采样保持相关的双采样(S/H CDS)电路54、水平选择电路55以及定时生成器(TG)56。外围电路单元进一步包括:AGC电路57、A/D转换电路58以及数字放大器59。
在像素单元52中,以矩阵形状设置稍后要描述的多个单位像素,将地址线等设置在行单元中,将信号线等设置在列单元中。
垂直选择电路53选择在行单元中的像素并且读取每个像素信号并通过垂直信号线输出至S/H CDS电路54。S/H CDS电路54对于从每个像素列所读取的像素信号执行诸如CDS(相关的双采样)等的信号处理。
水平选择电路55顺序提取保持在S/H CDS电路54中的像素信号,并且将所提取的像素信号输出至AGC(自动增益控制)电路57。AGC电路57通过适当增益放大从水平选择电路55所输入的信号,然后将放大的信号输出至A/D转换电路58。
A/D转换电路58将从AGC电路57所输入的模拟信号转换成为数字信号,然后将数字信号输出至数字放大器59。数字放大器59适当地放大从A/D转换电路58所输入的数字信号,并且从焊径(pad)(端口)输出放大的信号。
基于从定时生成器56所输出的各种定时信号执行垂直选择电路53、S/H CDS电路54、水平选择电路55、AGC电路57、A/D转换电路58以及数字放大器59的操作。
图6为像素单元52的单位像素的电路配置的实例的示意图。例如,单位像素具有光敏二极管61作为光电转换元件,并且对于一个光敏二极管61,有传输晶体管62、放大晶体管63、地址晶体管64以及复位晶体管65的四个晶体管作为活动元件(activeelement)。
光敏二极管61将入射光进行光电转换成为与其光量相对应的电荷量(这里是电子)。将传输晶体管62连接在光敏二极管61和BCD单元85之间。通过将驱动信号通过驱动配线66施加给传输晶体管62的栅极(传输栅极)将通过光敏二极管61进行光电转换的电子传输至BCD单元85。
将放大晶体管63的栅极连接至BCD单元85。经由地址晶体管64连接至垂直信号线67的放大晶体管63构成在像素单元外部的具有恒定电流源I的源极跟随器。当将地址信号通过驱动配线68提供给地址晶体管64的栅极并且导通地址晶体管64时,放大晶体管63放大通过BCD单元85所检测的电势,并且将与放大的电势相对应的电压输出至垂直信号线67。通过垂直信号线67将从每个像素输出的电压输出至S/H CDS电路54。
将复位晶体管65连接在电源电压Vdd和BCD单元85之间。通过将复位信号通过驱动配线69施加给复位晶体管65的栅极来对BCD单元85的信号电荷进行复位。由于将传输晶体管62、地址晶体管64以及复位晶体管65的栅极连接在行单元中,所以对于一行的多个像素同时执行这些操作。
图7为作为根据本发明的实施例的固态成像装置的又一实例的背光型CMOS固态成像装置的像素单元的主要元件的截面图。
这里,在所示的像素单元的光接收单元70的区域中,在硅基板72中形成N型电荷累积区域81。为了朝向硅基板72的前侧(图7的下侧)移动信号电荷累积区域,可以这样形成电荷累积区域81,使朝向硅基板72的前侧增大杂质浓度。为了有效地接收入射光,可以这样形成电荷累积区域81,使朝向硅基板72的后侧(图7的上侧)增大面积。
在硅基板72中,在电荷累积区域81周围形成P型阱82。在硅基板72的前侧上的光接收单元70的区域中形成浅P型空穴累积区域84。
在硅基板72的前侧上形成由氧化硅所制成的元件隔离绝缘膜80。在硅基板72的前侧上形成BCD单元85。在BCD单元85和电荷累积区域81之间形成P型区域86以被电隔离。
在BCD的侧部形成N+型复位漏极(RD)单元88。经由绝缘膜(未示出)在复位漏极单元88之上形成由多晶硅所制成的电极(未示出)。
即,通过BCD单元85、复位漏极单元88以及电极来实现BCD配置的电荷检测装置。通过BCD配置的电荷检测装置来检测由光接收单元70所累积的信号电荷。
将使用图2A和图2B描述BCD单元85。在图2A和图2B中,在上部示出了前侧,在下部示出了后侧。在图2A和图2B中的前侧和后侧与在图7中的相反。
如图2A和图2B所示,BCD单元85具有累积从光接收单元70所传输的信号电荷的N+型电荷累积区域91和设置在电荷累积区域91之上的区域(硅基板的前侧区域)中的P型沟道势垒区域92。BCD单元85具有在P型沟道势垒区域92之上的区域(硅基板的前侧区域)、P型阱7中嵌入的N型沟道区域93。将N+型漏极区域94和N+型源极区域95设置为夹置沟道区域93。
分别经由绝缘膜(未示出)在漏极区域94之上形成由多晶硅所制成的电极96,在源极区域95之上形成由多晶硅所制成的电极97,在沟道区域93之上形成由多晶硅所制成的电极98。将恒定电压Vd施加给电极96,而将恒定电压Vg施加给电极98。
这里,进行配置以将恒定电压Vd施加给电极96,而将恒定电压Vg施加给电极98,从而可以通过来自电极97的输出信号(电压值)而检测在电荷累积区域91中所累积的信号电荷量。
即,当在电荷累积区域91中累积信号电荷时,沟道区域93的电阻值改变并且具有漏极区域94、源极区域95以及用作栅极的电极98的晶体管的阈值电压改变。因此,进行配置以将恒定电压施加给电极96和电极98,以使可以通过电极97的电压值的改变来检测晶体管的阈值电压的改变。以这种方法,可以通过来自电极97的输出电荷(电压值)来检测在电荷累积区域91中所累积的信号电荷量。
固态成像装置的操作
下文中,将描述如上所述构成的固态成像装置的操作。即,将描述根据本发明的实施例的固态成像装置的驱动方法的又一实例。上述BCD的电荷检测装置的操作为根据本发明的实施例的电荷检测方法的实例。
在根据本发明的实施例的固态成像装置的驱动方法的又一实例中,首先,在电荷累积期间,光接收单元70对来自硅基板72的背侧的入射光进行光电转换并且生成与入射光量相对应的信号电荷。通过光电转换所生成的信号电荷逐渐进入电荷累积区域81并且在电荷累积区域81中的空穴累积区域84的附近累积信号电荷。
在电荷累积期间,将负电压施加给传输晶体管62的栅电极并且传输晶体管62为截止状态。
接下来,在读取时,将正电压施加给传输晶体管62的栅电极并且传输晶体管62为导通状态。因此,将在光接收单元70中所累积的信号电荷传输至BCD单元85。
例如,正电荷为电源电压(3.3V或者2.7V)。
这里,根据传输至BCD单元85的电荷累积区域91的信号电荷量来改变电极97的电势。通过放大晶体管63来放大电极97的电势并且将与电势相对应的电压输出至垂直信号线67。
连续地,通过在复位时施加复位脉冲φRG使传输至电荷累积区域91的信号电荷被清除到复位漏极单元88。
这时,通过将负电压施加给传输晶体管62的栅电极传输晶体管62为截止状态。
在上述电荷累积期间,重复执行读操作和复位操作。
在根据本发明的实施例的固态成像装置中,以N+型构成电荷累积区域91并且以N型构成沟道区域93,以使这两个区域的载流子全部为电子。因此,可以减少电荷检测装置的栅极区域而没有以环形状构成用作栅极的电极98。通过减小电荷检测装置的栅极区域来增大从信号电荷转换成为电压的效率。
根据本发明的实施例的固态成像装置被这样样构成,在检测电荷累积区域91中所累积的信号电荷量以后,使信号电荷清除到与漏极区域94不同的复位漏极单元88。因此,还可以降低能耗。
即,在相关技术的BCD配置的电荷检测装置中,由于信号电荷清除区域与检测信号电荷量的晶体管的漏极区域一样,所以在检测信号电荷量以后,在清除操作中电流在源极和漏极之间流动。另一方面,在根据本发明的实施例的固态成像装置的电荷检测装置中,由于将漏极区域94和复位漏极单元88分开设置,所以在检测信号电荷量以后,在清除操作中源极和漏极之间没有电流流动。因此,如上所述,还可以降低能耗。
由于可以分开设置漏极区域94和复位漏极单元88并且可以独立地制作这两者,所以在制造电荷检测装置时具有优势。
即,当制造电荷检测装置时,可以同时形成漏极区域94和复位漏极单元88,或者可以分别形成漏极区域94和复位漏极单元88。因此,可以根据制造电荷检测装置时的情况,选择形成方法,并且如上所述制作电荷检测装置时具有优势。由于采用将沟道区域93嵌入在P型阱7中的配置,所以能够促使随机电报信号噪声(RTS噪声)减少,RTS噪声被认为是硅基板界面中的电压降的因素。
修改实例1
在第三实施例中,描述了将N+型电荷累积区域91、P型沟道势垒区域92、N型沟道区域93、N+型漏极区域94以及N+型源极区域95设置在P型阱7中的实例。即,描述了电荷累积区域91和沟道区域93的载流子全部为电子的实例。然而,期望电荷累积区域91和沟道区域93的载流子相同,载流子不必一定为电子,载流子也可以为空穴。
修改实例2
在第三实施例中,描述了嵌入在P型阱7中构成沟道区域93的实例。然而,如果沟道区域93的载流子与电荷累积区域91的载流子一样就足够了,并且沟道区域93不必一定嵌入在P型阱7中。关于这一点,由于如上所述可以通过将沟道区域93嵌入在P型阱7中来降低RTS噪声,所以考虑到降低RTS噪声,期望将沟道区域93嵌入在P型阱7中。
第四实施例
成像装置的配置
图8为作为根据本发明的实施例的摄像装置的实例的相机77的示意图。这里,在所示的相机77中,将上述第三实施例的固态成像装置用作成像装置。
在根据本发明的实施例的相机77中,来自对象的光(未示出)通过透镜71等的光学系统和机械快门72入射在固态成像装置73的成像区域上。使用机械快门72,通过屏蔽至固态成像装置73的成像区域的光来确定曝光时间。
这里,固态成像装置73使用根据上述第三实施例的固态成像装置并且通过包括定时生成电路、驱动系统等的驱动电路74来进行驱动。
在通过下一级的信号处理电路75将固态成像装置73的输出信号应用于各种信号处理以后,从外部取得该信号作为捕捉的图像信号。将取得的捕捉图像信号存储在诸如存储器等的存储介质中并且将其输出至监控器。
系统控制器76控制机械快门72的开/关操作、驱动电路74、信号处理电路75等。
由于根据本发明的实施例的相机采用根据本发明的上述实施例的固态成像装置,所以可以实现小型化和能耗降低。
本领域的技术人员应该理解,根据设计要求和其它因素,可以有多种修改、组合、再组合和改进,均应包含在本发明的权利要求或等同物的范围之内。
Claims (6)
1.一种电荷检测装置,包括:
基板,具有第一导电型的预定区域;
第二导电型的漏极区域,设置在所述基板的所述预定区域中;
第二导电型的源极区域,设置在所述基板的所述预定区域中;
第二导电型的沟道区域,设置在所述漏极区域和所述源极区域之间;
栅极,经由所述沟道区域上的绝缘膜形成;
第二导电型的电荷累积区域,设置在所述基板的所述预定区域中,并且通过累积作为测量目标的信号电荷来改变具有所述漏极区域、所述源极区域以及所述栅极的晶体管的阈值电压:
第一导电型的沟道势垒区域,设置在所述沟道区域和所述电荷累积区域之间;以及
电荷清除区域,清除在所述电荷累积区域中所累积的信号电荷。
2.根据权利要求1所述的电荷检测装置,
其中,所述沟道区域嵌入在所述预定区域中。
3.一种电荷检测方法,包括以下步骤:
在设置在基板中的第一导电型的预定区域中所设置的第二导电型的电荷累积区域中,累积作为测量目标的信号电荷;
检测由于在所述电荷累积区域中累积信号电荷而在晶体管中出现的阈值电压的改变,其中,所述晶体管包括:设置在所述基板的所述预定区域中的第二导电型的漏极区域、设置在所述基板的所述预定区域中的第二导电型的源极区域、以及经由设置在所述漏极区域和所述源极区域之间的第二导电型的沟道区域上的绝缘膜而形成的栅极,其中,第一导电型的沟道势垒区域设置在所述沟道区域和所述电荷累积区域之间;以及
将在所述电荷累积区域中所累积的信号电荷清除到与所述漏极区域不同的电荷清除区域。
4.一种固态成像装置,包括:
基板,具有第一导电型的预定区域;
光电转换元件,设置在所述基板的所述预定区域中,并且响应入射光而产生信号电荷;
第二导电型的漏极区域,设置在所述基板的所述预定区域中;
第二导电型的源极区域,设置在所述基板的所述预定区域中;
第二导电型的沟道区域,设置在所述漏极区域和所述源极区域之间;
栅极,经由所述沟道区域上的绝缘膜形成;
第二导电型的电荷累积区域,设置在所述基板的所述预定区域中,并且通过累积由所述光电转换元件所产生的所述信号电荷来改变具有所述漏极区域、所述源极区域以及所述栅极的晶体管的阈值电压;
第一导电型的沟道势垒区域,设置在所述沟道区域和所述电荷累积区域之间;以及
电荷清除区域,清除在所述电荷累积区域中所累积的所述信号电荷。
5.一种固态成像装置的驱动方法,包括以下步骤:
通过设置在基板中的第一导电型的预定区域中所设置的光电转换元件响应入射光来产生信号电荷;
在设置在所述基板的所述预定区域中的第二导电型的电荷累积区域中累积由所述光电转换元件所产生的信号电荷;
检测由于在所述电荷累积区域中累积信号电荷而在晶体管中出现的阈值电压的改变,其中,所述晶体管包括:设置在所述基板的所述预定区域中的第二导电型的漏极区域、设置在所述基板的所述预定区域中的第二导电型的源极区域、以及经由设置在所述漏极区域和所述源极区域之间的第二导电型的沟道区域上的绝缘膜而形成的栅极,其中,第一导电型沟道势垒区域设置在所述沟道区域和所述电荷累积区域之间;以及
将在所述电荷累积区域中所累积的信号电荷清除到与所述漏极区域不同的电荷清除区域。
6.一种成像装置,包括:
固态成像装置;以及
光学系统,将入射光引导至光电转换元件;
其中,所述固态成像装置包括:
基板,具有第一导电型的预定区域;
所述光电转换元件,设置在所述基板的所述预定区域中,并且响应入射光而产生信号电荷;
第二导电型的漏极区域,设置在所述基板的所述预定区域中;
第二导电型的源极区域,设置在所述基板的所述预定区域中;
第二导电型的沟道区域,设置在所述漏极区域和所述源极区域之间;
栅极,经由所述沟道区域上的绝缘膜形成;
第二导电型的电荷累积区域,设置在所述基板的所述预定区域中,并且通过累积由所述光电转换元件所产生的信号电荷来改变具有所述漏极区域、所述源极区域以及所述栅极的晶体管的阈值电压;
第一导电型的沟道势垒区域,设置在所述沟道区域和所述电荷累积区域之间;以及
电荷清除区域,清除在所述电荷累积区域中所累积的信号电荷。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-028892 | 2009-02-10 | ||
JP2009028892A JP4715931B2 (ja) | 2009-02-10 | 2009-02-10 | 電荷検出装置及び電荷検出方法、並びに固体撮像装置及びその駆動方法、並びに撮像装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101800230A true CN101800230A (zh) | 2010-08-11 |
CN101800230B CN101800230B (zh) | 2012-05-02 |
Family
ID=42540132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101110640A Expired - Fee Related CN101800230B (zh) | 2009-02-10 | 2010-02-03 | 电荷检测装置及方法、固态成像装置及其驱动方法以及成像装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8233065B2 (zh) |
JP (1) | JP4715931B2 (zh) |
CN (1) | CN101800230B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5481230B2 (ja) * | 2010-02-26 | 2014-04-23 | パナソニック株式会社 | 撮像装置及び固体撮像装置 |
JP2012256020A (ja) * | 2010-12-15 | 2012-12-27 | Semiconductor Energy Lab Co Ltd | 半導体装置及びその駆動方法 |
CN102254806A (zh) * | 2011-07-04 | 2011-11-23 | 上海先进半导体制造股份有限公司 | Bcd工艺中双栅极氧化层的形成方法 |
KR102698685B1 (ko) * | 2015-09-10 | 2024-08-23 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 촬상 장치, 모듈, 전자 기기, 및 촬상 장치의 동작 방법 |
JP2020013907A (ja) * | 2018-07-18 | 2020-01-23 | ソニーセミコンダクタソリューションズ株式会社 | 受光素子および測距モジュール |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2666928B2 (ja) * | 1987-07-13 | 1997-10-22 | 株式会社東芝 | 電荷転送素子の出力検出器 |
JP2590153B2 (ja) * | 1987-12-05 | 1997-03-12 | 株式会社東芝 | 電荷検出装置 |
JPH02304973A (ja) * | 1989-05-19 | 1990-12-18 | Hitachi Ltd | 固体撮像装置 |
JPH06338524A (ja) * | 1993-03-31 | 1994-12-06 | Toshiba Corp | 電荷転送装置 |
JPH0799298A (ja) * | 1993-09-28 | 1995-04-11 | Sony Corp | 固体撮像素子及びその製造方法 |
JPH1041493A (ja) | 1996-07-24 | 1998-02-13 | Sony Corp | 固体撮像素子 |
US6051857A (en) * | 1998-01-07 | 2000-04-18 | Innovision, Inc. | Solid-state imaging device and method of detecting optical signals using the same |
US6950134B2 (en) * | 2000-02-22 | 2005-09-27 | Innotech Corporation | Method of preventing transfer and storage of non-optically generated charges in solid state imaging device |
JP2004349430A (ja) * | 2003-05-21 | 2004-12-09 | Sharp Corp | 固体撮像素子とその駆動方法 |
JP4187691B2 (ja) * | 2004-06-29 | 2008-11-26 | 富士通マイクロエレクトロニクス株式会社 | 閾値変調型イメージセンサ |
JP5050512B2 (ja) * | 2006-12-05 | 2012-10-17 | ソニー株式会社 | 固体撮像装置の製造方法および半導体装置の製造方法 |
US8072015B2 (en) * | 2007-06-04 | 2011-12-06 | Sony Corporation | Solid-state imaging device and manufacturing method thereof |
-
2009
- 2009-02-10 JP JP2009028892A patent/JP4715931B2/ja not_active Expired - Fee Related
-
2010
- 2010-01-13 US US12/656,001 patent/US8233065B2/en not_active Expired - Fee Related
- 2010-02-03 CN CN2010101110640A patent/CN101800230B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010186826A (ja) | 2010-08-26 |
US8233065B2 (en) | 2012-07-31 |
US20100201861A1 (en) | 2010-08-12 |
CN101800230B (zh) | 2012-05-02 |
JP4715931B2 (ja) | 2011-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11902678B2 (en) | Solid-state imaging device, method of driving the same, and electronic apparatus | |
CN1838423B (zh) | 固态图像拾取器件和使用其的电子装置及制造其的方法 | |
US8411183B2 (en) | Solid-state imaging device and driving method as well as electronic appartus | |
CN101800861B (zh) | 固态图像摄取器件和相机系统 | |
CN101272448A (zh) | 固体摄像装置及其驱动方法 | |
CN103685999A (zh) | 固态图像传感器、用于固态图像传感器的控制方法以及电子装置 | |
CN104469198A (zh) | 固体摄像装置及其控制方法 | |
CN101969066B (zh) | 固体摄像器件及其制造方法和电子装置 | |
CN103117289A (zh) | 固体摄像元件、固体摄像元件制造方法和电子设备 | |
CN102714702A (zh) | 摄像装置和固态图像传感器的驱动方法 | |
US8456558B2 (en) | Pixel circuit, a solid-state image sensing device, and a camera system that facilitates charge transfer within a pixel | |
CN103137637A (zh) | 放大电路及其制造方法、摄像元件和电子设备 | |
US20130327924A1 (en) | Solid-state image sensor, control method for the same, and electronic device | |
JP2011216970A (ja) | 固体撮像装置、固体撮像装置の駆動方法、および、電子機器 | |
TW200948057A (en) | Solid-state imaging device, signal processing method of solid-state imaging device, and electronic apparatus | |
CN102194842A (zh) | 固体摄像器件 | |
CN101800230B (zh) | 电荷检测装置及方法、固态成像装置及其驱动方法以及成像装置 | |
JP2009032950A (ja) | 固体撮像装置 | |
CN101873442B (zh) | 固态摄像器件、摄像装置以及驱动该固态摄像器件的方法 | |
US8199233B2 (en) | Solid-state imaging device and camera capable of correcting shading of a captured image | |
CN104270582A (zh) | 图像传感器 | |
JP2003169256A (ja) | 固体撮像装置 | |
JP2010193027A (ja) | 電荷検出装置及び電荷検出方法、並びに固体撮像装置及びその駆動方法、並びに撮像装置 | |
KR20060093828A (ko) | 이미지 센서 | |
JP2008153677A (ja) | 固体撮像装置及びカメラ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120502 Termination date: 20150203 |
|
EXPY | Termination of patent right or utility model |