CN101747039A - 一种高强高密各向同性炭滑板的制备方法 - Google Patents

一种高强高密各向同性炭滑板的制备方法 Download PDF

Info

Publication number
CN101747039A
CN101747039A CN200910219517A CN200910219517A CN101747039A CN 101747039 A CN101747039 A CN 101747039A CN 200910219517 A CN200910219517 A CN 200910219517A CN 200910219517 A CN200910219517 A CN 200910219517A CN 101747039 A CN101747039 A CN 101747039A
Authority
CN
China
Prior art keywords
slide plate
density
isotropic carbon
silicon carbide
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910219517A
Other languages
English (en)
Other versions
CN101747039B (zh
Inventor
乔冠军
夏鸿雁
王继平
史忠旗
杨建峰
王红洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN2009102195179A priority Critical patent/CN101747039B/zh
Publication of CN101747039A publication Critical patent/CN101747039A/zh
Application granted granted Critical
Publication of CN101747039B publication Critical patent/CN101747039B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种高强高密各向同性炭滑板的制备方法,采用纳米碳化硅和中间相炭微球为原料,其中纳米碳化硅占原料的2~10wt.%,经过无水乙醇湿混、干燥后,在室温下50~400MPa压力成型,再在氮气氛下900~1500℃高温焙烧,即可得到一种高强高密各向同性炭材料。本发明制备的高强高密各向同性炭密度≥1.75g/cm3,三点弯曲强度≥85MPa,电阻率≤35μΩ·m。与此同时,该制备方法简单易控,成本低,且制品表面具有层片结构,适用于作为高速列车等的滑板材料使用。

Description

一种高强高密各向同性炭滑板的制备方法
技术领域
本发明涉及一种高强高密各向同性炭的制备方法,特别涉及一种适用于作为滑板材料的高强高密各向同性炭的制备方法。
背景技术
我国铁路正在向高速化方向发展,而电力机车是实现铁路高速化的主要交通工具之一。电力机车用受电弓滑板作为电力机车供电系统中的重要集电元件,要求强度高,不易损坏;作为摩擦材料,要求摩擦系数小,滑动性能好;作为电气材料,要求导电性能良好。
至目前为止,国内外使用过的材质有:金属质、炭质、粉末冶金质、浸金属炭质以及两种材质混合装配的形式等。炭材料与金属材料比,电阻较高,但集电能力足够,另外它的一个最大特征是炭滑板难以发生电弧,即使发生电弧,因炭材料耐高温能力强,不会熔融,对架线损伤极小,又由于炭材料的层状结构决定了其具有良好的自润滑性和减磨性,经一段时间运行后,可在网线接触表面形成一层CuO-C膜,使网线损耗降到最小值,有效地保护了网线。世界上高速铁路发达的国家如德、法、日等国均十分重视炭滑板的开发和应用,例如,法国TGV巴黎东南线(最高时速270km),德国ICEI(最高时速2750km)使用石墨质滑板。
上述提到的炭滑板,有密度低、集流、润滑、抗弧之长。也有性脆、强度低之短。耐不住钢质材料的研磨和高速运行中的撞击,经常有断裂、掉块、拉沟等现象。为进一步提高材料性能和安全可靠性,需要提高炭滑板的强度。
传统方法制备的高密高强各向同性炭一般是由沥青多次浸渍焙烧石墨化而成,这种方法制备时间长,成本高,能量损耗大。中间相炭微球(MesocarbonMicrobeads,简称MCMBs)是沥青液相炭化过程中分离出的的球体,其内部由定向缩聚芳烃堆集而呈层状结构。由于MCMBs炭质颗粒本身含有粘结成分而具有良好的自烧结性,且所含挥发分很少,可以直接作为压粉使用,这样不仅可以制出优质的高密度材料,在制备石墨制品时还简化了工序。MCMBs采用模压成型或等静压成型变成的致密坯体在1000℃热处理后的炭质制品体积密度为1.76g/cm3,石墨化后,体积密度可达1.8~1.9g/cm3,抗折强度达50~100MPa。参见李同起,王成扬.中间相炭微球研究进展.炭素技术.2002(3):24-29。另一方面,SiC、B4C、TiC等难熔金属炭化物能够在较低温度下促进炭制品的石墨化,从而改善材料结构,提高制品密度及性能,参见Rosales CG,Ordas N,Oyarzabal E,Echeberria J,et al.Improvement of the thermo-mechanicalproperties of fine grain graphite by adding with different carbides.J Nucl Mater2002;307-311:1282-1288。
发明内容
针对目前炭滑板中存在的缺陷或不足,本发明的目的在于提供一种以中间相炭微球和纳米碳化硅为原料的高强高密各向同性炭滑板的制备方法。本发明具体的技术方案如下:
a.备料:选用微米级粒径分布均匀(±5μm)的中间相炭微球(1~100μm)及纳米级碳化硅颗粒(1~100nm)为原材料,纳米碳化硅质量占原材料总质量的2~10wt.%。采用无水乙醇作为介质,玛瑙球为混料球机械湿混12~48h。在100℃空气中经10~24h烘干。最后将混合料过100~200目筛。
b.压力成型:在室温下将混合料模压或等静压成型,成型压力50~400MPa。
c.烧结:将成型后的试样平放于坩埚内,然后置于热处理炉发热体中间位置,向炉内通氮气,同时以300~400℃/h的升温速度加热,最终在900~1500℃恒温0.5~1h。
本发明得到的炭材料不仅具有一般炭滑板的优点,还克服了炭制品强度低的缺陷,可以得到密度≥1.75g/cm3,三点弯曲强度≥85MPa,电阻率≤35μΩ·m的高强度各向同性炭滑板材料。本发明的有益效果是:按照本发明的方法,若未向MCMBs中掺杂纳米碳化硅时,在烧结过程中,MCMBs会产生均匀的体积收缩,但烧结后制品存在一定的孔隙,同时炭球之间存在明显的间隙。因此,单纯采用MCMBs制备的炭材料密度、性能提高有限;当掺杂少量(2~10wt.%)纳米碳化硅后,碳化硅除了可以通过改善MCMBs烧结后的石墨化效果而提高密度外,还会产生抑制收缩的效应,而碳化硅硬度又远大于炭,故烧结后的炭球开裂,颗粒变小,且炭球间明显的间隙消失。这种结构转变有利于提高制品最终的力学及电学性能。
附图说明
图1为MCMBs1300℃烧结后SEM抛光照片:(a)未掺杂,(b)和(c)掺杂5wt.%nano-SiC。
图2为MCMBs1300℃烧结后SEM断口照片:(a)未掺杂,(b)掺杂5wt.%nano-SiC。
具体实施方式
参照图1所示,图1(a)表面可看到大量孔隙,而图1(b)和(c)表面很致密,同时图1(c)表面存在层状炭结构。
参照图2所示,图2(a)可看到保留完整的炭球颗粒,同时界面有明显的间隙,图2(b)中炭球消失,颗粒粒径变小,且无明显的间隙。
选用20~29μm中间相炭微球及40nm碳化硅颗粒为原材料。采用无水乙醇作为介质,玛瑙球为混料球机械湿混24h。在100℃空气中经10h烘干,用200目筛过筛,得到混合料。在室温下将混合料填入5×5×50mm模具中模压成型,成型压力100MPa,保压30s。将成型后的试样平放于坩埚内,然后置于热处理炉发热体中间位置,向炉内通氮气,同时以300~400℃/h的升温速度加热,最终在1300~1500℃恒温1h。材料组成与烧结条件如表1所示。
材料组成中,纳米碳化硅掺量要小于等于10wt.%。若掺量小于等于10wt.%时,除了炭球开裂使颗粒变小外,石墨化占重要作用,可以提高炭制品密度;当掺量大于10wt.%时,因其引入了大量的缺陷而导致石墨化度下降,同时碳化硅明显的抑制了中间相炭微球收缩,最终炭制品密度大幅度降低,导致炭制品性能下降。
升温速率要控制为300~400℃/h。若升温速率太慢,MCMBs中的粘性相在低温时大量挥发,导致焙烧时MCMBs收缩性下降,炭制品密度降低。若升温速率太快,粘性相挥发过程中无法完全释放,易产生热应力而导致炭制品内出现裂纹。
表1本发明高强高密各向同性炭滑板的组成与烧结条件
Figure G2009102195179D00041
表2列出了本发明制备的高强高密各向同性炭滑板测试结果。密度、开孔率采用阿基米德法获得,抗弯强度为三点弯曲强度(3×4×20mm),电阻率通过四端电极法测量。作为比较,未掺杂纳米碳化硅的制品性能及SEM图片亦列于表2和图1、图2。少量掺杂纳米碳化硅后,炭制品最终力学、电学性能明显提高,以实施例3为例,掺杂5wt.%经1300℃烧结后密度达到了1.84g/cm3,同时抗弯强度和电阻率分别为122MPa,28μΩ·m。从图1可以看出,掺杂碳化硅后孔隙明显减少,且碳化硅石墨化作用使其表面具有层片结构,这种特殊结构有利于作为滑板使用。同时图2(b)中颗粒尺寸变小,炭球之间明显的间隙消失,炭制品的强度明显提高。
表2本发明高强高密各向同性炭滑板的性能测试结果
  密度(g/cm3)   开孔率(%)   (L0-L)/L0(%)   电阻率(μΩ·m)   抗弯强度(MPa)
 实施例1   1.75   9.04   14.63   32.4   61.12
 实施例2   1.73   9.59   13.23   33.25   76.30
 实施例3   1.84   8.69   13.88   28.29   122.39
 实施例4   1.83   8.96   13.21   29.33   87.98
 实施例5   1.79   8.32   14.88   35.39   66.56
 实施例6   1.80   8.41   13.07   30.39   94.83
 实施例7   1.85   9.13   14.00   23.99   108.64
 实施例8   1.79   10.66   14.49   31.06   82.66

Claims (3)

1.一种高强高密各向同性炭滑板的制备方法,其特征在于,包括如下步骤:
a.备料:选用微米级中间相炭微球及纳米级碳化硅颗粒为原材料,纳米碳化硅质量占原材料总质量的2~10wt.%,采用无水乙醇作为介质,玛瑙球为混料球机械湿混12~48h,在空气中经10~24h烘干,然后将混合料过100~200目筛;
b.压力成型:在室温下将混合料模压或等静压成型,成型压力50~400MPa;
c.烧结:将成型后的试样平放于坩埚内,然后置于热处理炉发热体中间位置,向炉内通氮气,同时以300~400℃/h的升温速度加热,最终在900~1500℃恒温0.5~1h。
2.根据权利要求1所述的高强高密各向同性炭滑板的制备方法,其特征在于:所述微米级中间相炭微球为粒径1~100μm且分布比较均一的球体。
3.根据权利要求1所述的高强高密各向同性炭滑板的制备方法,其特征在于,所述纳米碳化硅粒径为1~100nm,且总氧含量<1%。
CN2009102195179A 2009-12-16 2009-12-16 一种高强高密各向同性炭滑板的制备方法 Expired - Fee Related CN101747039B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102195179A CN101747039B (zh) 2009-12-16 2009-12-16 一种高强高密各向同性炭滑板的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102195179A CN101747039B (zh) 2009-12-16 2009-12-16 一种高强高密各向同性炭滑板的制备方法

Publications (2)

Publication Number Publication Date
CN101747039A true CN101747039A (zh) 2010-06-23
CN101747039B CN101747039B (zh) 2012-07-04

Family

ID=42474734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102195179A Expired - Fee Related CN101747039B (zh) 2009-12-16 2009-12-16 一种高强高密各向同性炭滑板的制备方法

Country Status (1)

Country Link
CN (1) CN101747039B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104891996A (zh) * 2015-05-18 2015-09-09 山东理工大学 高取向石墨复合材料制备工艺
CN105884357A (zh) * 2016-04-13 2016-08-24 湖南省长宇新型炭材料有限公司 一种用于热压成型的石墨模具材料及其制备方法
CN107857591A (zh) * 2017-10-30 2018-03-30 大同新成新材料股份有限公司 一种利用纳米碳粉制备受电弓浸金属碳滑条材料的方法
CN108409326A (zh) * 2018-03-29 2018-08-17 大同新成新材料股份有限公司 一种碳基复合材料滑板的制备方法
CN108774065A (zh) * 2018-06-19 2018-11-09 中国科学院上海硅酸盐研究所 一种SiC/MCMBs复合材料及其制备方法和应用
CN109133927A (zh) * 2018-10-17 2019-01-04 中国科学院山西煤炭化学研究所 一种高性能石墨材料的短流程制备方法
CN109867522A (zh) * 2017-12-04 2019-06-11 比亚迪股份有限公司 一种集电靴碳滑板的制备方法及集电靴碳滑板
CN109928756A (zh) * 2019-03-15 2019-06-25 西安交通大学 一种碳化硅增强碳基复合材料及制备方法
CN109928755A (zh) * 2019-03-15 2019-06-25 西安交通大学 一种碳化钨增强碳基复合材料及制备方法
CN116396090A (zh) * 2023-04-12 2023-07-07 西安交通大学 一种碳化硅/碳化硼陶瓷骨架增强碳基复合材料及制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716800B2 (en) * 2002-04-12 2004-04-06 John Crane Inc. Composite body of silicon carbide and binderless carbon, process for producing such composite body, and article of manufacturing utilizing such composite body for tribological applications
CN100503434C (zh) * 2006-03-07 2009-06-24 宁波杉杉新材料科技有限公司 一种各向同性炭材料的制备方法及制得的炭材料
CN100503513C (zh) * 2007-07-20 2009-06-24 哈尔滨工业大学(威海) SiC-BN-C复合材料及其制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104891996A (zh) * 2015-05-18 2015-09-09 山东理工大学 高取向石墨复合材料制备工艺
CN105884357A (zh) * 2016-04-13 2016-08-24 湖南省长宇新型炭材料有限公司 一种用于热压成型的石墨模具材料及其制备方法
CN105884357B (zh) * 2016-04-13 2019-01-29 湖南省长宇新型炭材料有限公司 一种用于热压成型的石墨模具材料及其制备方法
CN107857591A (zh) * 2017-10-30 2018-03-30 大同新成新材料股份有限公司 一种利用纳米碳粉制备受电弓浸金属碳滑条材料的方法
CN107857591B (zh) * 2017-10-30 2019-10-18 大同新成新材料股份有限公司 一种利用纳米碳粉制备受电弓浸金属碳滑条材料的方法
CN109867522A (zh) * 2017-12-04 2019-06-11 比亚迪股份有限公司 一种集电靴碳滑板的制备方法及集电靴碳滑板
CN109867522B (zh) * 2017-12-04 2021-06-18 比亚迪股份有限公司 一种集电靴碳滑板的制备方法及集电靴碳滑板
CN108409326A (zh) * 2018-03-29 2018-08-17 大同新成新材料股份有限公司 一种碳基复合材料滑板的制备方法
CN108774065B (zh) * 2018-06-19 2021-03-16 中国科学院上海硅酸盐研究所 一种SiC/MCMBs复合材料及其制备方法和应用
CN108774065A (zh) * 2018-06-19 2018-11-09 中国科学院上海硅酸盐研究所 一种SiC/MCMBs复合材料及其制备方法和应用
CN109133927A (zh) * 2018-10-17 2019-01-04 中国科学院山西煤炭化学研究所 一种高性能石墨材料的短流程制备方法
CN109928756A (zh) * 2019-03-15 2019-06-25 西安交通大学 一种碳化硅增强碳基复合材料及制备方法
CN109928755A (zh) * 2019-03-15 2019-06-25 西安交通大学 一种碳化钨增强碳基复合材料及制备方法
CN116396090A (zh) * 2023-04-12 2023-07-07 西安交通大学 一种碳化硅/碳化硼陶瓷骨架增强碳基复合材料及制备方法和应用

Also Published As

Publication number Publication date
CN101747039B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
CN101747039B (zh) 一种高强高密各向同性炭滑板的制备方法
CN105236983B (zh) 一种采用新工艺制备高速列车受电弓滑板碳滑板的方法
JP4734674B2 (ja) 低cte高等方性黒鉛
CN103387407B (zh) 一种用于高速列车受电弓滑板碳/碳-石墨复合材料的制备方法
CN103553627B (zh) 一种陶瓷基复合材料及其制备方法和应用
CN102765940B (zh) 一种常压固相烧结微孔碳化硅陶瓷及其制备方法
CN106116582B (zh) 一种无钴碳化钨的烧结方法
CN109928756B (zh) 一种碳化硅增强碳基复合材料及制备方法
CN106966741B (zh) 碳纤维增强碳-碳化硅双基体复合材料的制备方法
CN101798221A (zh) 一种细结构石墨材料及其制备方法
CN108610049B (zh) 各向同性石墨材料,其制造方法及其应用
Song et al. Carbon/graphite seal materials prepared from mesocarbon microbeads
CN104926309B (zh) 一种无硼或稀土元素的致密碳化硅陶瓷的制备方法
CN115872744B (zh) 一种固相增密制备高性能无粘结剂炭石墨材料的方法
CN107986788A (zh) 一种等静压石墨的制备方法
CN108727050B (zh) 炭材料3d增韧碳化硅复合材料及其制备方法和应用
CN110157931A (zh) 一种具有三维网络结构的纳米碳增强金属基复合材料及其制备方法
CN106507878B (zh) 一种夹层结构碳/碳化硅飞机刹车材料的制造方法
CN109867522B (zh) 一种集电靴碳滑板的制备方法及集电靴碳滑板
CN113816738A (zh) 一种利用纳米TiO2制备超高导热等静压石墨材料及其方法
CN114213131B (zh) 一种辊道窑用碳化硅辊棒材料及其制备方法
CN113213936B (zh) 一种陶瓷粉掺杂改性自烧结石墨复合材料的制备方法
CN115385692A (zh) 一种多尺度孔结构的高熵碳化物陶瓷及其制备方法
CN104529469A (zh) 一种坩埚用陶瓷材料及其制备方法
CN106220209A (zh) 制备碳化硅木质陶瓷的方法及碳化硅木质陶瓷

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20141216

EXPY Termination of patent right or utility model