CN101746719B - NaAlH4-钛钒固溶体复合储氢材料及其制备方法 - Google Patents

NaAlH4-钛钒固溶体复合储氢材料及其制备方法 Download PDF

Info

Publication number
CN101746719B
CN101746719B CN2008102269943A CN200810226994A CN101746719B CN 101746719 B CN101746719 B CN 101746719B CN 2008102269943 A CN2008102269943 A CN 2008102269943A CN 200810226994 A CN200810226994 A CN 200810226994A CN 101746719 B CN101746719 B CN 101746719B
Authority
CN
China
Prior art keywords
hydrogen
solid solution
naalh
hydrogen storage
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008102269943A
Other languages
English (en)
Other versions
CN101746719A (zh
Inventor
刘晓鹏
米菁
蒋利军
王树茂
李志念
郝雷
李华玲
李国斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
Beijing General Research Institute for Non Ferrous Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing General Research Institute for Non Ferrous Metals filed Critical Beijing General Research Institute for Non Ferrous Metals
Priority to CN2008102269943A priority Critical patent/CN101746719B/zh
Publication of CN101746719A publication Critical patent/CN101746719A/zh
Application granted granted Critical
Publication of CN101746719B publication Critical patent/CN101746719B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明涉及的通式为(NaAlH4)y-Rx复合储氢材料,其中R为钛钒固溶体合金,y和x均为摩尔百分数,5mol%≤x≤50mol%,y+x=100mol%。R固溶体合金成分为Tix1Crx2Vx3Fex4,其中x1+x2+x3+x4=100at%(原子百分数),25at%≤x1≤40at%,20at%≤x2≤45at%,20at%≤x3≤55at%,0at%≤x4≤10at%。采用氢气气氛保护机械球磨合成工艺制备而成,其在150℃,0.1MPa下1小时内有效放氢2.0wt%以上,总放氢量3.8wt%以上。该复合储氢材料制备工艺简单易行,在温和条件下具有更高储氢容量和充放氢速率。

Description

NaAlH4-钛钒固溶体复合储氢材料及其制备方法
技术领域
本发明涉及一种储氢材料,尤其涉及一种NaAlH4-钛钒固溶体复合储氢材料及其制备方法。
背景技术
氢气无毒、无臭,和氧燃烧产生纯净的水,而水又可电解获得氢,因此氢资源丰富,取之不尽,是一种清洁理想的燃料,在未来氢能汽车中具有重要的发展前景。根据美国能源部(DOE)对标准的质子交换膜燃料电池(PEMFC)汽车技术要求,当车的行程达到480km时,车载的氢气需求量大约3.58kg,若采用固态储氢材料进行车载储氢,则在要求体积和重量范围内,固态储氢材料的贮氢量须至少达到6wt%,但目前现有AB5、AB2、AB和A2B型贮氢合金,200℃有效放氢量不超过2wt%。显然,贮氢已经成为影响未来氢能发展的关键,发展新型的具有温和条件下更高储氢容量的固态储氢材料,已经成为该领域的研究热点。NaAlH4储氢材料即是其中之一,NaAlH4放氢过程包含以下两步反应:
Figure G2008102269943D00011
Figure G2008102269943D00012
上述两步反应理论放氢量为5.6wt%,分解反应要在200℃以上才能较快进行,但即使这样,其可逆吸放氢动力学十分缓慢,充放氢速率要以小时进行计算,难以达到车载燃料电池充放氢条件的要求。因此缓慢的充放氢动力学性能,已经成为阻碍NaAlH4固态储氢材料应用的主要问题。为改善NaAlH4放氢动力学性能,众多科学家做了不同的尝试。B.Bogdanovic等人通过溶液法将Ti(OC4H9)4、Fe(OC2H5)2、FeCl2、VCl3、ZrCl4等催化剂添加入NaAlH4中,实现了NaAlH4在160℃下可逆放氢3.2wt%(Bogdanovi’c B,Brand R A,Marjanovi’c A.J.Alloys and Compd,2000,302:36-58.)。Sandrock等人采用往NaAlH4中掺杂TiCl3催化剂,实现了125℃下可逆放氢3.2wt%。(Sandrock G,Gross K,Thomas G.,J.Alloys and Compd,2002,339:299-308.)。但上述向NaAlH4中添加金属氯化物或者氟化物等催化剂,会使得NaAlH4在吸放氢循环过程中生成NaCl、NaF等惰性物质进而影响材料的吸放氢性能。R.A.Zidan等人采用零价金属Zr或者Zr-Ti合金作为催化剂添加也实现了NaAlH4的可逆吸放氢。(Zidan R A,Takaras,Hee A G..J Alloys and Compd,1999,285:119-122)。庄鹏辉等人采用Zr-Ti合金的金属氢化物为催化剂添加进入NaAlH4中,实现了150℃下NaAlH4可逆放氢4.5wt%。(庄鹏辉,中国有色金属学报2008,18)。
发明内容
本发明的目的是提供一种具有优良储氢性能的NaAlH4-钛钒固溶体复合储氢材料。
本发明的另一个目的是提供一种具有优良储氢性能的NaAlH4-钛钒固溶体复合储氢材料的制备方法。
为实现上述目的,本发明采取以下技术方案:
一种NaAlH4-钛钒固溶体复合储氢材料,所述的复合储氢材料的通式为(NaAlH4)y-Rx,其中R为钛钒固溶体合金,y和x均为摩尔百分数,5mol%≤x≤50mol%,y+x=100mol%,该钛钒固溶体合金的成分为Tix1Crx2Vx3Fex4,其中,25at%≤x1≤40at%,20at%≤x2≤45at%,20at%≤x3≤55at%,0at%≤x4≤10at%,且x1+x2+x3+x4=100at%。
一种NaAlH4-钛钒固溶体复合储氢材料的方法,采用前述的钛钒固溶体合金的颗粒与NaAlH4材料,按照前述的通式(NaAlH4)y-Rx的摩尔百分数进行混合均匀后,在0.5~5.0MPa氢气气氛保护,球磨5~20小时工艺合成。
其中,所述的球磨工艺中所采用的球为直径8~10mm的不锈钢球,且球料重量比为5:1~30:1。
所述的氢气为高纯氢气,其纯度>99.99%。
本发明的优点是:
本发明的NaAlH4-钛钒固溶体复合储氢材料制备工艺简单易行,得到的储氢材料在温和条件下具有更高储氢容量,提高了充放氢的速率。
附图说明
图1(NaAlH4)95-(Ti30Cr25.5V40Fe4.5)5复合材料150℃,0.1MPa放氢动力学曲线
图2(NaAlH4)90-(Ti40Cr30V25Fe5)10复合材料150℃,0.1MPa放氢动力学曲线
图3(NaAlH4)70-(Ti35Cr35V30Fe0)30复合材料150℃,0.1MPa放氢动力学曲线
图4(NaAlH4)50-(Ti25Cr20V45Fe10)50复合材料150℃,0.1MPa放氢动力学曲线
具体实施方式
下面采用具体实例来对本发明作进一步的说明和解释,但本发明并不仅限于本实施例。
本发明中所用钛钒固溶体合金通过普通电弧熔炼或者磁悬浮感应熔炼的方法制备,方法如下:采用纯度大于99.5%以上的单质金属元素,按照化学通式Tix1Crx2Vx3Fex4,其中x1+x2+x3+x4=100at%(原子百分数),25at%≤x1≤40at%,20at%≤x2≤45at%,20at%≤x3≤55at%,0at%≤x4≤10at%进行化学剂量比配料,在氩气保护的普通电弧熔炼或者磁悬浮感应熔炼炉中进行熔炼,至少反复熔炼3次以上以保证合金成分的均匀性。之后,将合金空气中破碎至-20目~-60目,并装入密封的不锈钢反应器中,在室温用机械泵(极限真空1×10-1Pa)抽真空30分钟后,向反应器内充入2.0MPa高纯氢(纯度>99.99%)反应0.5-1.0小时后,在纯氩(纯度>99.5%)气保护的手套箱中取出并机械研磨至粒径≤50μm的粉末。
本发明实施例中所用NaAlH4为市售原料,纯度大于95wt%。
下述实施例中的钛钒固溶体合金(Tix1Crx2Vx3Fex4)的成分均以原子百分数计,如,Ti30Cr25.5V40Fe4.5中的各成分为30at%的Ti、25.5at%的Cr、40at%的V和4.5at%的Fe。
实施例1
在高纯氩气(纯度大于99.95%)保护的手套箱中,将5mol%的平均粒径小于50μm的Ti30Cr25.5V40Fe4.5合金粉末,与95mol%的NaAlH4材料,在玛瑙研钵中机械研磨混合30分钟后,装入不锈钢球磨罐内,并按照球料重量比10:1向罐内装入直径8-10mm的不锈钢球,待不锈钢球磨罐密封后,向罐内充入5.0MPa的纯度>99.99%的氢气,之后在行星式球磨机(公转300转/分,自转600转/分)工艺下球磨10h而成。储氢测试结果表明,该复合储氢材料在150℃,1h内可逆放氢2.0wt%,总放氢量4.4wt%。该复合材料的150℃,0.1MPa放氢动力学曲线如图1所示。
实施例2
在高纯氩气(纯度大于99.95%)保护的手套箱中,将10mol%的平均粒径小于50μm的Ti40Cr30V25Fe5合金粉末,与90mol%的NaAlH4材料,在玛瑙研钵中机械研磨混合30分钟后,装入不锈钢球磨罐内,并按照球料重量比20:1向罐内装入直径8-10mm的不锈钢球,待不锈钢球磨罐密封后,向罐内充入0.5MPa的纯度>99.99%的氢气,之后在行星式球磨机(公转300转/分,自转600转/分)工艺下球磨5h而成。储氢测试结果表明,该复合储氢材料在150℃,1h内可逆放氢2.5wt%,总放氢量4.1wt%。该复合材料的150℃,0.1MPa放氢动力学曲线如图2所示。
实施例3
在高纯氩气(纯度大于99.95%)保护的手套箱中,将30mol%的平均粒径小于50μm的Ti35Cr35V30Fe0合金粉末,与70mol%的NaAlH4材料,在玛瑙研钵中机械研磨混合30分钟后,装入不锈钢球磨罐内,并按照球料重量比5:1向罐内装入直径8-10mm的不锈钢球,待不锈钢球磨罐密封后,向罐内充入1.5MPa的纯度>99.99%的氢气,之后在行星式球磨机(公转300转/分,自转600转/分)工艺下球磨20h而成。储氢测试结果表明,该复合储氢材料在在150℃,1h内可逆放氢2.6wt%,总放氢量4.0wt%。
实施例4
在高纯氩气(纯度大于99.95%)保护的手套箱中,将50mol%的平均粒径小于50μm的Ti25Cr20V45Fe10合金粉末,与50mol%的NaAlH4材料,在玛瑙研钵中机械研磨混合30分钟后,装入不锈钢球磨罐内,并按照球料重量比30:1向罐内装入直径8-10mm的不锈钢球,待不锈钢球磨罐密封后,向罐内充入3.0MPa的纯度>99.99%的氢气,之后在行星式球磨机(公转300转/分,自转600转/分)工艺下球磨5h而成。储氢测试结果表明,该复合储氢材料在在150℃,1h内可逆放氢2.8wt%,总放氢量3.9wt%。该复合材料的150℃,0.1MPa放氢动力学曲线如图4所示。

Claims (3)

1.一种NaAlH4-钛钒固溶体复合储氢材料,其特征在于,所述的复合储氢材料的通式为(NaAlH4)y-Rx,其中R为钛钒固溶体合金,y和x均为摩尔百分数,5mol%≤x≤50mol%,y+x=100mol%,该钛钒固溶体合金的成分为Tix1Crx2Vx3Fex4,其中,25at%≤x1≤40at%,20at%≤x2≤45at%,20at%≤x3≤55at%,0at%≤x4≤10at%,且x1+x2+x3+x4=100at%。
2.一种制备权利要求1所述的NaAlH4-钛钒固溶体复合储氢材料的方法,其特征在于,采用权利要求1所述的钛钒固溶体合金的颗粒与NaAlH4材料,按照权利要求1所述的通式(NaAlH4)y-Rx的摩尔百分数进行混合,混合后,在0.5~5.0MPa氢气气氛保护,在行星式球磨机中球磨5~20小时工艺合成,其中,所述的球磨工艺中所采用的球为直径8~10mm的不锈钢球,且球料重量比为5∶1~30∶1,行星式球磨机的公转为300转/分,自转为600转/分。
3.根据权利要求2所述的制备NaAlH4-钛钒固溶体复合储氢材料的方法,其特征在于,所述的氢气为高纯氢气,其纯度>99.99%。
CN2008102269943A 2008-11-28 2008-11-28 NaAlH4-钛钒固溶体复合储氢材料及其制备方法 Active CN101746719B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008102269943A CN101746719B (zh) 2008-11-28 2008-11-28 NaAlH4-钛钒固溶体复合储氢材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008102269943A CN101746719B (zh) 2008-11-28 2008-11-28 NaAlH4-钛钒固溶体复合储氢材料及其制备方法

Publications (2)

Publication Number Publication Date
CN101746719A CN101746719A (zh) 2010-06-23
CN101746719B true CN101746719B (zh) 2012-06-13

Family

ID=42474432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008102269943A Active CN101746719B (zh) 2008-11-28 2008-11-28 NaAlH4-钛钒固溶体复合储氢材料及其制备方法

Country Status (1)

Country Link
CN (1) CN101746719B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103031480B (zh) * 2012-12-18 2016-01-06 中国科学院长春应用化学研究所 一种含铝钠钛钒镍准晶复相储氢材料及其制备方法
CN103588171B (zh) * 2013-10-24 2015-10-07 上海大学 一种实现Li-N-H体系微波下循环快速放氢的方法
DE102014006373A1 (de) 2014-05-05 2015-11-05 Gkn Sinter Metals Engineering Gmbh Wasserstoffspeicher mit kompensierter Volumenänderung
DE102014006370A1 (de) 2014-05-05 2015-11-05 Gkn Sinter Metals Engineering Gmbh Wasserstoffspeicher mit einem hydrierbaren Material und ein Verfahren
CN107350485B (zh) * 2017-06-19 2019-08-02 西安建筑科技大学 一种V-Ti-Fe储氢合金粉的气相反应制备方法
CN115780811A (zh) * 2022-09-30 2023-03-14 海德威氢能科技(山东)有限公司 一种利用储氢合金降低铝氢化物放氢温度的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730070A (en) * 1987-05-20 1988-03-08 Ethyl Corporation Stabilization of amine alanes
US20030143154A1 (en) * 2002-01-29 2003-07-31 Gross Karl J. Direct synthesis of catalyzed hydride compounds
CN1546366A (zh) * 2003-12-04 2004-11-17 复旦大学 一种含铝纳米络合物贮氢材料及其制备方法
CN101049910A (zh) * 2006-04-05 2007-10-10 中国科学院金属研究所 一种配位铝氢化物贮氢材料及其制备方法
CN101108331A (zh) * 2006-07-17 2008-01-23 北京有色金属研究总院 一种配位氢化物催化可逆贮氢材料及其制备方法
WO2008138954A1 (en) * 2007-05-15 2008-11-20 Shell Internationale Research Maatschappij B.V. Process for preparing ti-doped hydrides

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730070A (en) * 1987-05-20 1988-03-08 Ethyl Corporation Stabilization of amine alanes
US20030143154A1 (en) * 2002-01-29 2003-07-31 Gross Karl J. Direct synthesis of catalyzed hydride compounds
CN1546366A (zh) * 2003-12-04 2004-11-17 复旦大学 一种含铝纳米络合物贮氢材料及其制备方法
CN101049910A (zh) * 2006-04-05 2007-10-10 中国科学院金属研究所 一种配位铝氢化物贮氢材料及其制备方法
CN101108331A (zh) * 2006-07-17 2008-01-23 北京有色金属研究总院 一种配位氢化物催化可逆贮氢材料及其制备方法
WO2008138954A1 (en) * 2007-05-15 2008-11-20 Shell Internationale Research Maatschappij B.V. Process for preparing ti-doped hydrides

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Kang XD et al..Impact of preparation conditions on hydrogen storage performance of metallic Ti-doped NaAlH4.《Rare metals》.2006,第25卷第266-272页. *
庄鹏辉 等.TiZr氢化物掺杂NaAlH4的储氢性能.《中国有色金属学报》.2008,第18卷(第4期),第671-675页. *
庄鹏辉 等.球磨时间对TiZr氢化物掺杂NaAlH4储放氢性能的影响.《西安交通大学学报》.2008,第42卷(第5期),第639-642页. *
李晓波 等.掺杂与NaAlH4储氢.《云南化工》.2006,第33卷(第1期),第26-30页. *
肖学章 等.络合氢化物Ti-NaAlH4的制备与储氢特性.《物理化学学报》.2006,第22卷(第12期),第1511-1515页. *

Also Published As

Publication number Publication date
CN101746719A (zh) 2010-06-23

Similar Documents

Publication Publication Date Title
CN101746719B (zh) NaAlH4-钛钒固溶体复合储氢材料及其制备方法
CN101264863B (zh) 用反应球磨直接合成金属配位氢化物储氢材料的方法
CN101351568B (zh) 用于可逆储氢的Li-B-Mg-X体系
CN101920936A (zh) 金属锂基复合储氢材料及其制备方法与用途
CN1563453A (zh) 一种RexMgyNi4-zAz储氢合金及非晶制备方法
CN110656272B (zh) 一种基于高熵效应的镁基贮氢材料及其制备方法
CN103183314A (zh) 一种泡沫状结构的复合储氢材料及其制备方法
CN101565168B (zh) 一种多元轻金属配位铝氢化物储氢材料的制备方法
Zhou et al. Effects of REF3 (RE= Y, La, Ce) additives on dehydrogenation properties of LiAlH4
Song et al. Hydrogen storage properties of a Ni, Fe and Ti-added Mg-based alloy
CN101279717A (zh) 一种镁基复相储氢材料及其制备方法
Song et al. Improvement of hydriding and dehydriding rates of Mg via addition of transition elements Ni, Fe, and Ti
CN101992056B (zh) 络合氢化物和储氢合金的复合储氢材料
CN101642703B (zh) 铝氢化钠配位氢化物的催化剂及其制备方法
CN1281775C (zh) 机械合金化法制备镁基储氢材料的方法及其镁基储氢材料
CN101412495B (zh) 铝氢化钠和稀土-镍基合金复合储氢材料及其制备方法
CN101406843B (zh) 铝氢化钠配位氢化物的纳米催化剂及其制备方法与应用
CN102556971A (zh) 一种Li-Mg基复合储氢材料及其制备方法
CN101623627B (zh) 改善Li-Mg-N-H体系储氢材料放氢动力学的催化剂及其使用方法
CN102212721A (zh) 一种镁镍基储氢材料及制备方法
CN1272460C (zh) RE-Mg-Ni三元或三元以上体系储氢合金及其非晶合金的制备方法
CN101054645A (zh) 经表面催化的高活性镁基储氢材料及制备方法
CN104030246B (zh) 一种铝锂储氢材料及其制备方法
Schmidt et al. Influence of transition metal dopants and temperature on the dehydrogenation and rehydrogenation kinetics of NaAlH4
CN101713049B (zh) 多元钛铁系贮氢合金

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190626

Address after: 101407 No. 11 Xingke East Street, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee after: Research Institute of engineering and Technology Co., Ltd.

Address before: 100088, 2, Xinjie street, Beijing

Patentee before: General Research Institute for Nonferrous Metals