CN101688949B - 防止光纤中的电介质击穿 - Google Patents

防止光纤中的电介质击穿 Download PDF

Info

Publication number
CN101688949B
CN101688949B CN2008800041502A CN200880004150A CN101688949B CN 101688949 B CN101688949 B CN 101688949B CN 2008800041502 A CN2008800041502 A CN 2008800041502A CN 200880004150 A CN200880004150 A CN 200880004150A CN 101688949 B CN101688949 B CN 101688949B
Authority
CN
China
Prior art keywords
hom
order mode
mode signal
optical fiber
dielectric breakdown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008800041502A
Other languages
English (en)
Other versions
CN101688949A (zh
Inventor
西达尔斯·拉马钱德兰
安德鲁·D·亚布龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OFS Fitel LLC
Original Assignee
OFS Fitel LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OFS Fitel LLC filed Critical OFS Fitel LLC
Publication of CN101688949A publication Critical patent/CN101688949A/zh
Application granted granted Critical
Publication of CN101688949B publication Critical patent/CN101688949B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • G02B6/02014Effective area greater than 60 square microns in the C band, i.e. 1530-1565 nm
    • G02B6/02019Effective area greater than 90 square microns in the C band, i.e. 1530-1565 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06733Fibre having more than one cladding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • G02B6/02023Based on higher order modes, i.e. propagating modes other than the LP01 or HE11 fundamental mode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/0672Non-uniform radial doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094038End pumping
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • G02B6/02085Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response characterised by the grating profile, e.g. chirped, apodised, tilted, helical
    • G02B6/02095Long period gratings, i.e. transmission gratings coupling light between core and cladding modes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02366Single ring of structures, e.g. "air clad"
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/03Suppression of nonlinear conversion, e.g. specific design to suppress for example stimulated brillouin scattering [SBS], mainly in optical fibres in combination with multimode pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/20Lasers with a special output beam profile or cross-section, e.g. non-Gaussian
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06741Photonic crystal fibre, i.e. the fibre having a photonic bandgap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094096Multi-wavelength pumping

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)
  • External Artificial Organs (AREA)
  • Optical Integrated Circuits (AREA)
  • Amplifiers (AREA)

Abstract

当以高阶模(HOM)传输时,可通过明智地选择传输的模来减小块状玻璃中电介质击穿的几率。因为HOM分布图中的能量分布随模阶数而改变,所以可以为任何给定的HOM计算峰值强度。相应地,可以计算被传输的脉冲的某些部分是否将超过HOM信号正在被传输通过的光纤的击穿阈值。如果计算的能量超过电介质击穿阈值,则可选择具有较低峰值强度的另一个HOM用于信号传输。所公开的内容是用于选择合适的HOM来减小电介质击穿的可能性的系统和方法。

Description

防止光纤中的电介质击穿
相关申请的交叉引用
本申请要求于2007年2月5日提交的,名为“Higher Order ModeAmplifiers(高阶模放大器)”的美国临时专利申请No.60/888114的优先权,所述美国临时专利申请通过引用而全部并入本文。
此外,下述美国专利申请通过引用而并入本文,如同它们全部在此陈述过一样:
(a)DiGiovanni等人于2006年11月30日提交的美国专利申请No.11/606718;
(b)Nicholson等人于2005年9月20日提交的美国专利申请No.11/230905;
(c)Ramachandran等人于2005年4月14日提交的美国专利申请No.11/105850;
(d)Ramachandran等人于2006年3月4日提交的美国专利申请No.11/367495;
(e)Fini等人于2006年7月14日提交的美国专利申请No.11/487258。
并且,同时提交的下述美国专利申请也通过引用而并入本文,如同它们全部在此陈述过一样:
(f)[案卷编号:FENA 001364],DiGiovanni和Ramachandran的名为“Sequentially Increasing Effective Area in Higher-OrderMode(HOM)Signal Propagation(顺序增加高阶模(HOM)信号传播中的有效面积)”的申请;
(g)[案卷编号:FENA 001365],Ramachandran的名为“Pumping in a Higher-Order Mode that is Different From a SignalMode(在与信号模不同的高阶模下泵浦)”的申请;
(h)[案卷编号:FENA 001366],DiGiovanni、Ghalmi、Mermelstein和Ramachandran的名为“Segmented Gain-Doping of anOptical Fiber(光纤的分段增益掺杂)”的申请;以及
(i)[案卷编号:FENA 001367],DiGiovanni和Ramachandran的名为“Selectively Pumping a Gain-Doped Region of a Higher-OrderMode Optical Fiber(选择性地泵浦高阶模光纤的增益掺杂区域)”的申请;以及
(j)[案卷编号:FENA 001368],DiGiovanni和Headly的名为“Pumping in a Higher-Oder Mode that is Substantially Identical toa Signal Mode(在与信号模基本相同的高阶模下泵浦)”的申请。
技术领域
本发明一般涉及光纤,并且更具体地涉及光纤中的高阶模(“HOM”)信号传输。
背景技术
自从硅基光纤被用于高功率激光器和放大器,一直在努力增加通过光纤传输的信号的功率。高功率传输的一个限制是块状玻璃中的电介质击穿的攻击,其中电介质击穿的阈值是脉冲持续时间和脉冲能量的函数。因此,随着脉冲的强度的增加,电介质击穿的可能性相应地增加。由于这个问题,工业上需要一种在避免块状玻璃的电介质击穿的同时传输高能量信号的方法。
附图说明
参考下述附图,可更好地理解本发明的许多方面。附图中的元件不一定按规定比例,而是在清楚地示例本发明的原理的同时有重点地示出。此外,在附图中,相同的附图标记指示遍及几幅图中的相应的部件。
图1是示出了用于将基模变换为高阶模(HOM)的示例设置的示意图;
图2(a)是示出了当基模被变换为大模面积(LMA)HOM时的变换效率的例子的示意图;
图2(b)是示出了将基模信号变换为HOM信号的示例模块的光谱特征的图;
图3(a)是示出了作为波长的函数的一个示例HOM的有效面积的图;
图3(b)是示出了基于波长的色散和各个示例性模阶数之间的相关性的图;
图4是示出了模稳定性和模阶数的选择之间的相关性的图;
图5(a)是示出了具有86微米的内包层的示例性光纤的横截面的图;
图5(b)是示出了图5(a)中的光纤的折射率分布图的图;
图5(c)是示出了在图5(a)的光纤中传播的HOM信号的近场图像的图;
图5(d)是将图5(c)的实际信号分布图与理论信号分布图相比较的图;
图6是示出了针对几个示例HOM信号弯曲半径对弯曲损失和模混合效率的影响的图;
图7是示出了偶数模和奇数模之间的峰值强度的差别的一个例子的图;
图8是示出了两个不同的HOM之间的峰值强度的差别的一个例子的图。
具体实施方式
如图所示,现在详细参照对实施例的描述。尽管关于这些图描述了几个实施例,但其目的不是将本发明限制为此处公开的一个或多个实施例。相反,目的是覆盖所有的变形、修改和等同物。
在基于光纤的系统中的光信号的高功率传输期间,随着能量级增加,显现出各种非线性效应。一个这样的效应就是当脉冲的局部强度超过了块状玻璃中的电介质击穿的阈值时出现的电介质击穿。该阈值是脉冲持续时间和脉冲能量的函数。典型地,在高阶模(HOM)信号传输中,HOM信号分布图(profile)的横截面展现了多个波瓣。这样,存在由于波瓣导致的电介质击穿的更大的风险,所述波瓣可能仅携带脉冲能量的一小部分,却具有高峰值强度。
因此,当以HOM传输时,可通过明智地选择传输的模来减小块状玻璃中电介质击穿的几率。换句话说,因为HOM分布图中的能量分布随模阶数而改变,所以可以为任何给定的HOM计算峰值强度。相应地,可以计算被传输的脉冲的某些部分是否将超过HOM信号正在被传输通过的光纤的击穿阈值。如果计算的能量超过电介质击穿阈值,则可选择具有较低峰值强度的另一个HOM用于信号传输。
通过介绍,主要通过高亮度半导体泵浦激光器的可获得性使得能够向前驱动高功率光纤激光器。光学传输中的限制包括由光纤中的高强度引起的非线性。这样,近来的努力聚焦在了大模面积(LMA)光纤,所述光纤具有其中强度被降低了的有效模面积。具有300平方微米大小的有效面积的LMA光纤现在可商业获得。
然而,即使当缩放为较大面积时,随着光纤的模面积增大,信号也变得越来越不稳定(例如,损失和可能将能量分给其它模)。这种不稳定性在某种程度上可以通过在支持多个导模的LMA光纤中传播一个定义明确的高阶模(HOM)信号来减轻。关于模耦合不稳定性,以HOM传输固有地比以基模传输更稳健。因此,HOM信号传输通常允许在超过3000平方微米的模面积中的信号传输或放大,并且HOM信号传输展现了对于弯曲效应比以基模传输更好的免疫性。
HOM的横截面强度分布图与基模的横截面强度分布图不同。因此,如果希望在输入端和输出端都具有基模信号,则必须使用模转换技术来将基模信号变换为HOM信号,并且反之亦然。
该发明内容与附图一起提供了对用于传输HOM信号的系统的详细描述,以及用于将HOM信号的峰值强度保持在硅基光纤的电介质击穿阈值以下的各种方案。
图1示出了其中的一个示例设置的示意图,用于将基模信号180变换为高阶模(HOM)信号170,并且放大该信号。在图1的实施例中,系统包括接合或光学耦合至增益掺杂的超大模面积(ULMA)光纤140的输入端的单模光纤(SMF)110。因为诸如铒和镱等的增益掺杂剂在本领域中是已知的,所以此处省略对增益掺杂剂的进一步讨论。
ULMA光纤140具有光纤内长周期光栅(LPG)130,所述光栅被具体配置为将基模信号180变换为HOM信号170。因为这样的模变换技术在工业中是已知的,所以此处仅提供对LPG 130的删简的讨论。然而,本领域技术人员应理解为:可使用其它已知的模变换技术将基模信号180变换为HOM信号170。在ULMA光纤140的输出端的是被配置为将HOM信号170变换回基模信号160的另一个LPG150。
因此,在操作中,信号作为基模信号180被引入系统,并使用光纤内LPG 130通过共振耦合被变换为HOM信号170。一旦被变换为HOM信号170并且被增益掺杂ULMA光纤140充分地放大,放大的HOM信号170通过第二组光纤内LPG 150被变换回基模160。
LMA光纤的稳定性主要由所需模及其最近的反对称(或偶数)模之间的随机的、分布式的共振模混合可以被抑制的程度来控制。例如,对于LP0m模,稳定性主要由其与对应的LP1m模的模混合来控制。
对于大部分,这种抑制取决于两个主要因素。即,被发射至所需模的纯度、和这两个模之间的相位匹配度。因此,随着该两个模的有效折射率(indices)(neff)之间的差增加,所需模和其对应的反对称模之间的耦合变得越来越低效。
图4是示出了模稳定性和模阶数的选择之间的关系的图。被标明为LP01的线示出了光纤的LP01模的稳定性和有效面积之间的权衡。一般来说,利用传统LMA光纤的稳健操作被限制为约800平方微米的有效面积,因为更大的有效面积产生足够低的n01-n11值,所以模耦合变得过高。在图4中,水平虚线示出了800平方微米LMA光纤的高阶模耦合的阈值。还绘出了被表示为“MOF”的数据点,该点示出了到2005为止微结构光纤的最大有效面积(约1400平方微米)。微结构光纤可被设计为具有大的差分模态损耗,使得能够辐射出LP11模,从而在输出端产生较高的模态纯度。因此,在显著地较低的n01-n11的情况下,这些光纤可提供稳定的操作。
如图4所示,HOM允许有效面积的大幅度比例缩放。尽管HOM(LP04,LP05,LP06,和LP07)的稳定性(由n0m-n1m表示)随着有效面积的增加而劣化,但劣化的程度显著地小于基模中展现的劣化的程度。具体地讲,HOM的n0m-n1m值比基模(LP01)的高一个数量级。因此,HOM的行为证明了HOM的以比可在基模下获得的显著地大的有效面积获得稳定的没有模混合的信号传播的能力。此外,n0m-n1m值随着模阶数(由下角标“m”表示)增加,表示这个概念基本上是可缩放的。
图4也示出了模LP04 410、LP05 420、LP06 430和LP07 440的实验记录的近场图像。在图4中示出的具体实施例中,LP04模具有约3200平方微米的有效面积;LP05模具有约2800平方微米的有效面积;LP06模具有约2500平方微米的有效面积;以及LP07模具有约2100平方微米的有效面积。
图5示出了被用于获得图4中的模态图像的少模光纤的详情。具体地讲,图5(a)是示出了具有86微米直径的内包层的示例光纤的横截面的近场图像,图5(b)是示出了图5(a)中的光纤的折射率分布图的图,并且图5(c)是示出了沿图5(a)中的光纤传播的LP07信号的近场图像。如图5(a)和5(b)所示的内包层是图5(c)的HOM的驻留之处。图5(d)是将图5(c)的实际信号分布图与理论信号分布图相比较的图。图5(d)中示出的实际信号的强度线扫描与理论值非常匹配。模强度分布图被用于计算模的有效面积,对于该具体实施例,产生了2140平方微米用于模拟,2075平方微米用于实际实验值。HOM中的传输示出了沿超过50米的光纤长度、弯曲半径小于4.5厘米的稳定传播。图6(a)和6(b)中示出了这样的弯曲不敏感性的例子,该例子证明了在约7厘米(R1)和约4.5厘米(R2)的弯曲半径处保持了信号的完整性,但示出了由于在约3.8厘米的弯曲半径处的不想要的耦合而导致的轻微失真。
通过诸如图1所示的模变换器或LPG,从基模信号激发所需HOM信号。该信号被耦合至像HOM光纤的纤芯一样的单模光纤(SMF),诸如图5(b)中示出的。可使用传统接合技术将该耦合实现为具有高模态纯度和低损失。使用LPG将进入的信号变换为所需LP0m模。因为LPG是光纤中的周期性折射率扰动,所以LPG的共振特性有效地将进来的信号与高阶模相耦合。因此,当LPG被设计为与用于在光纤中的两个共同传播的模之间耦合的拍长(beat length)匹配时,出现了从一个模到另一个模的高度有效的耦合。因为LPG是可逆装置,所以可使用具有与用于将基模信号变换为HOM信号的一样的结构的LPG将HOM信号变换回基模。
研究表明:通过使共同传播的模的群速率相匹配,LPG 120、150(图1)可有效地以更宽的带宽运行。图2(a)是示出了当基模被变换为大模面积(LMA)HOM时的变换效率的例子的图。如图2(a)所示,从基模到LMA HOM的变换大于99%,并且可在超过100纳米的带宽上实现变换。
图2(b)是示出了将基模信号变换为HOM信号的示例模块的光谱特征。如图2(a)和2(b)所示,与HOM光纤的稳健性和可分割特性相组合,LPG的带宽、效率特性产生了具有超过100纳米的1-dB带宽的装置。
应注意,特别设计的少模光纤中的HOM具有除了模稳定性以外的至少两个有吸引力的属性。第一,模阶数的选择提供了各种可实现的有效面积,其例子参照图4被示出。第二,模典型地保持被严格地限制在一个波长范围上,因为主要传导HOM的内包层是高折射率差异(high-index-contrast)波导。结果是设计相对于波长独立,并且因此有效面积保持很大并且在一个波长范围上几乎不受影响。图3(a)和3(b)中示出了该现象的一个例子。
图3(a)是示出了作为波长的函数的示例HOM的有效面积的图。具体地讲,图3(a)示出了HOM光纤中的LP07模的有效面积。如该实施例中示出的,在大于500纳米的波长跨度上(此处示出的为从约1000纳米到约1600纳米的波长范围),有效面积仅改变了约6%。由于对改变的波长的这种相对免疫性,可使用HOM来获得在技术上重要的宽的波长范围内的,诸如高能激光器或放大器中所使用的,稳健的、大有效面积的传播。
图3(b)是示出了基于波长的色散(dispersion)和各种示例模阶数之间的关系的图。具体地讲,图3(b)示出了色散的定制对于大有效面积HOM是灵活的。如图3(b)所示,色散随着模阶数的增加变得越来越正向。因此,可以在1060纳米处获得不规则的色散,这对于1060纳米飞秒激光器是有益的。
与基模不同,HOM具有光的非单调空间分布。在一些情况下,HOM的中央波瓣具有比周围的环显著高的强度。该强度对于许多非线性变形仅有微小的效应,诸如,例如受激喇曼散射、自相位调制或从硅石光纤中的刻尔效应引起的非线性。但是,所有这些非线性都受到有效面积的值的很大的影响。直观原因是:由于强度的空间分布引起了累积的非线性,因此与小有效面积的基模相比,大有效面积HOM对于非线性更有抵抗力。
然而,一个基于局部强度而不是有效面积的特别的非线性是电介质击穿,毫微秒脉冲对于电介质击穿特别易受影响。不同模阶数的峰值强度都不同,这允许基于希望在系统中减轻哪种非线性来具体定制光纤设计。
如上所述,块状玻璃中的电介质击穿的几率可通过明智地选择传输的模来减小。换句话说,因为HOM分布图中的能量分布随模阶数而变化,所以可为任何给定的HOM计算峰值强度。相应地,可计算传输的脉冲的任何部分是否将超过正在传输的HOM信号通过的光纤的击穿阈值。假如所计算的能量超过了电介质击穿阈值,则可选择具有较低的峰值能量的另一个HOM用于信号传输。图7和8示出了两个示例实施例,其中通过明智地选择HOM而减小了峰值强度,但很少改变有效面积。
图7是示出了偶数模和奇数模之间的峰值强度的差别的一个例子的图。如图7所示,LP07模具有中央波瓣,该波瓣具有高强度。相反,LP17模不具有中央波瓣,因为与对称的LP07模相比,LP17模是奇数(或反对称)配置。如可看到的,仅通过从对称转移至反对称配置,可相当多地减小峰值强度。
图8是示出了两个不同的HOM之间的峰值强度的差别的一个例子的图。具体地讲,图8示出了峰值强度从LP07模到LP04模的减小。如可想像的,根据选择哪个模用于信号传播,可将峰值强度减小一个或多个数量级。
电介质击穿损害是通过超过该值则将在玻璃中出现该灾难性破坏的阈值强度值来量化的。文献中对于此有几个报告值,假定该值主要取决于制备(石英)玻璃的制造工艺,但B.C.Stuart、M.D.Feit、A.M.Rubenchik、B.W.Shore和M.D.Perry的“Laser-induced damagein dielectrics with nanosecond and subpicosecond pulses  (使用纳秒和亚皮秒脉冲的电介质中的激光导致的损害)”,Physical ReviewLetters,第74卷,第2248页,1995年给出了有用的参考值。
发生击穿的强度值(Ibreakdown)与脉冲宽度(τ)的平方根反相关,其中τ被给定为纳秒(ns)。在示例等式中,Ibreakdown将与下式成比例:
(300GW/cm2)/(√τ)            [等式1]
在LMA光纤中的传统的高斯形状的模的情况下,脉冲携带的功率可分析上地与其峰值强度相关,因为模的Aeff确定其额定强度。因此,对于这样的模,找到避免电介质击穿的条件简单地转化为找到具有足够大的Aeff的模,从而其峰值强度低于Ibreakdown
对于此处考虑的LMA-HOM,与传统高斯模的情况相同,每一个模都与相关联的峰值强度值有严格的关系,但不存在简单的分析表达式来对其进行明确说明。因此,此处,我们提供了通用的一组规则来确定HOM的峰值强度。
对于HOM,由LPn,m来指定模,其中n和m都是整数。n=0的情况对应于对称模,而n=1的情况对应于反对称模。整数m是指径向方向上的强度为“零”的数目。
如上所述,特别是在LMA HOM的情况下,但更普遍地在HOM的情况下,模分布图是非单调的。它们的分布图,在高度近似的情况下,与被切去顶端(truncated)的贝塞尔函数相似,这在数学和物理的各个领域都是已知的。因此,假设由切去顶端的贝塞耳函数来充分地近似LMA-HOM,可推导一组规则来关于给定量的脉冲能量、给定模阶数和(光纤)波导尺寸产生峰值强度。
因为HOM主要驻留在尺寸为d(如参照图5在上文讨论的)的内包层中,所以被指定为LPn,m的HOM的强度分布图IHOM可以被表示为:
IHOM=Jn(kr·r)      对于r≤d/2    [等式2a]
IHOM=0              对于r>d/2    [等式2b]
其中,Jn是第n类贝塞耳函数。常数kr的值是HOM的模阶数(m)和下面的表格1确定的,所述表格1示出了函数的值为0的贝塞耳函数(也被称为贝塞耳函数的零)的自变量的值。
作为说明,对于驻留在d=86微米的内包层中的LP07 HOM:
kr=(21.212)/(d/2)=4.933×103cm-1        [等式3]
表格1
  m  n=0时的kr·d   n=1时的kr·d
  1  2.405   3.832
  2  5.52   7.016
  3  8.654   10.173
  4  11.792   13.323
  5  14.931   16.47
  6  18.071   19.616
  7  21.212   22.76
  8  24.353   25.903
  9  27.494   29.047
因此,给定kr(来自内包层尺寸d)和更多阶m,给定HOM的峰值强度,可将HOM的峰值强度预测为:
Ipeak=(Ppeak·kr)/(2π(m-0.221))        [等式4]
其中Ppeak表示峰值功率,而模阶数的选择仅由关系式Ipeak<Ibreakdown控制。
根据这些例子,应理解为:模阶数不仅可从对称变为反对称,而且也可以从一个对称HOM变为另一个对称HOM。此外,应理解为这两个方案的组合可产生峰值强度的进一步减小。可在本发明的范围内构思这些和其它修改。
尽管已示出和描述了示例性实施例,本领域技术人员应清楚:可对公开的发明进行多个改变、修改或变形。例如,尽管已在附图中示出了并详细地描述了具体HOM,应理解为可使用其它模阶数(除了表达性地示出的)来适应各种其它设计参数。因此,所有这样的改变、修改和变形都应被看作是在本发明的范围内。

Claims (5)

1.一种光纤系统,包括:
用于计算与第一高阶模信号相关联的峰值电场的装置;
用于确定第一高阶模信号的峰值电场是否超过了光纤的电介质击穿阈值的装置;以及
用于当第一高阶模信号超过了光纤的电介质击穿阈值时选择第二高阶模信号的装置,该第二高阶模信号与第一高阶模信号有基本上相同的能量,第二高阶模信号具有不超过光纤的电介质击穿阈值的峰值电场。
2.在具有电介质击穿阈值的光纤中,一种方法包括如下步骤:
计算与第一高阶模信号相关联的峰值电场;
确定第一高阶模信号的峰值电场是否超过了光纤的电介质击穿阈值;以及
响应于峰值电场超过了电介质击穿阈值,选择第二高阶模信号,该第二高阶模信号与第一高阶模信号有基本上相同的能量,第二高阶模信号具有不超过光纤的电介质击穿阈值的峰值电场。
3.如权利要求2所述的方法,其中选择第二高阶模信号的步骤包括计算第二高阶模信号的峰值电场的步骤。
4.如权利要求2所述的方法,计算高阶模信号的峰值电场的步骤包括计算峰值强度(Ipeak)的步骤,其中:
Ipeak=(Ppeak·kr)/(2π(m-0.221)),
其中Ppeak表示峰值功率,kr是与光纤的内包层尺寸相关的值,并且m表示模阶数。
5.如权利要求2所述的方法,选择第二高阶模信号的步骤包括将第二高阶模信号的峰值电场与电介质击穿阈值相比较的步骤。
CN2008800041502A 2007-02-05 2008-02-05 防止光纤中的电介质击穿 Active CN101688949B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US88811407P 2007-02-05 2007-02-05
US60/888,114 2007-02-05
PCT/US2008/053036 WO2008097958A1 (en) 2007-02-05 2008-02-05 Preventing dielectric breakdown in optical fibers

Publications (2)

Publication Number Publication Date
CN101688949A CN101688949A (zh) 2010-03-31
CN101688949B true CN101688949B (zh) 2012-01-18

Family

ID=39682088

Family Applications (6)

Application Number Title Priority Date Filing Date
CN2008800041502A Active CN101688949B (zh) 2007-02-05 2008-02-05 防止光纤中的电介质击穿
CN200880004135A Pending CN101702959A (zh) 2007-02-05 2008-02-05 选择性地泵浦高阶模光纤的增益掺杂区域
CN200880004176.7A Active CN101688944B (zh) 2007-02-05 2008-02-05 在与信号模基本相同的高阶模下泵浦
CN2008800041362A Active CN101688984B (zh) 2007-02-05 2008-02-05 在与信号模不同的高阶模下的泵浦
CN2008800041165A Active CN101688948B (zh) 2007-02-05 2008-02-05 光纤的分段增益掺杂
CN2008800041663A Active CN101688950B (zh) 2007-02-05 2008-02-05 顺序增加高阶模(hom)信号传播中的有效面积

Family Applications After (5)

Application Number Title Priority Date Filing Date
CN200880004135A Pending CN101702959A (zh) 2007-02-05 2008-02-05 选择性地泵浦高阶模光纤的增益掺杂区域
CN200880004176.7A Active CN101688944B (zh) 2007-02-05 2008-02-05 在与信号模基本相同的高阶模下泵浦
CN2008800041362A Active CN101688984B (zh) 2007-02-05 2008-02-05 在与信号模不同的高阶模下的泵浦
CN2008800041165A Active CN101688948B (zh) 2007-02-05 2008-02-05 光纤的分段增益掺杂
CN2008800041663A Active CN101688950B (zh) 2007-02-05 2008-02-05 顺序增加高阶模(hom)信号传播中的有效面积

Country Status (6)

Country Link
US (6) US8103142B2 (zh)
EP (6) EP2109787A4 (zh)
JP (6) JP2010518634A (zh)
CN (6) CN101688949B (zh)
AU (6) AU2008213939B2 (zh)
WO (6) WO2008097963A1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2109787A4 (en) * 2007-02-05 2014-02-19 Furukawa Electric North Am Inc SEQUENTIALLY GROWING EFFECTIVE AREA IN HOM SIGNAL TRANSMITTERS
JP5299959B2 (ja) * 2008-12-02 2013-09-25 国立大学法人東北大学 光ビーム増幅方法および光ビーム増幅装置
CN102449936A (zh) * 2009-05-11 2012-05-09 Ofs菲特尔有限责任公司 用于在高功率级联拉曼光纤激光器中抑制反向激光发射的系统和技术
FR2952243B1 (fr) * 2009-11-03 2012-05-11 Univ Bordeaux 1 Source optique mettant en oeuvre une fibre dopee, fibre pour une telle source optique et procede de fabrication d'une telle fibre
US8498044B2 (en) * 2009-12-22 2013-07-30 Fujikura Ltd. Amplification optical fiber, and optical fiber amplifier and resonator using the same
JP5921564B2 (ja) * 2010-12-03 2016-05-24 オーエフエス ファイテル,エルエルシー 曲げ補償付き大モード面積光ファイバ
JP2014509411A (ja) * 2011-02-24 2014-04-17 オーエフエス ファイテル,エルエルシー 空間多重化のためのステップインデックス・少数モード・ファイバ設計
JP5124701B1 (ja) * 2011-03-31 2013-01-23 株式会社フジクラ 増幅用光ファイバ、及び、それを用いた光ファイバ増幅器及び共振器
JP5727305B2 (ja) * 2011-06-13 2015-06-03 日本電信電話株式会社 光ファイバ増幅器
WO2013023193A1 (en) * 2011-08-10 2013-02-14 Ofs Fitel, Llc Few moded fiber device employing mode conversion
WO2013052968A1 (en) * 2011-10-06 2013-04-11 Ofs Fitel, Llc Fiber designs for wavelength tunable ultra-short pulse lasers
WO2013169626A1 (en) 2012-05-05 2013-11-14 Trustees Of Boston University High-power fiber laser employing nonlinear wave mixing with higher-order modes
US9197030B2 (en) * 2012-07-31 2015-11-24 Corning Incorporated Few mode rare earth doped optical fibers for optical amplifiers, and amplifiers using such fibers
US9093815B2 (en) * 2012-08-29 2015-07-28 Ofs Fitel, Llc Optical fiber amplifier including rare-earth-doped cladding region
JP6059560B2 (ja) * 2013-03-04 2017-01-11 日本電信電話株式会社 マルチモード伝送用光増幅器
JP6109774B2 (ja) * 2013-03-15 2017-04-05 オーエフエス ファイテル,エルエルシー 高次モード光ファイバ増幅器における誘導ブリユアン散乱の抑制
US9356416B2 (en) 2013-03-15 2016-05-31 Ofs Fitel, Llc Suppression of stimulated brillouin scattering in higher-order-mode optical fiber amplifiers
US9537282B2 (en) * 2013-09-20 2017-01-03 Alcatel Lucent System and method for a multi-mode pump in an optical amplifier
JP6265863B2 (ja) * 2014-08-12 2018-01-24 日本電信電話株式会社 光増幅器及び光増幅器の設計方法
JP6323913B2 (ja) * 2015-03-30 2018-05-16 日本電信電話株式会社 光増幅器及び伝送システム
JP6831782B2 (ja) * 2015-06-10 2021-02-17 古河電気工業株式会社 パルスレーザ装置
US9871338B2 (en) * 2015-12-31 2018-01-16 Nlight, Inc. Pump combiner for multi-clad fibers
JP6654064B2 (ja) * 2016-03-03 2020-02-26 日本電信電話株式会社 モード変換器、光増幅器及び光伝送システム
US10261246B2 (en) * 2016-12-14 2019-04-16 Ofs Fitel, Llc Polarization-maintaining fiber device supporting propagation in large mode field diameters
CN110892300B (zh) 2017-08-01 2021-10-01 日本电信电话株式会社 光纤和光传输系统
CN107749557B (zh) * 2017-11-08 2019-08-30 合肥工业大学 高阶模信号注入的中红外可调谐光纤参量振荡器
JP2019145895A (ja) * 2018-02-16 2019-08-29 株式会社村田製作所 弾性波装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
CN109412000B (zh) 2018-12-13 2020-02-07 华南理工大学 超宽带高增益光纤与器件制备技术
WO2020139704A1 (en) * 2018-12-28 2020-07-02 Nlight, Inc. Optical fiber devices and methods for suppressing stimulated raman scattering (srs)
CN113227847A (zh) * 2018-12-28 2021-08-06 恩耐公司 用于将受激拉曼散射(srs)光导向出纤芯并进入包层的光纤装置和方法
JP6785901B2 (ja) * 2019-02-21 2020-11-18 株式会社フジクラ フィルタ装置、レーザ装置
CN110265858B (zh) * 2019-06-19 2024-04-26 中国人民解放军国防科技大学 一种选择性激发高阶模的大功率拉曼光纤激光系统
CN113189696A (zh) * 2020-01-14 2021-07-30 华为技术有限公司 一种光纤滤波器以及光纤放大器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5907647A (en) * 1997-02-18 1999-05-25 Lucent Technologies Inc. Long-period grating switches and devices using them
US6845194B2 (en) * 2001-06-27 2005-01-18 Furukawa Electric North America Inc. Optical bandpass filter using long period gratings
US20060024008A1 (en) * 2004-07-14 2006-02-02 Almantas Galvanauskas Composite waveguide
US20060291791A1 (en) * 2005-06-28 2006-12-28 California Institute Of Technology Frequency conversion with nonlinear optical polymers and high index contrast waveguides

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790902A (en) * 1972-09-05 1974-02-05 Bell Telephone Labor Inc Fundamental transverse mode operation in solid state lasers
US3875422A (en) * 1974-07-24 1975-04-01 Bell Telephone Labor Inc Four photon parametric amplification in glassy optical waveguides
US5363463A (en) * 1982-08-06 1994-11-08 Kleinerman Marcos Y Remote sensing of physical variables with fiber optic systems
US4741586A (en) * 1987-02-20 1988-05-03 The Board Of Trustees Of The Leland Stanford Junior University Dynamic coupler using two-mode optical waveguides
GB8724736D0 (en) * 1987-10-22 1987-11-25 British Telecomm Optical fibre
FR2638854B1 (fr) * 1988-11-10 1992-09-04 Comp Generale Electricite Amplificateur laser a fibre optique dopee
GB2239983A (en) * 1989-12-22 1991-07-17 Univ Southampton Optical fibre laser
US5185827A (en) * 1991-09-26 1993-02-09 At&T Bell Laboratories Apparatus for compensating chromatic dispersion in optical fibers
JP2713031B2 (ja) 1992-07-17 1998-02-16 日立電線株式会社 希土類元素添加マルチコアファイバ及びそれを用いた光増幅器
US6373868B1 (en) * 1993-05-28 2002-04-16 Tong Zhang Single-mode operation and frequency conversions for diode-pumped solid-state lasers
US5638388A (en) * 1995-02-04 1997-06-10 Spectra-Physics Lasers, Inc. Diode pumped, multi axial mode intracavity doubled laser
US6018533A (en) * 1995-04-21 2000-01-25 Ceramoptec Industries, Inc. Optical fiber and integrated optic lasers with enhanced output power
US5703978A (en) * 1995-10-04 1997-12-30 Lucent Technologies Inc. Temperature insensitive long-period fiber grating devices
US5708669A (en) * 1996-09-24 1998-01-13 Lucent Technologies Inc. Article comprising a cladding-pumped optical fiber laser
US5877890A (en) * 1996-10-30 1999-03-02 Rutgers, The State University Of New Jersey Optical-fiber amplifier having high-saturation output
GB9625231D0 (en) * 1996-12-04 1997-01-22 Univ Southampton Optical amplifiers & lasers
US5880877A (en) * 1997-01-28 1999-03-09 Imra America, Inc. Apparatus and method for the generation of high-power femtosecond pulses from a fiber amplifier
US5815518A (en) * 1997-06-06 1998-09-29 Lucent Technologies Inc. Article comprising a cascaded raman fiber laser
US5907652A (en) * 1997-09-11 1999-05-25 Lucent Technologies Inc. Article comprising an air-clad optical fiber
US6011886A (en) * 1997-10-16 2000-01-04 Lucent Technologies Inc. Recoatable temperature-insensitive long-period gratings
JP4075113B2 (ja) * 1997-11-07 2008-04-16 住友電気工業株式会社 光ファイバ増幅器及びエルビウム添加光ファイバ
US5966481A (en) * 1997-12-23 1999-10-12 Northern Telecom Limited Optically pumped optical waveguide amplifier
US6404951B2 (en) * 1998-03-26 2002-06-11 Lasercomm Inc. Transverse spatial mode transformer for optical communication
US6084996A (en) * 1998-04-01 2000-07-04 Lucent Technologies, Inc. Broadband long-period gratings
AU4334599A (en) * 1998-06-04 1999-12-20 California Institute Of Technology Optical devices based on energy transfer between different modes in optical waveguide
AU5312899A (en) * 1998-06-29 2000-01-17 Corning Incorporated Monolithic coaxial device
US6163552A (en) * 1998-08-14 2000-12-19 Lucent Technologies Inc. Article comprising an optical fiber cascaded Raman resonator
FR2784197B1 (fr) * 1998-10-05 2000-12-15 Cit Alcatel Fibre optique monomode a dispersion decalee a grande aire effective
US6275512B1 (en) * 1998-11-25 2001-08-14 Imra America, Inc. Mode-locked multimode fiber laser pulse source
US6360045B1 (en) * 1999-02-23 2002-03-19 Lasercomm Inc. High order spatial mode transmission system
US6327403B1 (en) * 1999-06-10 2001-12-04 Lasercomm Inc. Reducing mode interference in transmission of LP02 Mode in optical fibers
CN1190677C (zh) * 1999-09-02 2005-02-23 国际商业机器公司 加宽阵列波导光栅通带响应的方法和设备
US20020164140A1 (en) * 2000-01-12 2002-11-07 Michael Lysiansky Few-mode fiber profile
US6453102B1 (en) * 2000-02-07 2002-09-17 Corning Incorporated Dispersion compensating module and mode converter, coupler and dispersion compensating optical waveguide therein
US20010043388A1 (en) * 2000-02-29 2001-11-22 Yochay Danziger High order mode erbium-doped fiber amplifier
JP2001267665A (ja) * 2000-03-16 2001-09-28 Sumitomo Electric Ind Ltd 光増幅用光ファイバ、光ファイバ増幅器および光ファイバレーザ発振器
US6483974B1 (en) * 2000-10-24 2002-11-19 Jds Uniphase Corporation Optical fiber with improved cross-sectional profile and optical gain media using same
AUPR196400A0 (en) * 2000-12-07 2001-01-04 Defence Science And Technology Organisation Rare-earth-doped waveguide
US6724964B2 (en) * 2001-01-30 2004-04-20 Lasercomm Inc. Optical waveguide exhibiting strongly positive dispersion, and system utilizing same
US6807338B2 (en) * 2001-03-12 2004-10-19 Fitel Usa Corp. Multiwavelength cascaded raman resonator
FR2822243B1 (fr) * 2001-03-16 2003-06-20 Cit Alcatel Fibre optique photonique a double gaine
EP1410073A4 (en) * 2001-04-12 2005-11-09 Omniguide Comm Inc FIBER OPERATOR WITH HIGH INDEX CONTRAST AND APPLICATIONS
US6483975B1 (en) * 2001-04-27 2002-11-19 Fitel Usa Corp. Positive dispersion optical fiber having large effective area
ATE284545T1 (de) * 2001-06-11 2004-12-15 Avanex Corp Ein optischer wellenleiter und herstellungsverfahren für eine asymmetrische optische filtervorrichtung
JP3875597B2 (ja) * 2001-06-27 2007-01-31 フルカワ エレクトリック ノース アメリカ インコーポレーテッド 長周期格子を使用する光学帯域通過フィルタ
WO2003010578A1 (en) * 2001-07-12 2003-02-06 Ocg Technology Licensing, Llc Optical fiber
ATE251352T1 (de) * 2001-07-23 2003-10-15 Cit Alcatel Optischer faserverstärker und kommunikationssystem unter verwendung desselben
JP2003114350A (ja) * 2001-07-31 2003-04-18 Furukawa Electric Co Ltd:The 光ファイバ、光ファイバ部品および光伝送方法
US6480659B1 (en) * 2001-11-14 2002-11-12 Rayteq Photonic Solutions Ltd. Optic fiber structure for efficient use of optical pump energy in three-level rare-earth doped fiber laser
JP2003158324A (ja) * 2001-11-26 2003-05-30 Nikon Corp 光源装置及び光照射装置
EP1318579A1 (en) * 2001-12-10 2003-06-11 Corning Incorporated Multi-wavelength raman laser
JP4007812B2 (ja) * 2002-01-18 2007-11-14 富士通株式会社 ラマン増幅器および波長多重光通信システム、並びに、ラマン増幅の制御方法
FR2838261B1 (fr) * 2002-04-05 2004-07-09 Cit Alcatel Fibre de compensation de dispersion utilisant un mode d'ordre superieur
DE60312847D1 (de) * 2002-05-17 2007-05-10 Univ Leland Stanford Junior Doppelt ummantelte faserlaser und verstärker mit fasergittern mit grosser gitterperiode
US7321705B2 (en) * 2002-05-28 2008-01-22 Optun (Bvi) Ltd. Method and device for optical switching and variable optical attenuation
US6768835B2 (en) * 2002-09-04 2004-07-27 Fitel Usa Corp Tunable mode-converters using few mode fibers
US6937788B2 (en) * 2002-09-04 2005-08-30 Furukawa Electric North America Adjustable dispersion compensator with few mode fibers and switchable mode converters
US7139459B2 (en) * 2002-10-16 2006-11-21 Lake Shore Cryotronics, Inc. Spectral filter for green and longer wavelengths
DE60316989T2 (de) * 2002-12-10 2008-07-24 Nikon Corp. Ultraviolett-lichtquelle, phototherapievorrichtung mit verwendung einer ultraviolett-lichtquelle und belichtungssystem mit verwendung einer ultraviolett-lichtquelle
WO2004066458A2 (en) 2003-01-24 2004-08-05 Trumpf, Inc. Fiber laser
FR2854249B1 (fr) * 2003-04-25 2005-07-08 Cit Alcatel Dispositif et procede de transformation de mode de propagation de signaux, par interferences
FR2855619B1 (fr) * 2003-05-27 2005-07-22 Cit Alcatel Fibre optique pour amplification ou pour emission laser
JP4047232B2 (ja) * 2003-06-18 2008-02-13 株式会社フジクラ 高次モードファイバ用モード変換器
US7120340B2 (en) * 2003-06-19 2006-10-10 Corning Incorporated Single polarization optical fiber laser and amplifier
JP4152813B2 (ja) * 2003-06-24 2008-09-17 株式会社フジクラ モード変換器用ファイバ、モード変換器、光伝送路
JP2005084386A (ja) 2003-09-09 2005-03-31 Mitsubishi Cable Ind Ltd ダブルクラッドファイバ及びそれを備えた光学装置、並びに、光増幅器
FR2860598B1 (fr) * 2003-10-03 2005-12-16 Cit Alcatel Supression de mode(s) de propagation de signaux indesirables en aval d'un convertisseur de mode
JP2005129863A (ja) 2003-10-27 2005-05-19 Mitsubishi Cable Ind Ltd ダブルクラッドファイバへの励起光入射方法
US20050123241A1 (en) * 2003-12-03 2005-06-09 Moti Margalit Polarization independent frequency selective optical coupler
US7343098B2 (en) * 2003-12-17 2008-03-11 The Boeing Company Fiber optic phased array and associated method for accommodating atmospheric perturbations with phase and amplitude control
FR2864254B1 (fr) * 2003-12-23 2006-03-03 Cit Alcatel Fibre optique multimode hom a gestion de dispersion
US7724422B2 (en) * 2004-01-30 2010-05-25 Nufern Method and apparatus for providing light having a selected polarization with an optical fiber
US7742512B2 (en) * 2004-02-02 2010-06-22 Raytheon Company Scalable laser with robust phase locking
FR2867865B1 (fr) * 2004-03-16 2008-05-30 Cit Alcatel Fibre optique a compensation de dispersion chromatique en bande utilisant un mode d'ordre superieur
US7082243B2 (en) * 2004-04-05 2006-07-25 Corning Incorporated Large effective area high SBS threshold optical fiber
US6950578B1 (en) * 2004-05-28 2005-09-27 Fitel Usa Corp. Highly index-sensitive optical devices including long period fiber gratings
WO2006010798A1 (en) * 2004-07-26 2006-02-02 Photonium Oy Multimode optical fiber with low differential mode delay
US7177510B2 (en) * 2004-08-09 2007-02-13 Fitel Usa Corp. Polarization insensitive microbend fiber gratings and devices using the same
FR2875016B1 (fr) * 2004-09-08 2006-11-24 Cit Alcatel Convertisseur de mode
JP4561314B2 (ja) * 2004-10-28 2010-10-13 日立電線株式会社 ファイバレーザ用光ファイバ、ファイバレーザ及びレーザ発振方法
US7171074B2 (en) * 2004-11-16 2007-01-30 Furakawa Electric North America Inc. Large mode area fibers using higher order modes
GB0500277D0 (en) * 2005-01-07 2005-02-16 Southampton Photonics Ltd Apparatus for propagating optical radiation
US20060233554A1 (en) * 2005-04-14 2006-10-19 Siddharth Ramachandran Optical fiber systems for delivering short high power pulses
US7228029B1 (en) * 2005-09-20 2007-06-05 Furukawa Electric North America Inc. Short pulse lasers using large mode area fibers and higher order modes
FR2893149B1 (fr) * 2005-11-10 2008-01-11 Draka Comteq France Fibre optique monomode.
US20070206910A1 (en) * 2006-03-04 2007-09-06 Siddharth Ramachandran Optical fibers and optical fiber devices with total dispersion greater than material dispersion
US7257293B1 (en) * 2006-07-14 2007-08-14 Furukawa Electric North America, Inc. Fiber structure with improved bend resistance
US7356232B1 (en) * 2006-08-01 2008-04-08 Furukawa Electric North America Optical fibers for high power applications
EP2109787A4 (en) * 2007-02-05 2014-02-19 Furukawa Electric North Am Inc SEQUENTIALLY GROWING EFFECTIVE AREA IN HOM SIGNAL TRANSMITTERS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5907647A (en) * 1997-02-18 1999-05-25 Lucent Technologies Inc. Long-period grating switches and devices using them
US6845194B2 (en) * 2001-06-27 2005-01-18 Furukawa Electric North America Inc. Optical bandpass filter using long period gratings
US20060024008A1 (en) * 2004-07-14 2006-02-02 Almantas Galvanauskas Composite waveguide
US20060291791A1 (en) * 2005-06-28 2006-12-28 California Institute Of Technology Frequency conversion with nonlinear optical polymers and high index contrast waveguides

Also Published As

Publication number Publication date
AU2008213944A1 (en) 2008-08-14
AU2008213944B2 (en) 2013-04-04
EP2109785A2 (en) 2009-10-21
AU2008213822A1 (en) 2008-08-14
CN101688948B (zh) 2012-01-11
US20100034500A1 (en) 2010-02-11
US8412015B2 (en) 2013-04-02
US20100027938A1 (en) 2010-02-04
US8520299B2 (en) 2013-08-27
US8000570B2 (en) 2011-08-16
EP2109790B1 (en) 2020-09-02
CN101688950A (zh) 2010-03-31
EP2109786A1 (en) 2009-10-21
JP2010518634A (ja) 2010-05-27
EP2109790A2 (en) 2009-10-21
CN101688944A (zh) 2010-03-31
EP2109787A1 (en) 2009-10-21
JP2010531049A (ja) 2010-09-16
JP2010518752A (ja) 2010-05-27
EP2109785A4 (en) 2014-05-28
AU2008213831A1 (en) 2008-08-14
WO2008097986A3 (en) 2008-09-25
AU2008213939A1 (en) 2008-08-14
EP2109787A4 (en) 2014-02-19
US7925128B2 (en) 2011-04-12
JP5250564B2 (ja) 2013-07-31
WO2008097988A2 (en) 2008-08-14
JP2010518631A (ja) 2010-05-27
EP2109790A4 (en) 2014-02-19
EP2109789A2 (en) 2009-10-21
US8103142B2 (en) 2012-01-24
EP2109788B1 (en) 2018-10-31
AU2008213949A1 (en) 2008-08-14
CN101702959A (zh) 2010-05-05
US20100002992A1 (en) 2010-01-07
WO2008097988A3 (en) 2008-09-25
CN101688944B (zh) 2016-03-30
US20100103959A1 (en) 2010-04-29
US20100008664A1 (en) 2010-01-14
WO2008097977A2 (en) 2008-08-14
EP2109788A2 (en) 2009-10-21
WO2008097963A1 (en) 2008-08-14
AU2008213949B2 (en) 2013-05-16
AU2008213833B2 (en) 2013-04-18
AU2008213833A1 (en) 2008-08-14
AU2008213939B2 (en) 2012-07-26
EP2109788A4 (en) 2014-02-26
WO2008097968A3 (en) 2008-10-02
CN101688984B (zh) 2013-07-17
JP2010518633A (ja) 2010-05-27
JP5250565B2 (ja) 2013-07-31
AU2008213831B2 (en) 2012-12-20
WO2008097958A1 (en) 2008-08-14
CN101688950B (zh) 2012-06-06
US20100008633A1 (en) 2010-01-14
AU2008213822B2 (en) 2013-08-29
JP5276021B2 (ja) 2013-08-28
JP5484073B2 (ja) 2014-05-07
WO2008097968A2 (en) 2008-08-14
JP2010518632A (ja) 2010-05-27
WO2008097986A2 (en) 2008-08-14
EP2109786A4 (en) 2013-08-07
EP2109789A4 (en) 2014-02-19
CN101688948A (zh) 2010-03-31
WO2008097977A3 (en) 2008-11-13
CN101688984A (zh) 2010-03-31
CN101688949A (zh) 2010-03-31

Similar Documents

Publication Publication Date Title
CN101688949B (zh) 防止光纤中的电介质击穿
US8175435B2 (en) Optical fibers and optical fiber devices with total dispersion greater than material dispersion
US8797642B2 (en) Large mode area optical fiber
US8045259B2 (en) Active optical fibers with wavelength-selective filtering mechanism, method of production and their use
US8428409B2 (en) Filter fiber for use in Raman lasing applications and techniques for manufacturing same
US8861913B2 (en) Large core holey fibers
US6751388B2 (en) Fiber lasers having a complex-valued Vc-parameter for gain-guiding
US20070206900A1 (en) Ring Core Fiber
EP1858128B1 (en) Large mode area fibers by using conversion to higher order modes
WO2022216780A1 (en) Methods of increasing higher-order mode suppression in large-mode area ring fibers and systems thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant