CN101681876B - 使用短脉冲红外激光刻划晶片 - Google Patents

使用短脉冲红外激光刻划晶片 Download PDF

Info

Publication number
CN101681876B
CN101681876B CN200780025957XA CN200780025957A CN101681876B CN 101681876 B CN101681876 B CN 101681876B CN 200780025957X A CN200780025957X A CN 200780025957XA CN 200780025957 A CN200780025957 A CN 200780025957A CN 101681876 B CN101681876 B CN 101681876B
Authority
CN
China
Prior art keywords
laser
laser pulses
pulse
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200780025957XA
Other languages
English (en)
Other versions
CN101681876A (zh
Inventor
詹姆士·N.·欧布莱恩
彼得·皮罗高斯奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Irektor Science Industrial Co ltd
Original Assignee
Irektor Science Industrial Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Irektor Science Industrial Co ltd filed Critical Irektor Science Industrial Co ltd
Publication of CN101681876A publication Critical patent/CN101681876A/zh
Application granted granted Critical
Publication of CN101681876B publication Critical patent/CN101681876B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/1127Q-switching using pulse transmission mode [PTM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/2232Carbon dioxide (CO2) or monoxide [CO]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dicing (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明对刻划晶片(300)提供高效率地烧蚀钝化层和/或封装层(302,304)的系统和方法,同时降低或消除在钝化层和/或封装层(302,304)的碎屑和裂缝。短激光脉冲是用来提供高峰值功率和降低烧蚀阈值。在一个具体实施例中,是通过q开关的CO2激光执行刻划。

Description

使用短脉冲红外激光刻划晶片
技术领域
本申请涉及激光切割或刻划,特别涉及使用q开关激光来刻划完成的半导体晶片以降低或消除碎屑和裂缝的方法。
背景技术
集成电路(IC)通常制造在半导体基板之上或之中的数组中。IC通常包含形成在基板上的许多层。可以使用机械锯子或激光沿着刻划线或道(street)而使一个或多个层被移除。在刻划后,使用锯子或激光来使电路构件彼此分离,基板可以被切穿,有时候也被称作分切(dicing)。具有连续的机械锯子的激光刻划的组合也是用来分切。
然而,常用的机械切割或激光切割方法并不非常适合用来刻划许多预先完成好的芯片(例如,隔离层或封装层和/或低k介电质层)。在图1A至图1C中,图1B是使用常用锯子来在完成的晶片114、116、118中切割边缘110、112、113的电子显微照片。如所显示,完成的晶片的接近的边缘110、112、113被切削或断裂。相对较低的密度、缺少机械强度以及对热应力的敏感度,使得低k介电质材料对应力非常敏感。周知的是,常用的机械晶片分切与刻划技术造成低k材料的破裂、裂缝以及其它类型的缺陷,因此破坏IC组件。为了减少此类问题,则需降低切割速度。然而,此严重地降低了生产率。
激光刻划技术具有许多胜过机械锯子的优点。然而,熟知的激光技术会产生过量的热以及碎片。过量的热扩散会造成热影响区、重铸氧化层、过量的碎片以及其它问题。裂缝会形成在热影响区中,并会降低半导体晶片的晶粒破碎强度(die break strength)。因此,可靠性和产量降低。再者,碎片分散遍及半导体材料的表面各处,且会,举例来说,污染连接垫(bond pad)。此外,常用激光切割剖面会遭受激光喷溅出的材料的槽沟回填。当晶片的厚度增加,此回填会变得更严重并降低分切的速度。再者,在许多过程条件中,对于许多材料,喷溅出的回填材料会比起最初的目标材料更难以在随后的过程中被除去。因此,如果产生低质量的切割就会破坏IC组件且需要对基板上的组件进行的额外的清洁和/或广泛分离。
常用激光切割技术包含,举例来说,使用具有波长在中红外线范围的连续波(continuous wave;CW)CO2激光。然而,此CW激光难以聚焦且通常需要高能量来烧蚀IC处理材料。因此,产生过量热与碎片。脉冲CO2激光也已经被用来刻划。然而,此刻划技术通常用在微秒范围的长脉冲。因此,长脉冲产生低峰值功率且每脉冲的高能量用来烧蚀材料。因此,长脉冲允许过量的热扩散,从而造成热影响区、重铸氧化层、过量的碎片、碎屑和裂缝。
另一个常用激光刻划技术包含例如使用具有范围从大约1064纳米至大约266纳米的波长。然而,外部的钝化和/或封装层通常对于该些波长是部分地透明。举例来说,在这些波长的脉冲的第一部分可以穿过上部钝化层和/或封装层而不被烧蚀。因此,在上部钝化层和/或封装层会被激光烧蚀之前,随后的激光可以加热或激增。这样造成钝化层和/或封装层得以削去或破裂和散布碎片。图2A和2B是使用常用具有在皮秒范围的脉冲宽度的高斯激光脉冲所在晶片214、216刻划的截口210、212的电子显微照片。如图所示,晶片214、216靠近截口210、212的边缘是被切削和破裂的。
因此,降低或消除碎屑、裂缝及碎片与增加生产率并改善切割表面或截口质量的激光切割方法是所希望的。
发明内容
本发明提供激光刻划完成的晶片的方法,以有效率地烧蚀钝化层和/或封装层,同时降低或消除在钝化层和/或封装层的碎屑和裂缝。短激光脉冲是用来提供高峰值功率和降低烧蚀阈值。在一个具体实施例中,是通过q开关的CO2激光执行刻划。
在一个具体实施例中,提供具有复数个集成电路形成在其中或其上的基板的刻划的方法。集成电路是以一个或多个道而分离。该方法包含产生一个或多个具有波长和脉冲宽度持续期间的激光脉冲。选择波长,使得一个或多个脉冲是实质上被目标材料所吸收,该目标材料包含形成在基板上的钝化层和封装层中的至少一个。更进一步选择波长,使得基板对一个或多个脉冲是实质上透明的。选择脉冲宽度持续期间,以降低目标材料的烧蚀阈值。
在另一个具体实施例中,提供刻划半导体晶片的方法。该方法包含以一个或多个脉冲(该脉冲具有大约在9微米至大约11微米之间的波长范围)烧蚀形成在半导体晶片上的一个或多个层的部份。一个或多个激光脉冲具有在大约130纳秒至170纳秒之间的脉冲宽度持续期间。在一个具体实施例中,半导体晶片包含硅。在另一个具体实施例中,半导体晶片包含锗。
在接下来的优选具体实施例中将记载其它的方面与优势,随着参考附图而继续展开。
附图说明
图1A-1C是使用常用机械锯子来在完成的晶片中切割的截口的电子显微照片。
图2A和2B是使用具有波长分别大约在1064纳米和355纳米的激光在完成的晶片上刻划的截口的电子显微照片。
图3是根据本发明特定具体实施例的已被刻划的示范性工件的概略侧视图。
图4A和4B是解释根据常用激光刻划技术的图3所处理的工件的概略侧视图。
图5A和5B是解释根据本发明特定具体实施例的图3以q开关CO2激光所刻划的工件的概略侧视图。
图6A-6C是根据本发明的特定具体实施例,使用q开关CO2激光刻划穿过钝化层/封装层的截口的电子显微照片。
图7是根据本发明的特定具体实施例,使用q开关CO2激光和高斯皮秒脉冲激光射束刻划穿过钝化/封装层的截口的电子显微照片。
具体实施方式
材料吸收激光能量的能力决定该能量可以执行烧蚀的深度。烧蚀深度是由材料的吸收深度和材料的蒸发热度来决定。通过控制例如波长、脉冲宽度持续期间、脉冲重复频率以及射束质量的参数,来改善切割速度和切割表面或截口的质量。在一个具体实施例中,选择这些参数中的一个或多个,以增加在钝化层和/或封装层外部的能量烧蚀并降低要求来烧蚀钝化层/封装层和/或额外层(在此指的是「烧蚀阈值」)的能量密度的量(通常以焦耳/平方厘米来测量)。因此,可以降低或消除沉积进入材料的过量的能量总量。再者,使用较低能量密度减少或消除重铸氧化层、热影响区、碎屑、裂缝以及碎片。因此,提高了晶粒破碎强度且所需的后激光清洁总量下降。
在一个具体实施例中,激光脉冲具有范围在大约9微米至大约11微米的波长,其用来刻划完成的半导体晶片。在这些波长中,建构钝化层和封装层以吸收很大一部份的脉冲能量。因此,钝化层和封装层是在破裂和炸开(因为较低层的烧蚀)前被烧蚀。再者,硅基板在这些波长中吸收很少的脉冲能量。因此,非常少或是没有基板热到可以造成破裂。
激光脉冲具有范围在大约130纳秒至大约170纳秒之间的短脉冲宽度。在一个具体实施例中,q开关的CO2激光是用来产生激光脉冲。技术人员将会了解的是,q开关是通过调整激光孔穴的质量因子而用来从激光得到有力的短脉冲的技术。使用q开关的短脉冲CO2激光在晶片刻划和晶片分切处理期间消除或明显地降低碎屑和裂缝。
选择短脉冲宽度以提供比连续波(CW)脉冲的短脉冲宽度或长脉冲宽度更高的峰值能量。Mourou等人的美国专利第5,656,186号教示了材料的烧蚀阈值是激光脉冲宽度的函数。与短脉冲宽度的烧蚀阈值相比,CW脉冲或具有长脉冲宽度(例如:在微秒范围)的脉冲通常需要较高的烧蚀阈值。较短的脉冲增加了峰值功率且降低了热导。因此,使用短脉冲刻划完成的晶片是更有效率的。这项结果是较快的刻划处理。
为了方便性来说,术语“切割”通常会用来包含刻划(并没有穿透目标工件的整个深度而切割)及切穿,其包含切成薄片(通常与晶柱分离有关)或分切(dicing)(通常与由晶柱分割成部份有关)。切成薄片或分切在本发明文中是可互换使用的。
现在参考附图,其附图中相似的参考数字代表相似的组件。未来清楚地说明,参考数字的第一位数字指的是附图的编号,其中相对应组件最先被使用。在接下来的描述中,会提供数字特定的细节,以完全了解在此揭示的具体实施例。然而,本领域技术人员将会了解到本发明可以被实施而不需一个或多个的特定细节或其它方法、构件或材料。更进一步地,在某些情况下,未显示或详细叙述所熟知的结构、材料或操作,以避免模糊本发明的观念。再者,所述的特征、结构或特性会结合在任何适合的一个或多个具体实施例的方法中。
图3是根据本发明特定具体实施例的已被刻划的示范性工件300的概略侧视图。工件300包含形成在基板314上的第一层302、第二层304、第三层306、第四层308、第五层310及第六层312。如技术人员将会了解的是,层302、304、306、308、310、312会包含以绝缘层(包含低k介电质层)所分离的互连层,以形成电子电路。在此范例中,上方两个层302、304形成钝化层和封装层。举例来说,第一层302可以包含二氧化硅(SiO2),且第二层304可以包含氮化硅(SiYNX)。举例来说,第二层304可以包含Si3N4。技术人员将会了解的是,其它材料可以用来形成钝化层和/或封装层。
在此范例中,第三层306包含金属(例如:Cu或Al),第四层308包含介电质(例如:SiN),第五层310包含金属(例如:Cu或Al),且第六层312包含低k介电质(例如:SiN)。举例来说,低k介电材料可以包含无机材料(例如:SiOF或SiOB)或有机材料(例如:聚酰亚胺基(polyimide-based)或聚对二甲苯基(parylene-based)的聚合物)。技术人员将会了解的是,所讨论的层306、308、310、312的材料仅仅是举例且也可以使用其它形式。再者,技术人员将会了解的是,较多层或较少层可以被用在特定IC。如所显示,基板314包含硅(Si)。然而,技术人员也将会了解的是,其它在IC制造有用的材料可以使用在基板314,举例来说,包含玻璃、聚合物、金属、组合物以及其它材料。举例来说,基板314可以包含FR4。
如上所述,层302、304、306、308、310、312形成电子电路。各个电路通过线或道316(在图3显示成两条垂直破折线)而彼此分离。为了产生单个的IC,延着道316刻划、切穿(或两者皆使用)工件300。在特定具体实施例中,通过以激光脉冲射束来烧蚀一个或多个层302、304、306、308、310、312以刻划工件300。有利地,在此所述的激光刻划处理在道316的区域中产生具有实质上一致的侧壁的干净截口,且在道316的区域外仅具有一点或没有裂缝或碎屑,该裂缝或碎屑在典型激光刻划处理是常见的。
举例来说,图4A和4B是解释根据常用激光刻划技术的图3所处理的工件300的概略侧视图。图4A显示激光脉冲能量402(即,范围从大约1064纳米至大约266纳米的波长)穿过钝化层/封装层302、304,而仅有一点或没有烧蚀。更确切的说,在第三层306的区域406中吸收激光脉冲能量402,其造成区域406温度上升。最终,热造成区域406烧蚀或爆炸。因此,部分的层302、304是被炸掉的。图4B大略地解释由爆炸所产生的截口408。截口408不具有一致的侧壁并延伸(以碎屑)至道区域316的外部,其会破坏IC。如上所述,图2A和2B解释此类碎屑。
图5A和5B是解释根据本发明特定具体实施例的图3以q开关CO2激光所刻划的工件300的概略侧视图。CO2激光提供包含一系列激光脉冲的激光射束,其激光具有范围在大约9微米至大约11微米之间的波长,且脉冲宽度持续期间的范围在大约130纳秒至大约170纳秒之间。
建构钝化层/封装层302、304以吸收由CO2激光所产生的脉冲的能量。更进一步,短脉冲具有高峰值能量,其可以快速且有效率地烧蚀钝化层/封装层302、304,以产生干净的具有实质上一致的侧壁的截口。此外,硅基板314对由CO2激光所产生的脉冲波长来说是实质上透明的。因此,基板314吸收一点或没有吸收由CO2激光所产生的脉冲能量且只经受一点或没有经受热。
如图5A所示,在一个具体实施例中,CO2激光是通过烧蚀钝化层/封装层302、304来刻划工件300,以在道316的区域中造成截口502。截口502具有实质上一致的侧壁与实质上平坦的底部。在一些具体实施例中,由CO2激光所产生的波长在烧蚀钝化层/封装层302、304时,并不像在烧蚀金属时有效率(举例来说,层306、310)。因此,如图5A所示的具体实施例,CO2激光仅用来烧蚀钝化层/封装层302、304。
可以使用常用锯子或激光刻划技术来刻划剩余层306、308、310、312。举例来说,可以使用在皮秒范围的近红外线脉冲来刻划层306、308、310、312。也可以使用常用锯子和激光烧蚀技术来分切基板314。举例来说,具有大约266纳米波长的激光可以用来有效率且干净地分切基板314。
如图5B所示,在另一个具体实施例中,CO2激光是通过烧蚀层302、304、306、308、310、312来刻划工件300,以在道316的区域中造成截口504。再次地,截口504具有实质上一致的侧壁与实质上平坦的底部。虽然大约9微米至大约11微米之间的波长范围在烧蚀金属上是较无效率的,但他们仍可在足够的加热之后烧蚀金属。因此,在如图5B所显示的具体实施例,在此所讨论的CO2激光可以用来当成单一处理,以产生从第一层302的上部表面延伸至基板314的上部表面的截口504。如上所述,硅基版对范围在大约9微米至大约11微米之间的波长来说实质上是透明的。因此,使用CO2激光分切基板314是非常没有效率的。因此,在刻划之后,基板314可以使用常用锯子或是激光烧蚀技术来分切。
图6A-6C是根据本发明的特定具体实施例,使用q开关CO2激光刻划穿过钝化层/封装层的截口610、612、614的电子显微照片。如上所述,CO2激光所产生的激光脉冲具有大约在9微米至大约11微米之间的波长范围,且具有在大约130纳秒至170纳秒之间的脉冲宽度持续期间。在图6A-6C中,可以发现的是,只有一点或完全没有碎屑、裂缝或污染物。因此,达成了较高的晶粒破碎强度和整体处理生产量。
图7是根据本发明的具体实施例,使用q开关CO2激光和高斯皮秒脉冲激光射束刻划完成的半导体晶片708的电子显微照片。如图7所示,q开关CO2激光在完成的晶片708的钝化层/封装层刻划第一截口710。接着,高斯皮秒脉冲激光射束穿过完成的晶片708的额外层刻划第二截口712。针对解释性的目的,第二截口712也延伸越过在区域714的第一截口710。其中完成的晶片708首先是以q开关CO2激光刻划,截口710、712具有平滑的边缘并产生一点或不产生裂缝。然而,在不使用q开关CO2激光的区域714中,高斯皮秒脉冲激光在钝化层/封装层产生裂缝。
对于擅长此技术的人是明显的,对于上述具体实施例的细节,许多改变可以被实现,而不背离本发明的基本原则。因此,本发明的范畴应该仅能被下述的权利要求书的范围所决定。

Claims (19)

1.一种具有复数个集成电路形成在其中或其上的基板的刻划的方法,该集成电路是以一个或多个道而分离,该方法包括:
产生一个或多个具有波长和脉冲宽度持续期间的激光脉冲;
其中选择波长,使得一个或多个激光脉冲是实质上被目标材料所吸收,该目标材料包含形成在基板上的钝化层和封装层中的至少一个;
其中更进一步地选择波长,使得基板对一个或多个激光脉冲是实质上透明的;
其中选择一个或多个激光脉冲的各自的脉冲宽度持续期间在130纳秒至170纳秒之间,以降低目标材料的烧蚀阈值;以及
以具有经选择的波长和经选择的脉冲宽度持续期间的一个或多个激光脉冲来烧蚀部分的目标靶材。
2.如权利要求1所述的方法,更进一步包括以CO2激光产生一个或多个激光脉冲。
3.如权利要求2所述的方法,更进一步包括q开关CO2激光。
4.如权利要求1所述的方法,其中波长范围是在9微米至11微米之间。
5.如权利要求1所述的方法,其中钝化层和封装层的至少一个包含二氧化硅。
6.如权利要求1所述的方法,其中钝化层和封装层的至少一个包含氮化硅。
7.如权利要求1所述的方法,其中基板包含硅。
8.如权利要求1所述的方法,更进一步包括以一个或多个激光脉冲烧蚀形成在基板之上的部份金属层。
9.一种集成电路,其根据权利要求1所述的方法刻划。
10.一种刻划半导体晶片的方法,该方法包括:
以一个或多个脉冲烧蚀形成在半导体晶片上的一个或多个层的部份,该脉冲具有在9微米至11微米之间的波长范围;
其中一个或多个激光脉冲各自具有在130纳秒至170纳秒之间的脉冲宽度持续期间。
11.如权利要求10所述的方法,其中一个或多个层包含钝化层和封装层中的至少一个。
12.如权利要求11所述的方法,其中钝化层和封装层的至少一个包含二氧化硅。
13.如权利要求11所述的方法,其中钝化层和封装层的至少一个包含氮化硅。
14.如权利要求10所述的方法,更进一步包括使用CO2激光产生一个或多个激光脉冲。
15.如权利要求14所述的方法,更进一步包括q开关CO2激光。
16.如权利要求10所述的方法,更进一步包括以一个或多个激光脉冲烧蚀部份金属层。
17.如权利要求10所述的方法,其中半导体晶片对一个或多个脉冲是实质上透明的。
18.如权利要求17所述的方法,其中半导体晶片包含硅。
19.一种集成电路,其根据权利要求10所述的方法刻划。
CN200780025957XA 2006-05-25 2007-05-21 使用短脉冲红外激光刻划晶片 Expired - Fee Related CN101681876B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/441,454 2006-05-25
US11/441,454 US20070272666A1 (en) 2006-05-25 2006-05-25 Infrared laser wafer scribing using short pulses
PCT/US2007/069323 WO2008027634A2 (en) 2006-05-25 2007-05-21 Infrared laser wafer scribing using short pulses

Publications (2)

Publication Number Publication Date
CN101681876A CN101681876A (zh) 2010-03-24
CN101681876B true CN101681876B (zh) 2011-04-13

Family

ID=38748589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780025957XA Expired - Fee Related CN101681876B (zh) 2006-05-25 2007-05-21 使用短脉冲红外激光刻划晶片

Country Status (8)

Country Link
US (1) US20070272666A1 (zh)
JP (1) JP2009544145A (zh)
KR (1) KR20090013801A (zh)
CN (1) CN101681876B (zh)
DE (1) DE112007001278T5 (zh)
GB (1) GB2452429A (zh)
TW (1) TWI415180B (zh)
WO (1) WO2008027634A2 (zh)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6676878B2 (en) 2001-01-31 2004-01-13 Electro Scientific Industries, Inc. Laser segmented cutting
JP2007173475A (ja) * 2005-12-21 2007-07-05 Disco Abrasive Syst Ltd ウエーハの分割方法
JP2008053500A (ja) * 2006-08-25 2008-03-06 Disco Abrasive Syst Ltd ウエーハの分割方法
JP2008071870A (ja) * 2006-09-13 2008-03-27 Toshiba Corp 半導体素子の製造方法
CN101861659A (zh) * 2007-12-12 2010-10-13 新港有限公司 性能提高的光学镀膜半导体器件及相关生产方法
WO2009117451A1 (en) * 2008-03-21 2009-09-24 Imra America, Inc. Laser-based material processing methods and systems
GB2459669A (en) * 2008-04-30 2009-11-04 Xsil Technology Ltd Dielectric layer pulsed laser scribing and metal layer and semiconductor wafer dicing
CN102113135B (zh) * 2008-05-12 2014-10-22 亚利桑那大学董事会 用于抛物面太阳能反射器的球面成像透镜的光伏发电机
US20100081255A1 (en) * 2008-09-29 2010-04-01 Erasenthiran Poonjolai Methods for reducing defects through selective laser scribing
WO2010037102A2 (en) * 2008-09-29 2010-04-01 Thinsilicon Corporation Monolithically-integrated solar module
US8507821B2 (en) * 2009-03-18 2013-08-13 Bell And Howell, Llc Profile based laser cutting within a high-speed transport device
US8890025B2 (en) 2009-09-24 2014-11-18 Esi-Pyrophotonics Lasers Inc. Method and apparatus to scribe thin film layers of cadmium telluride solar cells
WO2011037787A1 (en) * 2009-09-24 2011-03-31 Esi-Pyrophotonics Lasers, Inc. Method and apparatus to scribe a line in a thin film material using a burst of laser pulses with beneficial pulse shape
JP5693705B2 (ja) 2010-03-30 2015-04-01 イムラ アメリカ インコーポレイテッド レーザベースの材料加工装置及び方法
US7977213B1 (en) * 2010-03-31 2011-07-12 Electro Scientific Industries, Inc. Use of laser energy transparent stop layer to achieve minimal debris generation in laser scribing a multilayer patterned workpiece
US8759197B2 (en) 2011-06-15 2014-06-24 Applied Materials, Inc. Multi-step and asymmetrically shaped laser beam scribing
US8598016B2 (en) 2011-06-15 2013-12-03 Applied Materials, Inc. In-situ deposited mask layer for device singulation by laser scribing and plasma etch
US20120322235A1 (en) * 2011-06-15 2012-12-20 Wei-Sheng Lei Wafer dicing using hybrid galvanic laser scribing process with plasma etch
US8557683B2 (en) 2011-06-15 2013-10-15 Applied Materials, Inc. Multi-step and asymmetrically shaped laser beam scribing
US9126285B2 (en) * 2011-06-15 2015-09-08 Applied Materials, Inc. Laser and plasma etch wafer dicing using physically-removable mask
US9029242B2 (en) 2011-06-15 2015-05-12 Applied Materials, Inc. Damage isolation by shaped beam delivery in laser scribing process
US9129904B2 (en) 2011-06-15 2015-09-08 Applied Materials, Inc. Wafer dicing using pulse train laser with multiple-pulse bursts and plasma etch
US8507363B2 (en) * 2011-06-15 2013-08-13 Applied Materials, Inc. Laser and plasma etch wafer dicing using water-soluble die attach film
US8703581B2 (en) 2011-06-15 2014-04-22 Applied Materials, Inc. Water soluble mask for substrate dicing by laser and plasma etch
US8557682B2 (en) 2011-06-15 2013-10-15 Applied Materials, Inc. Multi-layer mask for substrate dicing by laser and plasma etch
US8728933B1 (en) 2011-08-31 2014-05-20 Alta Devices, Inc. Laser cutting and chemical edge clean for thin-film solar cells
US8728849B1 (en) 2011-08-31 2014-05-20 Alta Devices, Inc. Laser cutting through two dissimilar materials separated by a metal foil
US8399281B1 (en) * 2011-08-31 2013-03-19 Alta Devices, Inc. Two beam backside laser dicing of semiconductor films
US8361828B1 (en) * 2011-08-31 2013-01-29 Alta Devices, Inc. Aligned frontside backside laser dicing of semiconductor films
JP2013081961A (ja) * 2011-10-06 2013-05-09 Disco Corp パシベーション膜が積層された基板のアブレーション加工方法
JP5839923B2 (ja) * 2011-10-06 2016-01-06 株式会社ディスコ パシベーション膜が積層された基板のアブレーション加工方法
JP5885454B2 (ja) * 2011-10-06 2016-03-15 株式会社ディスコ パシベーション膜が積層された基板のアブレーション加工方法
WO2013068471A1 (en) * 2011-11-09 2013-05-16 Institutt For Energiteknikk Method and apparatus for ablating a dielectric from a semiconductor substrate
JP2015511571A (ja) * 2012-02-28 2015-04-20 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド 強化ガラスの分離のための方法及び装置並びにこれにより生成された製品
US10357850B2 (en) 2012-09-24 2019-07-23 Electro Scientific Industries, Inc. Method and apparatus for machining a workpiece
US9828278B2 (en) 2012-02-28 2017-11-28 Electro Scientific Industries, Inc. Method and apparatus for separation of strengthened glass and articles produced thereby
WO2013130608A1 (en) 2012-02-29 2013-09-06 Electro Scientific Industries, Inc. Methods and apparatus for machining strengthened glass and articles produced thereby
WO2014085436A1 (en) 2012-11-30 2014-06-05 Arizona Board Of Regents On Behalf Of University Of Arizona Solar generator with large reflector dishes and concentrator photovoltaic cells in flat arrays
EP2762286B1 (en) 2013-01-31 2015-07-01 ams AG Dicing method
JP6246534B2 (ja) * 2013-09-11 2017-12-13 株式会社ディスコ ウエーハの加工方法
US9746127B2 (en) 2013-10-22 2017-08-29 The Arizona Board Of Regents On Behalf Of The University Of Arizona Frame with compression and tension members to rotate equipment about an axis
JP2015142015A (ja) * 2014-01-29 2015-08-03 株式会社ディスコ 半導体ウェーハの加工方法
KR102155737B1 (ko) 2014-02-27 2020-09-15 삼성디스플레이 주식회사 기판 절단장치 및 이를 이용한 디스플레이 장치 제조방법
JP2015170675A (ja) * 2014-03-06 2015-09-28 株式会社ディスコ 板状物の加工方法
JP6377514B2 (ja) * 2014-12-17 2018-08-22 株式会社ディスコ パッケージ基板の加工方法
US10505059B2 (en) 2015-01-16 2019-12-10 The Arizona Board Of Regents On Behalf Of The University Of Arizona Micro-scale concentrated photovoltaic module
WO2016141041A1 (en) 2015-03-02 2016-09-09 The Arizona Board Of Regents On Behalf Of The University Of Arizona Glass forming mold of adjustable shape
WO2016200988A1 (en) 2015-06-12 2016-12-15 The Arizona Board Of Regents On Behalf Of The University Of Arizona Tandem photovoltaic module with diffractive spectral separation
WO2017024038A1 (en) 2015-08-03 2017-02-09 The Arizona Board Of Regents On Behalf Of The University Of Arizona Solar concentrator for a tower-mounted central receiver
US9728509B1 (en) 2016-05-05 2017-08-08 Globalfoundries Inc. Laser scribe structures for a wafer
WO2018211691A1 (ja) * 2017-05-19 2018-11-22 三菱電機株式会社 レーザ加工装置
JP6782215B2 (ja) * 2017-10-18 2020-11-11 古河電気工業株式会社 プラズマダイシング用マスク材、マスク一体型表面保護テープおよび半導体チップの製造方法
CN111470783A (zh) * 2020-03-30 2020-07-31 大族激光科技产业集团股份有限公司 玻璃外壳制作方法、玻璃外壳及激光设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555447B2 (en) * 1999-06-08 2003-04-29 Kulicke & Soffa Investments, Inc. Method for laser scribing of wafers
US6676878B2 (en) * 2001-01-31 2004-01-13 Electro Scientific Industries, Inc. Laser segmented cutting

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2557732B1 (fr) * 1983-12-28 1986-04-11 Lefevre Rene Procede de realisation de dispositifs piezoelectriques miniatures utilisant un usinage par laser et dispositifs obtenus par ce procede
US5432015A (en) * 1992-05-08 1995-07-11 Westaim Technologies, Inc. Electroluminescent laminate with thick film dielectric
US5632083A (en) * 1993-08-05 1997-05-27 Hitachi Construction Machinery Co., Ltd. Lead frame fabricating method and lead frame fabricating apparatus
US5656186A (en) * 1994-04-08 1997-08-12 The Regents Of The University Of Michigan Method for controlling configuration of laser induced breakdown and ablation
JPH1027971A (ja) * 1996-07-10 1998-01-27 Nec Corp 有機薄膜多層配線基板の切断方法
US5961852A (en) * 1997-09-09 1999-10-05 Optical Coating Laboratory, Inc. Laser scribe and break process
US6586702B2 (en) * 1997-09-25 2003-07-01 Laser Electro Optic Application Technology Company High density pixel array and laser micro-milling method for fabricating array
US6413839B1 (en) * 1998-10-23 2002-07-02 Emcore Corporation Semiconductor device separation using a patterned laser projection
US6140603A (en) * 1999-03-31 2000-10-31 Taiwan Semiconductor Manufacturing Co., Ltd Micro-cleavage method for specimen preparation
AU4398700A (en) * 1999-04-07 2000-10-23 Siemens Solar Gmbh Device and method for removing thin layers on a support material
US6791060B2 (en) * 1999-05-28 2004-09-14 Electro Scientific Industries, Inc. Beam shaping and projection imaging with solid state UV gaussian beam to form vias
TW482705B (en) * 1999-05-28 2002-04-11 Electro Scient Ind Inc Beam shaping and projection imaging with solid state UV Gaussian beam to form blind vias
US6420245B1 (en) * 1999-06-08 2002-07-16 Kulicke & Soffa Investments, Inc. Method for singulating semiconductor wafers
US6562698B2 (en) * 1999-06-08 2003-05-13 Kulicke & Soffa Investments, Inc. Dual laser cutting of wafers
US6281471B1 (en) * 1999-12-28 2001-08-28 Gsi Lumonics, Inc. Energy-efficient, laser-based method and system for processing target material
US6255621B1 (en) * 2000-01-31 2001-07-03 International Business Machines Corporation Laser cutting method for forming magnetic recording head sliders
US7157038B2 (en) * 2000-09-20 2007-01-02 Electro Scientific Industries, Inc. Ultraviolet laser ablative patterning of microstructures in semiconductors
US20020063361A1 (en) * 2000-09-20 2002-05-30 Fahey Kevin P. Laser processing of alumina or metals on or embedded therein
AU2001249140A1 (en) * 2000-09-20 2002-04-02 Electro Scientific Industries, Inc. Uv laser cutting or shape modification of brittle, high melting temperature target materials such as ceramics or glasses
JP4512786B2 (ja) * 2000-11-17 2010-07-28 独立行政法人産業技術総合研究所 ガラス基板の加工方法
JP2002178171A (ja) * 2000-12-18 2002-06-25 Ricoh Co Ltd レーザ加工方法および光学素子
US6534743B2 (en) * 2001-02-01 2003-03-18 Electro Scientific Industries, Inc. Resistor trimming with small uniform spot from solid-state UV laser
US6420776B1 (en) * 2001-03-01 2002-07-16 Amkor Technology, Inc. Structure including electronic components singulated using laser cutting
US6972268B2 (en) * 2001-03-29 2005-12-06 Gsi Lumonics Corporation Methods and systems for processing a device, methods and systems for modeling same and the device
EP1384293B1 (en) * 2001-04-04 2009-12-23 Coherent Deos Q-switched co 2 laser for material processing
US6911623B2 (en) * 2001-04-05 2005-06-28 Mitsubishi Denki Kabushiki Kaisha Carbon dioxide gas laser machining method of multilayer material
US6784399B2 (en) * 2001-05-09 2004-08-31 Electro Scientific Industries, Inc. Micromachining with high-energy, intra-cavity Q-switched CO2 laser pulses
US20040195221A1 (en) * 2001-05-10 2004-10-07 Haglund Jr Richard F. Method and apparatus for laser ablative modification of dielectric surfaces
US20020170897A1 (en) * 2001-05-21 2002-11-21 Hall Frank L. Methods for preparing ball grid array substrates via use of a laser
SG139508A1 (en) * 2001-09-10 2008-02-29 Micron Technology Inc Wafer dicing device and method
US8048774B2 (en) * 2001-10-01 2011-11-01 Electro Scientific Industries, Inc. Methods and systems for laser machining a substrate
US6596562B1 (en) * 2002-01-03 2003-07-22 Intel Corporation Semiconductor wafer singulation method
US20030136769A1 (en) * 2002-01-23 2003-07-24 Yue-Yeh Lin Laser ablation technique using in IC etching process
US6787732B1 (en) * 2002-04-02 2004-09-07 Seagate Technology Llc Method for laser-scribing brittle substrates and apparatus therefor
US6580054B1 (en) * 2002-06-10 2003-06-17 New Wave Research Scribing sapphire substrates with a solid state UV laser
JP2004055771A (ja) * 2002-07-18 2004-02-19 Nec Lcd Technologies Ltd 半導体薄膜の製造方法及びレーザ照射装置
US20050150877A1 (en) * 2002-07-29 2005-07-14 Sumitomo Precision Products Co., Ltd. Method and device for laser beam processing of silicon substrate, and method and device for laser beam cutting of silicon wiring
US20040075717A1 (en) * 2002-10-16 2004-04-22 O'brien Seamus Wafer processing apparatus and method
JP2004322168A (ja) * 2003-04-25 2004-11-18 Disco Abrasive Syst Ltd レーザー加工装置
US7041578B2 (en) * 2003-07-02 2006-05-09 Texas Instruments Incorporated Method for reducing stress concentrations on a semiconductor wafer by surface laser treatment including the backside
US6949449B2 (en) * 2003-07-11 2005-09-27 Electro Scientific Industries, Inc. Method of forming a scribe line on a ceramic substrate
US7772090B2 (en) * 2003-09-30 2010-08-10 Intel Corporation Methods for laser scribing wafers
JP2005129607A (ja) * 2003-10-22 2005-05-19 Disco Abrasive Syst Ltd ウエーハの分割方法
US7068688B2 (en) * 2003-11-04 2006-06-27 Boston Applied Technologies, Incorporated Electro-optic Q-switch
JP4422463B2 (ja) * 2003-11-07 2010-02-24 株式会社ディスコ 半導体ウエーハの分割方法
US7804043B2 (en) * 2004-06-15 2010-09-28 Laserfacturing Inc. Method and apparatus for dicing of thin and ultra thin semiconductor wafer using ultrafast pulse laser
JP2006032419A (ja) * 2004-07-12 2006-02-02 Disco Abrasive Syst Ltd ウエーハのレーザー加工方法
US7550367B2 (en) * 2004-08-17 2009-06-23 Denso Corporation Method for separating semiconductor substrate
US20060088984A1 (en) * 2004-10-21 2006-04-27 Intel Corporation Laser ablation method
US7169687B2 (en) * 2004-11-03 2007-01-30 Intel Corporation Laser micromachining method
US7303977B2 (en) * 2004-11-10 2007-12-04 Intel Corporation Laser micromachining method
KR101248964B1 (ko) * 2005-03-29 2013-03-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 레이저 조사 장치 및 반도체 소자의 제조 방법
DE102006000205B4 (de) * 2005-04-28 2012-11-08 Denso Corporation Laser-Maschinenzündvorrichtung
JP2006319198A (ja) * 2005-05-13 2006-11-24 Disco Abrasive Syst Ltd ウエーハのレーザー加工方法およびレーザー加工装置
US8624157B2 (en) * 2006-05-25 2014-01-07 Electro Scientific Industries, Inc. Ultrashort laser pulse wafer scribing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555447B2 (en) * 1999-06-08 2003-04-29 Kulicke & Soffa Investments, Inc. Method for laser scribing of wafers
US6676878B2 (en) * 2001-01-31 2004-01-13 Electro Scientific Industries, Inc. Laser segmented cutting

Also Published As

Publication number Publication date
DE112007001278T5 (de) 2009-05-07
WO2008027634A3 (en) 2009-11-26
JP2009544145A (ja) 2009-12-10
WO2008027634A2 (en) 2008-03-06
TW200802583A (en) 2008-01-01
GB0821326D0 (en) 2008-12-31
US20070272666A1 (en) 2007-11-29
TWI415180B (zh) 2013-11-11
CN101681876A (zh) 2010-03-24
GB2452429A (en) 2009-03-04
KR20090013801A (ko) 2009-02-05

Similar Documents

Publication Publication Date Title
CN101681876B (zh) 使用短脉冲红外激光刻划晶片
CN101490819B (zh) 极短激光脉冲刻划
US7611966B2 (en) Dual pulsed beam laser micromachining method
EP2230042B1 (en) Laser processing method
CN100513110C (zh) 利用激光束的晶片分割方法
EP1811551B1 (en) Laser beam machining method
US7169687B2 (en) Laser micromachining method
US7939430B2 (en) Laser processing method
US8759948B2 (en) Laser beam machining method and semiconductor chip
US8609512B2 (en) Method for laser singulation of chip scale packages on glass substrates
US20060088984A1 (en) Laser ablation method
CN100365761C (zh) 使用激光的半导体晶片分割方法
CN106938370A (zh) 一种激光加工系统及方法
KR20130140706A (ko) 최적화된 임시 파워 프로파일 및 편광을 갖는 레이저 펄스를 이용한 링크 처리 방법 및 시스템

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110413

Termination date: 20180521