CN101636436A - 制备导电薄膜的方法和由该方法制得的制品 - Google Patents

制备导电薄膜的方法和由该方法制得的制品 Download PDF

Info

Publication number
CN101636436A
CN101636436A CN200880006048A CN200880006048A CN101636436A CN 101636436 A CN101636436 A CN 101636436A CN 200880006048 A CN200880006048 A CN 200880006048A CN 200880006048 A CN200880006048 A CN 200880006048A CN 101636436 A CN101636436 A CN 101636436A
Authority
CN
China
Prior art keywords
array
film
freely
base layer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880006048A
Other languages
English (en)
Other versions
CN101636436B (zh
Inventor
卡尔·费尔班克
马克·费舍尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Silicones Corp
Original Assignee
Dow Corning Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Corp filed Critical Dow Corning Corp
Publication of CN101636436A publication Critical patent/CN101636436A/zh
Application granted granted Critical
Publication of CN101636436B publication Critical patent/CN101636436B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • Y10S977/751Single-walled with specified chirality and/or electrical conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/2419Fold at edge
    • Y10T428/24198Channel-shaped edge component [e.g., binding, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet
    • Y10T428/24331Composite web or sheet including nonapertured component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Abstract

一种自由立膜,包括:i.基体层,其具有相对的表面,和ii.纳米棒阵列,其中纳米棒定向的穿过基体层并从基体层的一个或两个表面伸出至少1微米的距离。一种制备自由立膜的方法,包括:(a)在基底上提供纳米棒阵列,任选的,(b)用牺牲层渗透该阵列;(c)用基体层渗透该阵列,由此产生渗透的阵列;任选的,(d)当步骤(b)存在时,除去牺牲层,保留基体层;和(e)将渗透的阵列从基底平面上移除。根据所选用纳米棒的类型和密度,自由立膜可以用于作为滤光片、ACF、或TIM。

Description

制备导电薄膜的方法和由该方法制得的制品
对相关申请的交叉引用
根据35 U.S.C.§119(e),本申请请求享有于2007年2月22日提交的、系列号为60/902,804的美国临时申请的优先权。将系列号为60/902,804的美国临时申请合并于此作为参考。
关于联邦政府赞助研究的声明
技术领域
通过本文所述的方法,制备一种含纳米管的自由立膜(free standingfilm)。根据纳米管的类型,自由立膜可以用作滤光片、各向异性导电薄膜(ACF)、或者是导热界面材料(TIM)。
背景技术
电子元件,例如半导体、晶体管、集成电路(ICs)、分立器件、和其它本领域已知的元件,都被设计为在标准操作温度或在标准操作温度范围内工作。但是,电子元件的工作会产生热。如果不将足够的热量除去,电子元件就会在显著高于其标准操作温度的温度下工作。过高的温度会对电子元件的性能和其所连接装置的工作产生不利影响,并且还会对平均无故障时间产生消极影响。
为了避免这些问题,通过热传导将热从电子元件向热管理器件、如散热器传递。随后可以利用任何常规的手段对散热器进行冷却,所述的常规手段例如对流或辐射技术。在热传导期间,可以通过电子元件与散热器之间的表面接触,或者通过使电子元件与散热器与TIM接触,使热量从电子元件向散热器传递。TIM的热阻抗越低,从电子元件向散热器流出的热量就越多。
电子元件和散热器的表面,一般不是完全平滑的;因此,表面之间的充分接触是很难达到的。空气间隙的热传导性很差,其存在于表面之间,增加了热阻抗。这些间隙可以通过在表面之间插入TIM膜来充填。由于生产商们制造出了越来越小的装置,因此,业界对于TIM保持着持续性的需求,人们希望TIM很薄并且具有改善的热传导性,以有效的从电子元件向热管理器件传递热量。
在本领域中,将含自由分散在基体中的纳米管的复合材料用作TIM是公知的。但是,当纳米管定向排列而不再自由分布时,这种排列会展示出改善的性能,例如热传导性。制造含有这种排列的TIM是十分困难的。
发明内容
一种用于制造自由立膜的方法,所述薄膜具有从基体层中伸出的纳米棒。该方法包括以下步骤:
(a)在基底上提供纳米棒阵列;
任选的(b)用牺牲层渗透该阵列;
(c)用基体层渗透该阵列,由此产生渗透的阵列;
当步骤(b)存在时,任选的(d)除去牺牲层,保留基体层;和
(e)将渗透的阵列从基底上移除,这样就形成了自由立膜,此时基体层具有相对的表面,纳米管定向的穿过基体层,并从基体层的一个或正反两个相对的表面上伸出至少1微米的距离。
附图说明
图1a示出了MWNT在硅片上的排列。这种排列用于实施例1中。
图1b和1c示出了不同放大率下,实施例1中制备的自由立膜的横截面。该薄膜包括基体层,且在基体层的表面上伸出了MWNT阵列。
图1d示出了实施例2中制备的自由立膜的横截面。
图2示出了电子装置的一部分的横截面,所述电子装置中包括本文所述的自由立膜。
具体实施方式
术语的定义和使用
除非另有说明,否则所有的数量、比率、和百分比都是基于重量的。对本申请来说,冠词″a″、″an″、和″the″都分别指代一个和多个。在本文的通式中,″Et″代表乙基,″Me″代表甲基,″Ph″代表苯基,″Vi″代表乙烯基。″MWNT″的意思是,多层碳纳米管(multi-walled carbon nanotube)。″SWNT″的意思是单层碳纳米管(single-walled carbon nanotubes)。″TEOS″的意思是四乙氧基甲硅烷(tetraethoxysilane)。
“纳米棒”(nanorod)的意思是宽度不大于0.5微米且长宽比大于10、或者大于100的导热结构。纳米棒可以是中空的纳米管。纳米棒可以是圆柱形的,此时其宽度(直径)不大于0.5微米。或者,纳米棒可以具有不同的形状。术语纳米棒包括但不局限于:单层碳纳米管、MWNT、和氮化硼纳米管。
“纳米棒的阵列”的意思是,存在多个对齐纳米棒,这些纳米棒大多数都彼此平行并按着与基底平面相交成一定角度的方向排列。图1a中示例性的示出了MWNT阵列。
“牺牲层”的意思是,在不去除基体层并不去除基体层中的纳米棒的前提下,可以被选择性去除的任意成膜材料。
方法
一种用于制造自由立膜的方法,所述薄膜具有从基体层中伸出的纳米棒。该方法包括以下步骤:
(a)在基底平面上提供纳米棒阵列;
任选的(b)用牺牲层渗透该阵列;
(c)用基体层渗透该阵列,由此产生渗透的阵列;
任选的,(d)当步骤(b)存在时,除去牺牲层,保留基体层;和
(e)将渗透的阵列从基底平面上移除,以形成自由立膜,其中基体层具有相对的表面,纳米管定向排列,穿过基体层,并从基体层的一个或正反两个相对的表面上伸出至少1微米的距离。
基体层可以处于和不处于纳米棒的中心。在该方法中,可以渗透一层和多层基体层。第二基体层可以在该方法中的不同时刻加入。例如,当步骤(d)存在时,该方法可以任选的在步骤(d)之前、之间、或之后,进一步包括用第二基体层渗透阵列。去除牺牲层所引起的空隙,可以用第二基体层来渗透。
纳米棒的阵列,通过等离子体增强的化学气相沉积生成方法来提供。在步骤(a)之前,可以任选的使纳米棒阵列经受石墨化步骤。在不希望被理论所束缚的前提下,人们认为,当碳纳米管用来形成阵列时,石墨化步骤可以增强本文所述方法制得的自由立膜的导热性。纳米棒阵列是本领域公知的,可以由纳米实验室,55礼拜街,牛顿(NanoLab,55 Chapel Street,Newton),MA 02458处购得。
在该方法中可以包括步骤(b)和(d),来提供纳米管伸出至基体层正反两个相对的表面之外的自由立膜。步骤(b)中使用的牺牲层可以是热塑性的,例如高粘度非硫化硅酮油或硅橡胶、氟硅氧烷、光定义硅酮(photodefinable silicone)、二氧化硅、或蜡。步骤(b)可以通过任何方便的手段来实施,而精确的方法依赖于所选择的牺牲层类型。例如,当牺牲层是二氧化硅时,可以通过由溶胶凝胶溶液中涂覆一层二氧化硅的方式,来形成牺牲层。
当步骤(b)存在时,步骤(d)就可以存在。步骤(d)可以通过任何方便的手段来实施,而具体的方法依赖于所选牺牲层的类型。例如,当牺牲层是蜡时,可以通过加热来除去。当牺牲层是二氧化硅且牺牲层是通过由溶胶凝胶溶液中涂覆一层二氧化硅的方式形成时,步骤(d)通过浸入含HF的溶液中来实施。步骤(d)和(e)可以依次进行,也可以同时进行。例如,当牺牲层是二氧化硅且步骤(d)是通过浸入含HF的溶液中实施时,就同时进行步骤(d)和(e)。该方法可以任选的进一步包括步骤(f):在步骤(e)之后清洗自由立膜。步骤(f)可以用于除去残留的HF和/或牺牲层的残留部分。
任选的,方法中可以存在步骤(b)而不存在步骤(d)。例如,该方法可以用于制备这样的自由立膜——该薄膜在步骤(b)中渗透了蜡。当不存在步骤(d)时,蜡就可以作为自由立膜中的相变层。
步骤(c)可以通过任何方便的手段来实施,而具体的方法依赖于所选基体层的类型。例如,步骤(c)可以通过选自以下的方法来实施:旋涂、浸涂、喷涂、和溶剂浇注。基体层可以包括热固性聚合物。合适的热固性聚合物的实例包括:环氧树脂、氰酸酯树脂、双马来酰亚胺树脂、酚醛树脂、聚酯树脂、硅酮弹性体、聚氨酯弹性体、丙烯酸弹性体、和它们的组合。当使用硅酮弹性体作为基体层时,硅酮弹性体可以通过以下方法制备:在步骤(d)或步骤(e)之前,通过用包括下述成分的组合物来渗透阵列,并使组合物固化形成硅酮弹性体;所述的组合物包括:A)在每个分子中平均具有至少两个脂肪族不饱和有机基团的聚硅氧烷,B)每个分子中平均具有至少两个与氢原子键合的硅的交联剂,和C)氢化硅烷化催化剂。
或者,基体层可以包括热塑性聚合物。合适的热塑性聚合物实例包括:聚酰胺、聚酰亚胺、聚苯撑、聚碳酸酯、聚缩醛、聚丙烯、聚乙二醇、聚氧化甲烯、聚甲醛、硅酮酰胺共聚物、硅酮聚醚、硅酮聚醚酰亚胺共聚物、硅酮氨基甲酸乙酯共聚物、硅酮脲、和它们的组合。
基体层可以任选的包括填料,此时纳米棒的阵列具有相对较低的密度。填料必须具有足够小的粒径,以免抑制基体中纳米棒阵列中的渗透。填料可以是导热填料。合适的导热填料的实例包括:铜、氮化硼、氧化铝、氮化铝、氧化锌、银、铝、和它们的组合。
自由立膜
上文所述的方法得到的产品是一种自由立膜,包括:
具有正反相对表面的基体层,和
纳米棒阵列,其中纳米棒定向的穿过基体层并从基体层的一个或两个表面伸出至少1微米的距离。
阵列中纳米棒的密度处于0.5体积(vol)%-50vol%的范围。精确的密度依赖于提供阵列所用的方法和自由立膜的最终用途。例如,ACF的纳米棒密度较低,例如为0.1vol%-10vol%。为了提高导热性,使用导热纳米棒时,其密度的范围为5vol%-50vol%。
本发明所用的纳米棒可以是纳米管。所选用的纳米棒可以是导热性的并且是电绝缘的。合适的纳米棒实例包括MWNT和单层碳纳米管。或者,所选用的纳米棒可以是既导电又导热的。合适的纳米棒的实例包括氮化硼纳米管。
纳米棒的平均高度范围为5-500微米。纳米棒定向穿过基体层并从基体层的一个或正反两个相对的表面伸出至少1微米的距离。或者,纳米棒可以从基体层的一个或正反两个相对的表面伸出范围在1微米-0.8毫米的距离。
自由立膜的用途
自由立膜可以用在各种不同的用途中。根据纳米管的类型,自由立膜可以用作滤光片、ACF、或TIM。当将自由立膜用作TIM时,自由立膜可以用在以下装置中,所述装置包括:
a)发热元件,
b)导热界面材料,和
c)热管理器件;
其中导热界面材料被插入在发热元件和热管理器件之间,沿着导热路径从发热元件表面向着热管理器件表面延伸,导热界面材料包括上述自由立膜和纳米棒,所述的纳米棒与发热元件表面和热管理器件表面接触。
图2示出了电子装置200的部分横截面。装置200包括发热元件(图中示为集成电路芯片)203、第一导热界面材料(TIM1)206、和热管理器件(图中示为金属罩)207,其中所述的TIM1 206是自由立膜,其具有如上文所述的从基体层中伸出的MWNT。TIM1 206被插入在发热元件203和热管理器件207之间,沿着由箭头208表示的导热路径从发热元件203的表面向热管理器件207的表面延伸。纳米管与发热元件203的表面和热管理器件207的表面接触,从而可以在装置200运转的时候促进热传导。发热元件203借助芯片粘合剂209安装在基底204上。基底204上具有焊球205,该焊球205通过焊点210附着于基底上。第二界面材料(TIM2)202被插入于热管理器件207和散热器201之间。当装置运转的时候,热量沿着由箭头208表示的导热路径传导。
自由立膜可以用在生产电子装置的方法中。该方法包括将导热界面材料插入于发热元件和热管理器件之间。导热界面材料沿着导热路径从发热元件的表面向热管理器件的表面延伸。导热界面材料包括上文所述的自由立膜,纳米管与发射元件的表面和热管理器件的表面接触。发热元件可以包括半导体芯片,热管理器件可以包括散热器或放热器。
可以制备出带有上述自由立膜的装置。例如,上文所述的自由立膜可以在某些装置中作为导热界面材料,或者用在导热界面材料中,所述的装置例如在美国专利5,912,805和6,054,198中所公开的,用来代替上述装置中的界面材料,或者与之一起使用。
实施例
这些实施例用于向本领域技术人员示例性的说明本发明,其不应被解释为对本发明在权利要求中所阐明范围的限制。
实施例1:制备无牺牲层的自由立膜
将充分量的溶液(0.5-1毫升)分配在2×2厘米的硅片上,所述硅片上具有MWNT阵列,所述的溶液是20重量%的可固化硅酮弹性体组合物(道康宁(DOW CORNING)Sylgard 184,由美国密歇根州米德兰德市的道康宁公司(Dow Corning Corporation of Midland,Michigan,U.S.A.)处购得)溶解于氯仿中形成的。如图1a所示,MWNT的平均高度为18微米±2微米,平均直径为0.1微米,其密度为覆盖硅片表面积的6-10%。纳米管阵列适合于通过温和的机械力从硅片表面上释放。
接着,利用凯美特匀胶机(Chemat Spin Coater)KW-4A,以1000转数/分(rpm)的速度对硅片和溶液进行30秒的旋转。在旋转之后,将硅片放置15分钟,随后在150℃的烘箱中加热1小时,使硅酮弹性体进行固化。冷却之后,将硅片浸入35vol%的HF溶液和去离子水中,10分钟后,自由立膜从硅片漂离。在图1b和1c中示出了不同放大率下的自由立膜。将自由立膜取出,并进行清洗,以除去残留的HF溶液。
实施例2:制备带有牺牲层的自由立膜
将充分量的溶液分配在2×2厘米的硅片基底上,所述硅片基底上覆盖有MWNT,所述的溶液含有5%的硅溶胶凝胶溶液(TEOS/HCl/Ethanol/H2O)。利用Chemat Spin Coater KW-4A,以2000转数/分(rpm)的速度对溶液和基底进行30秒的旋转。在环境条件(20℃,35%RH)下,将硅片放置30分钟,随后在50℃下加热30分钟,在150℃下加热15分钟。接着,将充分量的浓度为11wt%的硅酮聚醚酰亚胺共聚物(Gelest SSP-085)的甲苯溶液置于MWNT阵列上,并使溶液和硅片在1000转数/分(rpm)下旋转30分钟。将硅片在室温下放置15分钟,随后在100℃下放置15分钟以除去甲苯。冷却之后,将硅片浸入35vol%的HF溶液和去离子水中,约20分钟后,自由立膜由硅片漂离,如图1d所示。将自由立膜取出,并进行清洗,以除去残留的HF溶液。
工业适用性
通过本发明所述的方法制得的自由立膜,可以作为滤光片、ACF、或TIM。在不受理论制约的前提下,我们认为,当使用碳纳米管、特别是MWNT阵列时,可以使导热性能进一步提高。

Claims (35)

1.一种方法,包括:
(a)在基底上提供纳米棒阵列,
任选的,(b)用牺牲层渗透该阵列;
(c)用基体层渗透该阵列,由此产生渗透的阵列;
任选的,(d)当步骤(b)存在时,除去牺牲层,保留基体层;和
(e)将渗透的阵列从基底平面上移除,以形成自由立膜,其中基体层具有正反相对的表面,纳米管定向排列,穿过基体层,并从基体层的一个或正反两个相对的表面上伸出至少1微米的距离。
2.根据权利要求1所述的方法,当步骤(d)存在时,该方法进一步包括在步骤(d)之前、期间、或之后,用第二基体层渗透阵列。
3.根据权利要求1所述的方法,其中纳米棒从一个或正反两个相对的表面伸出1微米-0.8毫米的距离。
4.根据权利要求1所述的方法,其中该阵列的密度为0.1体积%-50体积%。
5.根据权利要求1所述的方法,其中纳米棒的平均高度为5-500微米。
6.根据权利要求1所述的方法,其中纳米棒是导热的和电绝缘的。
7.根据权利要求1所述的方法,其中纳米棒是导电和导热的。
8.根据权利要求1所述的方法,其中纳米棒是氮化硼纳米管。
9.根据权利要求1所述的方法,其中纳米棒选自多层碳纳米管和单层碳纳米管。
10.根据权利要求9所述的方法,其中纳米棒阵列是通过等离子体增强的化学汽相沉积生成方法提供的。
11.根据权利要求10所述的方法,其中纳米管的阵列在步骤(a)之前经受了石墨化步骤。
12.根据权利要求1所述的方法,其中当步骤(b)存在时,牺牲层选自:氟硅氧烷、光定义硅酮、二氧化硅、和蜡。
13.根据权利要求12所述的方法,其中牺牲层是蜡。
14.根据权利要求13所述的方法,其中当步骤(d)存在时,牺牲层通过加热除去。
15.根据权利要求12所述的方法,其中牺牲层是二氧化硅,且通过从溶胶凝胶溶液中涂覆一层二氧化硅来形成牺牲层。
16.根据权利要求15所述的方法,其中当步骤(d)存在时,步骤(d)和(e)通过暴露于HF溶液中来实施。
17.根据权利要求16所述的方法,进一步包括步骤(f):在步骤(e)之后清洗步骤(f)。
18.根据权利要求1所述的方法,其中基体包括热固性聚合物。
19.根据权利要求18所述的方法,其中热固性聚合物选自:环氧树脂、氰酸铵树脂、双马来酰亚胺树脂、酚醛树脂、聚酯树脂、硅酮弹性体、聚氨酯弹性体、丙烯酸弹性体、和它们的组合。
20.根据权利要求18所述的方法,其中热固性聚合物包括含下列物质的组合物:
A)每个分子中平均含有至少两个脂肪族不饱和有机基的聚硅氧烷,
B)平均每个分子中含有至少两个与氢原子相连的硅的交联剂,和
C)氢化硅烷化催化剂。
21.根据权利要求1所述的方法,其中基体包括热塑性聚合物。
22.根据权利要求21所述的方法,其中热塑性聚合物选自:聚酰胺、聚酰亚胺、聚苯撑、聚碳酸酯、聚缩醛、聚丙烯、聚乙二醇、聚氧化甲烯、聚甲醛、硅酮酰胺共聚物、硅酮聚醚、硅酮聚醚酰亚胺共聚物、硅酮氨基甲酸乙酯共聚物、硅酮脲、和它们的组合。
23.根据权利要求18到22中任一所述的方法,其中基体进一步包括填料。
24.根据权利要求23所述的方法,其中填料是导热的。
24.根据权利要求1所述的方法,其中步骤(c)通过选自以下的方法来实施:旋涂、浸涂、喷涂、和溶剂浇注。
25.通过权利要求1到23中任一所述的方法制得的自由立膜。
26.一种自由立膜,包括:
i基体层,其具有相对的表面,和
ii纳米棒阵列,其中纳米棒定向的穿过基体层并从基体层的一个或两个表面伸出至少1微米的距离。
27.根据权利要求26所述的自由立膜,其中阵列的平均密度为0.5体积%-50体积%。
28.根据权利要求26所述的自由立膜,其中纳米棒的平均高度为5-500微米。
29.权利要求26到28中任一所述的自由立膜作为滤光片的用途。
30.权利要求26到28中任一所述的自由立膜作为各向异性导电薄膜的用途。
31.权利要求26到28中任一所述的自由立膜作为导热界面材料的用途。
32.一种装置,包括:
a)发热元件,
b)导热界面材料,和
c)热管理器件;
其中导热界面材料插入在发热元件和热管理器件之间,沿着导热路径从发热元件的表面向热管理器件的表面延伸,导热界面材料包括如权利要求26到28中任一所述的自由立膜,且纳米棒与发热元件的表面和热管理器件的表面接触。
33.一种方法,包括将导热界面材料插入到发热元件和热管理器件之间,其中导热界面材料沿着导热路径从发热元件表面向热管理器件表面延伸,导热界面材料包括如权利要求26到28中任一所述的自由立膜,且纳米棒与发热元件的表面和热管理器件的表面接触。
34.根据权利要求33所述的方法,其中发热元件包括半导体芯片,热管理器件包括散热器或放热器。
CN200880006048.6A 2007-02-22 2008-01-25 制备导电薄膜的方法和由该方法制得的制品 Expired - Fee Related CN101636436B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US90280407P 2007-02-22 2007-02-22
US60/902,804 2007-02-22
PCT/US2008/000977 WO2008103221A1 (en) 2007-02-22 2008-01-25 Process for preparing conductive films and articles prepared using the process

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201310359447.3A Division CN103588984A (zh) 2007-02-22 2008-01-25 制备导电薄膜的方法和由该方法制得的制品

Publications (2)

Publication Number Publication Date
CN101636436A true CN101636436A (zh) 2010-01-27
CN101636436B CN101636436B (zh) 2014-04-16

Family

ID=39488344

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201310359447.3A Pending CN103588984A (zh) 2007-02-22 2008-01-25 制备导电薄膜的方法和由该方法制得的制品
CN200880006048.6A Expired - Fee Related CN101636436B (zh) 2007-02-22 2008-01-25 制备导电薄膜的方法和由该方法制得的制品

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201310359447.3A Pending CN103588984A (zh) 2007-02-22 2008-01-25 制备导电薄膜的方法和由该方法制得的制品

Country Status (9)

Country Link
US (3) US8064203B2 (zh)
EP (1) EP2115046B1 (zh)
JP (1) JP5355423B2 (zh)
KR (1) KR20090115794A (zh)
CN (2) CN103588984A (zh)
AT (1) ATE474876T1 (zh)
DE (1) DE602008001879D1 (zh)
TW (1) TW200900443A (zh)
WO (1) WO2008103221A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102792441A (zh) * 2010-03-12 2012-11-21 富士通株式会社 散热结构及其制造方法
CN104025290A (zh) * 2011-12-28 2014-09-03 东洋纺株式会社 绝缘导热片
CN105308105A (zh) * 2013-06-19 2016-02-03 东洋纺株式会社 绝缘导热片
CN108766627A (zh) * 2018-05-15 2018-11-06 华南理工大学 一种银纳米网格柔性透明电极及其制备方法
CN111909666A (zh) * 2020-08-12 2020-11-10 杭州英希捷科技有限责任公司 基于垂向碳纳米管阵列的非转移式热界面材料及其方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537339A (ja) 2006-05-19 2009-10-29 マサチューセッツ・インスティテュート・オブ・テクノロジー ナノ構造強化された複合体およびナノ構造強化方法
US8337979B2 (en) 2006-05-19 2012-12-25 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
JP5518722B2 (ja) * 2008-09-18 2014-06-11 日東電工株式会社 カーボンナノチューブ集合体
CN101989583B (zh) * 2009-08-05 2013-04-24 清华大学 散热结构及使用该散热结构的散热系统
KR101786951B1 (ko) * 2010-04-23 2017-10-19 삼성전자주식회사 초발수 코팅 조성물, 상기 조성물의 경화물을 포함하는 초발수 코팅층, 및 상기 초발수 코팅층을 포함하는 열교환기
CN103665772A (zh) * 2012-09-12 2014-03-26 南京理工大学 复合环氧树脂的碳纳米管阵列柔性热界面材料的制备方法
US9862604B2 (en) 2013-04-18 2018-01-09 National Research Council Of Canada Boron nitride nanotubes and process for production thereof
CN105359282B (zh) * 2013-07-29 2018-01-16 晶元光电股份有限公司 选择性转移半导体元件的方法
US9725571B2 (en) * 2013-08-13 2017-08-08 Mesodynamics, Inc. Method of making nanoporous structures
JP6261352B2 (ja) * 2014-01-23 2018-01-17 新光電気工業株式会社 カーボンナノチューブシート及び半導体装置とカーボンナノチューブシートの製造方法及び半導体装置の製造方法
US20160340482A1 (en) * 2014-02-04 2016-11-24 N12 Technologies, Inc. Articles and Methods for Manufacture of Nanostructure Reinforced Composites
US9482477B2 (en) * 2014-07-28 2016-11-01 Northrop Grumman Systems Corporation Nano-thermal agents for enhanced interfacial thermal conductance
CN109311239A (zh) 2016-05-31 2019-02-05 麻省理工学院 包括非线性细长纳米结构的复合制品以及相关的方法
EP3681942A4 (en) 2017-09-15 2021-05-05 Massachusetts Institute of Technology LOW DEFAULT MANUFACTURING OF COMPOSITE MATERIALS
WO2019108616A1 (en) 2017-11-28 2019-06-06 Massachusetts Institute Of Technology Separators comprising elongated nanostructures and associated devices and methods for energy storage and/or use
WO2020145884A1 (en) * 2019-01-10 2020-07-16 Sembcorp Industries Ltd A method of forming a stretchable conductive carbon nanofilm

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214244A (ja) * 1988-06-30 1990-01-18 Toray Dow Corning Silicone Co Ltd 加熱硬化性オルガノポリシロキサン組成物
US5239035A (en) * 1992-04-09 1993-08-24 Dow Corning Corporation Curable organosiloxane gel compositions
EP0956590A1 (en) 1996-04-29 1999-11-17 Parker-Hannifin Corporation Conformal thermal interface material for electronic components
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
WO1998040431A1 (en) 1997-03-11 1998-09-17 Amoco Corporation Thermally conductive film and method for the preparation thereof
JP3183845B2 (ja) * 1997-03-21 2001-07-09 財団法人ファインセラミックスセンター カーボンナノチューブ及びカーボンナノチューブ膜の製造方法
US6129901A (en) * 1997-11-18 2000-10-10 Martin Moskovits Controlled synthesis and metal-filling of aligned carbon nanotubes
US5998515A (en) * 1997-12-29 1999-12-07 General Electric Company Liquid injection molding silicone elastomers having primerless adhesion
US6040366A (en) * 1998-02-27 2000-03-21 General Electric Company Liquid injection molding silicone elastomers having primerless adhesion
US6156256A (en) * 1998-05-13 2000-12-05 Applied Sciences, Inc. Plasma catalysis of carbon nanofibers
US5912805A (en) 1998-11-04 1999-06-15 Freuler; Raymond G. Thermal interface with adhesive
AUPP976499A0 (en) * 1999-04-16 1999-05-06 Commonwealth Scientific And Industrial Research Organisation Multilayer carbon nanotube films
EP1059266A3 (en) * 1999-06-11 2000-12-20 Iljin Nanotech Co., Ltd. Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition
US20040009353A1 (en) * 1999-06-14 2004-01-15 Knowles Timothy R. PCM/aligned fiber composite thermal interface
US20070241303A1 (en) * 1999-08-31 2007-10-18 General Electric Company Thermally conductive composition and method for preparing the same
EP1149932A3 (en) * 2000-01-26 2003-09-10 Iljin Nanotech Co., Ltd. Thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotubes using the same
US6908572B1 (en) * 2000-07-17 2005-06-21 University Of Kentucky Research Foundation Mixing and dispersion of nanotubes by gas or vapor expansion
JP2002121404A (ja) * 2000-10-19 2002-04-23 Polymatech Co Ltd 熱伝導性高分子シート
JP4697829B2 (ja) * 2001-03-15 2011-06-08 ポリマテック株式会社 カーボンナノチューブ複合成形体及びその製造方法
US20020172767A1 (en) * 2001-04-05 2002-11-21 Leonid Grigorian Chemical vapor deposition growth of single-wall carbon nanotubes
EP1399928B1 (en) * 2001-04-06 2012-06-13 World Properties, Inc. Electrically conductive silicone gaskets and method of manufacture thereof
US6706402B2 (en) * 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6835591B2 (en) * 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
CN1182025C (zh) * 2001-09-26 2004-12-29 复旦大学 一种矩阵排列的碳纳米管的制备方法
KR20030028296A (ko) * 2001-09-28 2003-04-08 학교법인 한양학원 플라즈마 화학기상증착 장치 및 이를 이용한 탄소나노튜브제조방법
US6921462B2 (en) * 2001-12-17 2005-07-26 Intel Corporation Method and apparatus for producing aligned carbon nanotube thermal interface structure
SE0104452D0 (sv) * 2001-12-28 2001-12-28 Forskarpatent I Vaest Ab Metod för framställning av nanostrukturer in-situ, och in-situ framställda nanostrukturer
EP1370489B1 (en) * 2002-03-14 2014-03-12 Samsung Electronics Co., Ltd. Composite materials comprising polycarbonate and single-wall carbon nanotubes
US7335395B2 (en) * 2002-04-23 2008-02-26 Nantero, Inc. Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
WO2003103854A1 (en) * 2002-06-07 2003-12-18 The Board Of Regents For Oklahoma State University Preparation of the layer-by-layer assembled materials from dispersions of highly anisotropic colloids
US6695513B1 (en) * 2002-08-29 2004-02-24 Linda M. Malek Hair product application package and method of use
CN1248959C (zh) * 2002-09-17 2006-04-05 清华大学 一种碳纳米管阵列生长方法
CN1296994C (zh) * 2002-11-14 2007-01-24 清华大学 一种热界面材料及其制造方法
TWI250203B (en) * 2002-12-31 2006-03-01 Hon Hai Prec Ind Co Ltd Thermal interface material
US7560136B2 (en) * 2003-01-13 2009-07-14 Nantero, Inc. Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
US7273095B2 (en) * 2003-03-11 2007-09-25 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nanoengineered thermal materials based on carbon nanotube array composites
CN1813023A (zh) * 2003-05-22 2006-08-02 塞威公司 纳米复合材料和生产方法
JP2005001942A (ja) * 2003-06-12 2005-01-06 Mitsubishi Gas Chem Co Inc 配向性カーボンナノチューブ膜の精製方法
US7112472B2 (en) * 2003-06-25 2006-09-26 Intel Corporation Methods of fabricating a composite carbon nanotube thermal interface device
US7118941B2 (en) * 2003-06-25 2006-10-10 Intel Corporation Method of fabricating a composite carbon nanotube thermal interface device
US7168484B2 (en) * 2003-06-30 2007-01-30 Intel Corporation Thermal interface apparatus, systems, and methods
US20050038188A1 (en) * 2003-08-14 2005-02-17 Dongchan Ahn Silicones having improved chemical resistance and curable silicone compositions having improved migration resistance
US7109581B2 (en) * 2003-08-25 2006-09-19 Nanoconduction, Inc. System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US20050061496A1 (en) * 2003-09-24 2005-03-24 Matabayas James Christopher Thermal interface material with aligned carbon nanotubes
US7378715B2 (en) * 2003-10-10 2008-05-27 General Electric Company Free-standing electrostatically-doped carbon nanotube device
US7374793B2 (en) * 2003-12-11 2008-05-20 International Business Machines Corporation Methods and structures for promoting stable synthesis of carbon nanotubes
TWI253467B (en) * 2003-12-23 2006-04-21 Hon Hai Prec Ind Co Ltd Thermal interface material and method for making same
CN100383213C (zh) * 2004-04-02 2008-04-23 清华大学 一种热界面材料及其制造方法
CN100345472C (zh) * 2004-04-10 2007-10-24 清华大学 一种热界面材料及其制造方法
CN1290764C (zh) * 2004-05-13 2006-12-20 清华大学 一种大量制造均一长度碳纳米管的方法
US20050255304A1 (en) * 2004-05-14 2005-11-17 Damon Brink Aligned nanostructure thermal interface material
US7169250B2 (en) * 2004-07-27 2007-01-30 Motorola, Inc. Nanofibrous articles
US7351360B2 (en) 2004-11-12 2008-04-01 International Business Machines Corporation Self orienting micro plates of thermally conducting material as component in thermal paste or adhesive
JP2006147801A (ja) 2004-11-18 2006-06-08 Seiko Precision Inc 放熱シート、インターフェース、電子部品及び放熱シートの製造方法
WO2006065937A2 (en) * 2004-12-16 2006-06-22 Nantero, Inc. Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof
CN100337981C (zh) * 2005-03-24 2007-09-19 清华大学 热界面材料及其制造方法
CN1837147B (zh) * 2005-03-24 2010-05-05 清华大学 热界面材料及其制备方法
CN1841713A (zh) * 2005-03-31 2006-10-04 清华大学 热界面材料及其制作方法
CN100404242C (zh) * 2005-04-14 2008-07-23 清华大学 热界面材料及其制造方法
CN100358132C (zh) * 2005-04-14 2007-12-26 清华大学 热界面材料制备方法
US20070116957A1 (en) * 2005-05-11 2007-05-24 Molecular Nanosystems, Inc. Carbon nanotube thermal pads
US20060258054A1 (en) * 2005-05-11 2006-11-16 Molecular Nanosystems, Inc. Method for producing free-standing carbon nanotube thermal pads
US20060255450A1 (en) * 2005-05-11 2006-11-16 Molecular Nanosystems, Inc. Devices incorporating carbon nanotube thermal pads
US20070116626A1 (en) * 2005-05-11 2007-05-24 Molecular Nanosystems, Inc. Methods for forming carbon nanotube thermal pads
CN100454526C (zh) * 2005-06-30 2009-01-21 鸿富锦精密工业(深圳)有限公司 热界面材料制造方法
CN101054467B (zh) * 2006-04-14 2010-05-26 清华大学 碳纳米管复合材料及其制备方法
US7476339B2 (en) * 2006-08-18 2009-01-13 Saint-Gobain Ceramics & Plastics, Inc. Highly filled thermoplastic composites

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102792441A (zh) * 2010-03-12 2012-11-21 富士通株式会社 散热结构及其制造方法
CN102792441B (zh) * 2010-03-12 2016-07-27 富士通株式会社 散热结构及其制造方法
CN104025290A (zh) * 2011-12-28 2014-09-03 东洋纺株式会社 绝缘导热片
CN105308105A (zh) * 2013-06-19 2016-02-03 东洋纺株式会社 绝缘导热片
CN108766627A (zh) * 2018-05-15 2018-11-06 华南理工大学 一种银纳米网格柔性透明电极及其制备方法
CN111909666A (zh) * 2020-08-12 2020-11-10 杭州英希捷科技有限责任公司 基于垂向碳纳米管阵列的非转移式热界面材料及其方法

Also Published As

Publication number Publication date
CN103588984A (zh) 2014-02-19
TW200900443A (en) 2009-01-01
ATE474876T1 (de) 2010-08-15
DE602008001879D1 (de) 2010-09-02
US20120034422A1 (en) 2012-02-09
JP2010519162A (ja) 2010-06-03
US20100061063A1 (en) 2010-03-11
WO2008103221A1 (en) 2008-08-28
US8064203B2 (en) 2011-11-22
JP5355423B2 (ja) 2013-11-27
KR20090115794A (ko) 2009-11-06
EP2115046B1 (en) 2010-07-21
EP2115046A1 (en) 2009-11-11
US20120034418A1 (en) 2012-02-09
CN101636436B (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
CN101636436B (zh) 制备导电薄膜的方法和由该方法制得的制品
US20070231560A1 (en) Thermal transport structure and associated method
JP2010519162A5 (zh)
CN101989583B (zh) 散热结构及使用该散热结构的散热系统
Choi et al. Synthesis of silica-coated graphite by enolization of polyvinylpyrrolidone and its thermal and electrical conductivity in polymer composites
US7797808B2 (en) Thermal management system and associated method
US20080081176A1 (en) Thermal interface material and method for manufacturing same
RU2006109478A (ru) Силиконовая клеящая композиция для тонкой поверхности склеивания и способ ее получения
CN105176086A (zh) 取向石墨烯/聚合物复合体系、其制备方法及应用
CN101054467A (zh) 碳纳米管复合材料及其制备方法
CN106663494A (zh) 用于柔性电子件表面的可拉伸互连部
JP2008094870A5 (zh)
KR20190123770A (ko) 유기 무기 복합 입자 및 그의 제조 방법
JP2009534839A5 (zh)
Li et al. Low-resistivity long-length horizontal carbon nanotube bundles for interconnect applications—Part II: Characterization
US20070032610A1 (en) Energy responsive composition and associated method
CN112442332A (zh) 一种新型有机硅高导热胶粘剂及其制备方法
CN111961386B (zh) 一种散热结构
Liu et al. Superhydrophobic nanocomposite coating for reliability improvement of microelectronics
KR101986168B1 (ko) 집진방지 및 자가세정 기능을 갖는 led용 방열 핀에 적용 가능한 코팅액 및 이의 제조방법
Li et al. Flexible conductor fabrication via silver nanowire deposition on a polydopamine-modified pre-strained substrate
Lv et al. Three-dimensional conducting elastomeric composites based on buckling carbon nanotube sheets for interconnects and temperature sensor
EP3791699B1 (en) Method for forming a flexible printed circuit board
KR101405524B1 (ko) 절연층이 포함된 탄소나노튜브 코팅 방법
TWI447064B (zh) 散熱結構及使用該散熱結構之散熱系統

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140416

Termination date: 20150125

EXPY Termination of patent right or utility model