TW200900443A - Process for preparing conductive films and articles prepared using the process - Google Patents

Process for preparing conductive films and articles prepared using the process Download PDF

Info

Publication number
TW200900443A
TW200900443A TW97105469A TW97105469A TW200900443A TW 200900443 A TW200900443 A TW 200900443A TW 97105469 A TW97105469 A TW 97105469A TW 97105469 A TW97105469 A TW 97105469A TW 200900443 A TW200900443 A TW 200900443A
Authority
TW
Taiwan
Prior art keywords
array
self
nanorods
thermal
substrate
Prior art date
Application number
TW97105469A
Other languages
English (en)
Inventor
Mark Fisher
Carl Fairbank
Original Assignee
Dow Corning
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning filed Critical Dow Corning
Publication of TW200900443A publication Critical patent/TW200900443A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • Y10S977/751Single-walled with specified chirality and/or electrical conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/2419Fold at edge
    • Y10T428/24198Channel-shaped edge component [e.g., binding, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet
    • Y10T428/24331Composite web or sheet including nonapertured component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Description

200900443 九、發明說明: 【發明所屬之技術領域】 -種藉由本文描述之方法製備之含有奈米管的自撑式 膜。根據奈米官的類型,該自撐式膜係用作 用作一種各向異性導電膜f ΑΓτη,十m 裡&尤益 (TIM)。 *電膜(ACF),或用作-種熱介面材料 :申請案主張2。。7年2月22曰申請之美 Γ 案弟_2,_號之35U.S.C.§U9⑷之權利。_ 利申請案第6〇/9〇2,8〇4號以引用的方式 、 【先前技術】 文° 發明解決之問題 此項技術中已知之諸如半導體、電晶體、積體電路 〇、分立1^件及其他之類的電子元件係設計成在正常的 運行溫度下或處於正常運行溫度範圍内運作。缺而,電子 運作產生熱量。如果未移除足夠熱量,則該電子元 件將在一明顯高於正常運行溫声 料‘ 度之溫度中運作。過高溫度 子元件之性能及與之關聯的器件之運作產生不利之影 曰且對平均故障間隔時間產生負面之衝擊。 為避免該等問題,可藉由從電子元件至熱管理辅助設備 列如散熱器)之熱傳導而移除熱量 '然後,散熱器可藉由 壬何方便,方法進行冷卻’例如對流或輻射技術。熱傳導 冑由電子70件及散熱器之間的表面接觸或藉由_ 取使電子元件及散熱器接觸,可將熱量從電子元件傳送 至散熱器。TIM之熱阻抗越低,則從電子元件至散熱器之 I288l〇,d〇c 200900443 熱量的流動越大。 電子元件及散熱器之表面一般並非完全平滑;因此,其 表面之間很難達到完全接觸。表面之間出現係為不良熱導 體之空氣間隙而提高阻抗。料空隙可藉由在表面之間嵌 =丁 IM而填充。因為生產商製造越來越小的器件故持續 需要薄且具有改良之熱導係數以有效地將熱量從電子元件 傳送至熱管理輔助設備的丁IM。 技術界中已知含有隨意分佈於基質内的奈米管之複合材 料可用作TIMs。然而,告太半其〜人丄土 田不水g疋向成陣列而非隨意分佈 時’該陣列可展示改良之性質,例如熱導係數。生產含有 該等陣列之TIMs甚難。 【發明内容】 該自揮式膜含有穿 一種用於製造一種自撐式臈的方法, 過基質層伸出之奈米棒。該方法包括: 選擇性實施之(b)用 (a)於一基板上提供一奈米棒陣列 一犧牲層滲透該陣列, 移 (c)用一基質層滲透該陣列 選擇性實施之(d)當存在步驟 除該基質層,及 ,從而產生一經滲透陣列 (b)時,移除該犧牲層而不 ⑷從該基板上移除該經渗透_㈣卜自 中β亥基質層有相對表面,且今望太业▲ , ^荨奈米棒被定向以穿過該其 質層並從該基質層之一杏雨彻 ^ / 固相對表面向外伸出至少j栺 米的距離。 τ 夕i诚 【實施方式】 128810.doc 200900443 術語定義及用途 所有數量、4、玄,η τ、 1 比率及百分率皆按重詈 明。為了該庫 af异’除非另外指 勹“亥應用之目的,各個冠詞,,—"、 ^ 指一個或更多。在本文之 —個及”該”係 代表甲基,”Ph"补矣^ A 代表乙基,,'Me,, 代表苯基,',Vi"代表r梭甘 指多壁碳夺乎其1IQWXT 表乙如基。,iMWNT”係 厌不水g 。”SWNT"係指單壁碳奈 指石夕酸四乙酯。 ' ” 係 ,•奈米棒"係指-種熱科結構,其 其縱橫比大於10,或者大於10。。夺平棒且 :者=可以係圓柱形1寬度(直徑)不大於。.5微米。 限於單:=可以有不同形狀。術語奈米棒包含,但並不 ^ 土石反奈米官、MWNT及氮化硼奈米管。 ::卡棒陣列"係指存在之複數個奈米棒係實質量地定向 成與平面基板表面相交成某—角度排列且相互平行。一 MWNT陣列藉由圖u所示之卿㈣車列得以例證。 "犧牲層”係、指可在不移除基f層且不自該基質移除奈米 之it况下選擇性地移除的任何膜形成材料。 方法 一種用於製造-種自撐式膜的方法,該自撐式膜含有穿 過基質層伸出之奈米棒。該方法包括: (a)於一基板上提供一奈米棒陣列, 選擇性實施之(b)用一犧牲層滲透該陣列, (c)用一基質層滲透該陣列,從而產生—經滲透陣列, 選擇性實施之(d)當存在步驟(b)時,移除該犧牲層而不 128810.doc 200900443 移除該基質層,及 ⑷從該基板上移除該經 中該基質層有相對J以形成一自撐式膜,其 質層並從該基質層之一或兩 =以:過該基 米的距離。 對表面向外伸出至少丨微 基質層可處於或不處於奈、 ^ '、、牛中心。在該方法中,可灸 透一層或更多基質層。第- T/" 添加。舉例而言,當存 无之各種時間 -步包括在步驟⑷之前、在其期間或 擇= 滲透。 犧牲層所留下之空間可由第二基質層 該奈米棒陣列可藉由電聚增強化學 供。奈米棒陣列或可於牛,、 償玍長方法& 於步驟⑷之前接受-石墨化步驟。X 希望受理論限制之下,認為當碳太 該石墨化步驟提高了藉由太々广 形成陣列時’ 〆 k. “…文描述之方法製成之自撐式膜 的熱導係數。平面某拓μ 飞腰 且rNa T h 轉陣列在此項技術中已知 且伙 NanoLab, 55 Chapei SUeei w 卟 Newton,ΜΑ 02458購得。 該方法可包含步驟(b)及⑷,以提供一種自撐式膜寸 自撐式臈含有穿過基體其質 、〇x μ 〇 體基質層之兩相對表面伸出的奈来 二^ 中使用之該犧牲層可以係熱塑性樹脂, 钻度非硬化性聚秒氧聚碎氧流體或聚♦氧膠、氟化聚碎 乳、先可界定之聚石夕氧、二氧切或蠛 何便利方法實施,而盆竑眘士」精由任 而—奧 〃確實方法則根據所選犧牲層之類型 而疋。舉例而言,當該犧牲層 軋化矽忙,該犧牲層可 128810.doc 10 200900443 藉由自溶膠凝膠溶液塗上二氧化石夕層而形成。 存在步驟⑻時可存在步驟⑷。 :法實施’而其確實方法則根據所選犧牲層利 舉例而言,當該犧牲層係%時,其可藉由加熱 該犧牲層係二氧化石夕0 备 犧係藉由自轉凝膠溶液塗 -氧化石夕層而形成時’步驟(d)藉由暴露於包括抑之容 液而實施。步驟⑷及⑷可相繼或同時實施。舉例而言:
虽该犧牲層係二氧化梦且步驟⑷係藉由暴露於包括取之 溶液中而實施時’步驟⑷及⑷係同時實施。該方法可選 擇性進-步包括於步驟⑷之後清洗該自撐式膜的步驟 ⑴。步驟⑴可用以移除殘留的HF或該犧牲層之殘留部 分,抑或兩者。 或者’可存在步驟(b)而不存在步驟⑷。舉例而言,該 方法可用以製備—種具有在步驟⑻中渗透之壤的自撐式 膜。*不存在步驟(d)時,該蠟層則可在該自撐式膜中作為 相變層。 步驟⑷可藉由任何便利方法實施,而其確實方法則根據 所選基質層之類型而定。舉例而言,步驟(c)之實施方法可 k自由旋轉塗層法、浸潰塗層法、噴射塗層法及溶劑澆鑄 法組成之群組。該基質層可包括熱固性聚合物。適當的熱 固性聚合物之實例包含環氧樹脂、氰酸酯樹脂、雙馬來醯 亞胺樹脂、酚醛樹脂、聚酯樹脂、聚矽氧彈性體、聚氨酯 彈性體、丙烯酸酯彈性體及其組合。當聚矽氧彈性體用作 基質層時,聚矽氧彈性體可藉由在步驟(句或步驟之前 128810.doc 11 · 200900443 用包含以下成份之組合物滲透該陣列並固化該組合物以形 成聚矽氧彈性體而製成’該組合物包括A)每個分子具有平 均至少兩個脂族不飽和有機基之聚矽氧烷;B)每個分子具 有平均至少兩個與矽鍵結之氫原子之交聯劑;及c) 一種矽 氫化催化劑。
或者,該基質層可包括熱塑性聚合物。適當的熱塑性聚 口物之κ例包含聚醯胺、聚醯亞胺、聚對苯撐、聚碳酸 醋、聚縮搭、聚丙稀、聚乙二醇、聚氧化甲稀、聚甲酸、 聚石夕氧醯胺共聚物、聚⑦氧聚_、聚⑦氧㈣醯亞胺共聚 物、聚矽氧氨酯共聚物、聚矽氧尿素、及其等之組合。 田。亥等不米棒陣列之密度相對低時,該基質層可視情況 包括填料。該填料之粒度必須足夠小而不至於抑制該等奈 米棒陣列中基f之滲透。該填料可以係導熱填料。適當的 導熱填料之實例包含銅、氮化爛、氧化铭、氮化銘、氧化 鋅、銀、鋁及其組合。 自撐式膜 以上描述之該方法之產品係—種自撐式膜,其包括: 具有相對表面之基質層,及 、陣列’其中該等奈米棒被定向以穿過該基質 層並從該基質層 — ' 或兩表面向外伸出至少1微米的距 ^之不米棒岔度可處於0.5 V〇l 〇/〇至50 vol %之範圍 之最密度根據用以提供料狀方法及該自擇式膜 最'、用逆而定。舉例而言,ACF可具有較低奈米棒密 128810.doc 200900443 例如0.1 ν〇ι%至10 vol%。使用導熱奈米棒時,為 高熱導係數,密度可處於5 v〇l%至50 v〇l%之範圍内。 /此處使用之奈米棒可以係奈米卜料所選奈米棒可以 料熱且料的。適#的奈米棒之實例包含a·及單壁 碳奈米管。或者’㈣所選奈米棒可以係導電且導熱的Γ 適當的奈米棒之實例包含氮化硼奈米管。 ★該等奈米棒之平均高度可處於5至5〇〇微米之範圍内。該 等奈米棒被定向以穿過該基f層並從該基f層之—或兩相 對表面向外伸出至少】微米的平均距離。或者,該等奈米 棒可^該基質層之一或兩相對表面向外伸出i微米至U毫 米之範圍内的平均距離。 該自撐式膜之用途 該自擇式膜可用於多種剌。視奈米管之類㈣定,該 自撐式膜可用作渡光器、用作ACF、4用作TIMq當使用 自樓式膜作為TIM時,則撐式膜可用於包含以下 器件中: (a)—生熱元件, (b) —熱介面材料,及 (0—熱管理輔助設備; 其中該熱介面材料沿著—熱路徑爽置於該生熱元件及該 熱管理輔助設備之間’該熱路#從該生熱元件之—表面延 伸至該熱管理輔助設備之—表面,其中該熱介面材料包括 如上所述之自撐式膜’且該自樓式膜之該等奈米棒接觸該 生熱元件之一表面及該熱管理辅助設備之一表面。 128810.doc 200900443 圖2顯示一電子器件200的一部分之橫截面。該電子器件 200包含一生熱元件(以一 1C晶片顯示μ〇3 ;第一熱介面材 料(TIM 1)206 ’該第一熱介面材料係一種自撐式膜,如上 所述,其具有M WNT穿過伸出一基質層;及一熱管理輔助 設備(以一金屬覆蓋層顯示)2〇7。該ΤΙΜ1 206沿著一熱路 徑夾置於該生熱元件203及該熱管理輔助設備207之間,該 熱路徑由箭頭208指示,從該生熱元件203之一表面延伸至
s玄熱官理輔助設備207之一表面。該等奈米管接觸該生熱 兀件203之一表面及該熱管理輔助設備2〇7之一表面以促進 該件200運作時之熱傳送。該生熱元件2〇3藉由一種晶粒 211粘著粘合膠209安裝於一基板2〇4之上。該基板2〇4具有 藉由焊墊210與之粘著之焊料球2〇5。第二熱介面材料 (ΤΙΜ2)202夾置於該熱管理輔助設備2〇7及一散熱器2〇ι之 間。當該器件運作時熱量沿著一由箭頭2〇8指示之熱路徑 移動。 法中。該方 插入 '—熱介 間,該熱路 設備之一表 ,且該等奈 设備之一表 理輔助設備 舉例而言, 邊自撐式膜可用於一種製造一電子器件之方 法包括在一生熱元件與一熱管理輔助設備之間 面材料。該熱介面材料係沿著一熱路徑夾置其 私k次生熱元件之一表面延伸至該熱管理輔助 面。忒熱介面材料包括以上所述之該自撐式膜 米棒接觸肖生熱元件之-I面及該熱管理輔助 面。忒生熱件可包括一半導體晶粒及該熱管 可包括一散熱器或一均熱器。 器件可製成為包含以上所述之該自撐式膜。 128810.doc 200900443 以上所述之該自撐式膜可用作或用於例如美國專利案第 及6,05438朗揭以n件的熱介面材料,除此 之外或代替該用途,用於其中描述之介面材料。 實例 該等實例意為為熟習此項技術者闡釋本發明且不應解釋 為限制如該等請求項所述之本發明之範圍。 實例1:不使用犧牲層製備之自撐式膜 將足罝溶液(0.5至1 mL)分配至其上具有一 MWNT陣列之 2 x2 cm矽片的頂部,該溶液含有溶解於氯仿中之2〇重量% 的可固化有機聚矽氧彈性體化合物(D〇W corning® Sylgard I84,從美國密歇根州米德蘭〇〇% c〇rning公司購 得)。該MWNT之平均高度係18微米+/_ 2微米,平均直徑 係0.1微米’且其密度係覆蓋該晶片表面之6至丨〇%區域。 如圖1 a所示。該奈米管陣列適於藉由溫和機械力而從該晶 片脫離。 j 接著,該晶片及溶液利用凱美特旋轉塗膠機KW-4A以 1000 rpm旋轉30秒。旋轉之後,該晶片容許擱置15分鐘, 然後被放置於一個1 50oC烤爐令1小時以固化該有機聚矽氧 彈性體基質層。冷卻之後,該晶片被浸入3 5 vol %的HF及 去離子水溶液中’且丨〇分鐘之後,自撐式膜從該晶片浮 離。該自撐式膜以不同放大倍率顯示在圖lb及lc中《移除 該自撐式膜並施以清洗步驟以移除殘留的HF溶液。 實例2:使用犧牲層製備之自撐式膜 將足量溶液分配至覆蓋有MWNT之2x2 cm矽片基板之 128810.doc •15- 200900443 上,該溶液含有5重量%的固態矽溶膠凝膠溶液 (TEOS/HCl/Ethanol/H20)。該溶液及基板利用凱美特旋轉 塗膠機KW-4 A以2000 rpm旋轉30秒。該晶片容許擱置於周 圍條件下(20°C,35% RH) 30分鐘,然後在50。(:下加熱30分 鐘進行固化,接著係處於150。(3中15分鐘。接著,足夠部 分的11 wt%聚矽氧聚醚共聚物(Gelest SSp_〇85)甲苯溶液放 置於該MWNT陣列之上,且該溶液及晶片以1〇〇〇 rpm旋轉
30秒。該晶片容許擱置於常溫下15分鐘,接著係處於1〇〇 C中1 5分鐘以移除甲苯。冷卻之後,該晶片被浸入乃v〇1 %的HF及去離子水溶液中。大約2〇分鐘之後,自撐式膜從 該晶片上浮離,如圖ld所示。移除該膜並施以清洗步驟以 移除殘留的HF溶液》 產業應用 改善 藉由本文柄述之方法製成之自撐式膜可用作濾光器、用 作ACF或用作TIM。在不希望受理論限制之下,認為當該 車歹J使用厌π、米官(尤其係mwnt)時,可實現熱導係數之 圖式簡單說明】 該陣列係用 圖1 a顯示一位於—功曰" 、石夕晶片上之MWNT陣列 於實例1。 圖lb及1C顯示實例丨製成之之橫截面。該膜包含—基質層 表面的MWNT陣列。 自撐式膜在不同放大倍率下 ’其具有穿過伸出該基質之 圖ld顯示實例2製成之自揮式膜之橫截面 128810.doc • 16 - 200900443 圖2顯示一含有本文描述之自撐式膜之電子器件的一部 分之橫截面。 【主要元件符號說明】 200 電子器件 201 散熱器 202 弟二熱介面材料 203 生熱元件 204 基板 205 焊料球 206 第一熱介面材料 207 熱管理輔助設備 208 箭頭 209 晶粒钻者枯合膠 210 焊墊 211 晶粒 128810.doc

Claims (1)

  1. 200900443 十、申請專利範圍: 1 · 一種方法,其包括: (a)於一基板上提供一奈米棒陣列, 選擇性實施之(b)用一犧牷層滲透該陣列, (c)用一基質層滲透該陣列吝 千夕j,從而產生—經滲透陣列, 選擇性實施之(d)當存在牛_ 、眭 _ A 在步驟(b)時,移除該犧牲層而 不移除該基質層,及 ,,一% |4早
    ^ ㈡1牙叭联; 其中該基質層有相對表面,且該等奈米棒被定向以穿 過該基質層並從該基質層之—或兩相對表面向外伸出至 少1微米的平均距離。 ’該方法進一 以第二基質層 2.如請求項1之方法,其中當存在步驟(^時 步包括在步驟(d)之前、在其期間或其之後 滲透該陣列。 3. 如請求们之方法’其中該等奈米棒從該_或兩相對表 面向外伸出1微米至0.8毫米之範圍内的距離。 4. 如請求項丨之方法,其中該陣列之密度處於〇 ^〜1%至5〇 vol%之範圍内。 5. 如請求項!之方法,其中該等奈米棒之平均高度處於5至 5 〇 〇微米之範圍内。 6·如請求们之方法’其中該等奈米棒係導熱且絕緣的。 7.如=求項丨之方法,其中該等奈米棒係導電且導熱的。 如明求項1之方法,其中該等奈米棒係氮化硼奈米管。 9·如請求们之方法’其中該等奈米棒係選自由多壁碳奈 128810.doc 200900443 米管及單壁碳奈米管組成之群組。 10. 如請求項9之方法,其中該奈米棒陣列係藉由電漿增強 化學氣相沉積生長方法來提供。 11. 如請求項1〇之方法,其中該奈米棒陣列於步驟(a)之前接 受一石墨化步驟。 12. 如睛求項丨之方法,其中當存在步驟時該犧牲層係 遥自由氟聚矽氧、光可定義聚矽氧、二氧化矽及蠟所組 成之群組。 13. 如請求項12之方法,其中該犧牲層係為蠟。 14. 如清求項13之方法,其中當存在步驟時,該犧牲層係 藉由加熱而移除。 15. 如π求項12之方法,其中該犧牲層係二氧化矽且該犧牲 層係藉由自溶膠凝膠溶液塗上二氧化矽層而形成。 1 6.如明求項i 5之方法,其中當存在步驟(d)時步驟(d)及 (e)係藉由暴露於一 HF溶液而實施。 17. 如清求項16之方法,其進一步包括於步驟之後清洗該 自撐式膜的步驟(f)。 18. 如請求項丨之方法,其中該基質包括熱固性聚合物。 9· 士明求項丨8之方法,其中該熱固性聚合物係選自由環氧 樹脂、氰酸酯樹脂、雙馬來醯亞胺樹脂、酚醛樹脂、聚 酯樹脂、聚矽氧彈性體、聚氨酯彈性體、丙烯酸酯彈性 體及其等之組合所組成之群組。 士明求項1 8之方法,其中該熱固性聚合物包括一組合 物’該組合物包括: 128810.doc 200900443 Α)每個分子具有平均至少兩個脂族不飽和有機基之聚 有機珍氧烧, B)每個分子具有平均至少兩個與矽鍵結之氫原子的交 聯劑,及 c)矽氫化催化劑。 2 1.如叫求項!之方法,其中該基質包括熱塑性聚合物。 Ο 22·如凊求項2丨之方法,其中該熱塑性聚合物係選自由聚醯 胺、聚醯亞胺、聚對苯撐、聚碳酸酷、聚縮醛、聚丙 烯、聚乙二醇、聚氧化甲烯、聚曱醛、聚矽氧醯胺共聚 物 '聚發氧聚醚、聚秒氧聚醚醯亞胺共聚物、聚石夕氧氨 醋共聚物、聚石夕氧尿素及其等之組合所組成之群組。 23.如請求項18至22中任—項之方法,其中該基質進_步包
    24.如請求項23之方法,其中 2 5 ·如請求項1之方法,其中 轉塗層法、浸潰塗層法、 成之群組。 該填料係導熱性。 步驟(c)之實施方法係選自由旋 噴射塗層法及溶劑澆鑄法所組 26. —種自撐式膜 法所製成。 其係藉由如請求項1至23中任一 項之方 27. —種自撐式膜,其包括: 一具有相對表面之基質層,及 η· —奈米棒陣列 基質層並從該基質層 的平均距離。 其中該等奈米棒被定向以穿過古亥 之—或兩表面向外伸出至少j微米 128810.doc 200900443 28.如請求項27之自撐式臈’其令該陣列之平均密度處於ο」 vol%至50 vol%之範圍内。 29·如請求項27之自撐式膜,其中該等奈米棒之平均高度處 於5至500微米之範圍内。 30· -種如請求項27至29中任—項之自撐式膜之用途,其係 用為濾光器。 3工·-種如請求項27至29中任—項之自撐式膜之用途,其係 用為各向異性導電膜。 32. -種如請求項27至29中任—項之自撐式臈之用途,其係 用為熱介面材料。 33. —種器件,其包括: (a) —生熱元件, (b) —熱介面材料,及 (c) 一熱管理輔助設備; 其中該熱介面材料沿著一熱路徑炎置於該生熱元件 及該熱管理輔助設備之間,該熱路徑從該生熱元件之 一表面延伸至該熱管理輔助設備之一表面,其中該熱 介面材料包括如請求項27至29中任一項之自撐式膜’:、、 且該自樓式膜之該等奈米棒接觸該生熱元件之一表面 及該熱管理輔助設備之一表面。 34. -種方法’其包括在一生熱元件與一熱管理辅助設備之 間插入一熱介面材料,其中該熱介面材料係沿著一熱路 徑夾置其間,該熱路徑從該生熱元件之_表面延伸至該 熱管理輔助設備之—表面,其中該熱介面材料包括如請 128810.doc 200900443 求項27至29中任一項之自撐式膜,且該自撐式膜之該等 奈米棒接觸該生熱元件之一表面及該熱管理輔助設備之 一表面。 3 5.如請求項34之方法,其中該生熱元件包括一半導體晶 粒,且該熱管理輔助設備包括一散熱器或一均熱器。 128810.doc
TW97105469A 2007-02-22 2008-02-15 Process for preparing conductive films and articles prepared using the process TW200900443A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US90280407P 2007-02-22 2007-02-22

Publications (1)

Publication Number Publication Date
TW200900443A true TW200900443A (en) 2009-01-01

Family

ID=39488344

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97105469A TW200900443A (en) 2007-02-22 2008-02-15 Process for preparing conductive films and articles prepared using the process

Country Status (9)

Country Link
US (3) US8064203B2 (zh)
EP (1) EP2115046B1 (zh)
JP (1) JP5355423B2 (zh)
KR (1) KR20090115794A (zh)
CN (2) CN101636436B (zh)
AT (1) ATE474876T1 (zh)
DE (1) DE602008001879D1 (zh)
TW (1) TW200900443A (zh)
WO (1) WO2008103221A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2385016B1 (en) 2006-05-19 2018-08-08 Massachusetts Institute of Technology Continuous process for the production of nanostructures
US8337979B2 (en) 2006-05-19 2012-12-25 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
JP5518722B2 (ja) * 2008-09-18 2014-06-11 日東電工株式会社 カーボンナノチューブ集合体
CN101989583B (zh) * 2009-08-05 2013-04-24 清华大学 散热结构及使用该散热结构的散热系统
CN102792441B (zh) * 2010-03-12 2016-07-27 富士通株式会社 散热结构及其制造方法
KR101786951B1 (ko) * 2010-04-23 2017-10-19 삼성전자주식회사 초발수 코팅 조성물, 상기 조성물의 경화물을 포함하는 초발수 코팅층, 및 상기 초발수 코팅층을 포함하는 열교환기
CN104025290A (zh) * 2011-12-28 2014-09-03 东洋纺株式会社 绝缘导热片
CN103665772A (zh) * 2012-09-12 2014-03-26 南京理工大学 复合环氧树脂的碳纳米管阵列柔性热界面材料的制备方法
JP6359081B2 (ja) * 2013-04-18 2018-07-18 ナショナル リサーチ カウンシル オブ カナダ 窒化ホウ素ナノチューブ及びその製造方法
CN105308105A (zh) * 2013-06-19 2016-02-03 东洋纺株式会社 绝缘导热片
CN105359282B (zh) * 2013-07-29 2018-01-16 晶元光电股份有限公司 选择性转移半导体元件的方法
WO2015023716A1 (en) * 2013-08-13 2015-02-19 Lybradyn, Inc. Method of making nanoporous structures
JP6261352B2 (ja) * 2014-01-23 2018-01-17 新光電気工業株式会社 カーボンナノチューブシート及び半導体装置とカーボンナノチューブシートの製造方法及び半導体装置の製造方法
EP3102404B1 (en) * 2014-02-04 2021-06-30 NAWA America, Inc. Method for manufacture of nanostructure reinforced composites
US9482477B2 (en) * 2014-07-28 2016-11-01 Northrop Grumman Systems Corporation Nano-thermal agents for enhanced interfacial thermal conductance
US10350837B2 (en) 2016-05-31 2019-07-16 Massachusetts Institute Of Technology Composite articles comprising non-linear elongated nanostructures and associated methods
EP3681942A4 (en) 2017-09-15 2021-05-05 Massachusetts Institute of Technology LOW DEFAULT MANUFACTURING OF COMPOSITE MATERIALS
US11031657B2 (en) 2017-11-28 2021-06-08 Massachusetts Institute Of Technology Separators comprising elongated nanostructures and associated devices and methods, including devices and methods for energy storage and/or use
CN108766627A (zh) * 2018-05-15 2018-11-06 华南理工大学 一种银纳米网格柔性透明电极及其制备方法
WO2020145884A1 (en) * 2019-01-10 2020-07-16 Sembcorp Industries Ltd A method of forming a stretchable conductive carbon nanofilm
CN111909666A (zh) * 2020-08-12 2020-11-10 杭州英希捷科技有限责任公司 基于垂向碳纳米管阵列的非转移式热界面材料及其方法

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214244A (ja) * 1988-06-30 1990-01-18 Toray Dow Corning Silicone Co Ltd 加熱硬化性オルガノポリシロキサン組成物
US5239035A (en) * 1992-04-09 1993-08-24 Dow Corning Corporation Curable organosiloxane gel compositions
JP4121152B2 (ja) * 1996-04-29 2008-07-23 パーカー−ハニフイン・コーポレーシヨン 電子部品用の適合性熱境界面材料
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
WO1998040431A1 (en) * 1997-03-11 1998-09-17 Amoco Corporation Thermally conductive film and method for the preparation thereof
JP3183845B2 (ja) * 1997-03-21 2001-07-09 財団法人ファインセラミックスセンター カーボンナノチューブ及びカーボンナノチューブ膜の製造方法
US6129901A (en) * 1997-11-18 2000-10-10 Martin Moskovits Controlled synthesis and metal-filling of aligned carbon nanotubes
US5998515A (en) * 1997-12-29 1999-12-07 General Electric Company Liquid injection molding silicone elastomers having primerless adhesion
US6040366A (en) * 1998-02-27 2000-03-21 General Electric Company Liquid injection molding silicone elastomers having primerless adhesion
US6156256A (en) * 1998-05-13 2000-12-05 Applied Sciences, Inc. Plasma catalysis of carbon nanofibers
US5912805A (en) * 1998-11-04 1999-06-15 Freuler; Raymond G. Thermal interface with adhesive
AUPP976499A0 (en) * 1999-04-16 1999-05-06 Commonwealth Scientific And Industrial Research Organisation Multilayer carbon nanotube films
EP1059266A3 (en) * 1999-06-11 2000-12-20 Iljin Nanotech Co., Ltd. Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition
US20040009353A1 (en) * 1999-06-14 2004-01-15 Knowles Timothy R. PCM/aligned fiber composite thermal interface
US20070241303A1 (en) * 1999-08-31 2007-10-18 General Electric Company Thermally conductive composition and method for preparing the same
EP1149932A3 (en) * 2000-01-26 2003-09-10 Iljin Nanotech Co., Ltd. Thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotubes using the same
US6908572B1 (en) * 2000-07-17 2005-06-21 University Of Kentucky Research Foundation Mixing and dispersion of nanotubes by gas or vapor expansion
JP2002121404A (ja) * 2000-10-19 2002-04-23 Polymatech Co Ltd 熱伝導性高分子シート
JP4697829B2 (ja) * 2001-03-15 2011-06-08 ポリマテック株式会社 カーボンナノチューブ複合成形体及びその製造方法
US20020172767A1 (en) * 2001-04-05 2002-11-21 Leonid Grigorian Chemical vapor deposition growth of single-wall carbon nanotubes
WO2002082468A1 (en) * 2001-04-06 2002-10-17 World Properties Inc. Electrically conductive silicones and method of manufacture thereof
US6835591B2 (en) * 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
US6706402B2 (en) * 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
CN1182025C (zh) * 2001-09-26 2004-12-29 复旦大学 一种矩阵排列的碳纳米管的制备方法
KR20030028296A (ko) * 2001-09-28 2003-04-08 학교법인 한양학원 플라즈마 화학기상증착 장치 및 이를 이용한 탄소나노튜브제조방법
US6921462B2 (en) * 2001-12-17 2005-07-26 Intel Corporation Method and apparatus for producing aligned carbon nanotube thermal interface structure
SE0104452D0 (sv) * 2001-12-28 2001-12-28 Forskarpatent I Vaest Ab Metod för framställning av nanostrukturer in-situ, och in-situ framställda nanostrukturer
WO2003078317A1 (en) * 2002-03-14 2003-09-25 Carbon Nanotechnologies, Inc. Composite materials comprising polar polyers and single-wall carbon naotubes
US7335395B2 (en) * 2002-04-23 2008-02-26 Nantero, Inc. Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
US7438953B2 (en) * 2002-06-07 2008-10-21 The Board Of Regents For Oklahoma State University Preparation of the layer-by-layer assembled materials from dispersions of highly anisotropic colloids
US6695513B1 (en) * 2002-08-29 2004-02-24 Linda M. Malek Hair product application package and method of use
CN1248959C (zh) * 2002-09-17 2006-04-05 清华大学 一种碳纳米管阵列生长方法
CN1296994C (zh) * 2002-11-14 2007-01-24 清华大学 一种热界面材料及其制造方法
TWI250203B (en) * 2002-12-31 2006-03-01 Hon Hai Prec Ind Co Ltd Thermal interface material
US7560136B2 (en) * 2003-01-13 2009-07-14 Nantero, Inc. Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
US7666382B2 (en) * 2004-12-16 2010-02-23 Nantero, Inc. Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof
US7273095B2 (en) * 2003-03-11 2007-09-25 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nanoengineered thermal materials based on carbon nanotube array composites
US7479516B2 (en) * 2003-05-22 2009-01-20 Zyvex Performance Materials, Llc Nanocomposites and methods thereto
JP2005001942A (ja) * 2003-06-12 2005-01-06 Mitsubishi Gas Chem Co Inc 配向性カーボンナノチューブ膜の精製方法
US7112472B2 (en) * 2003-06-25 2006-09-26 Intel Corporation Methods of fabricating a composite carbon nanotube thermal interface device
US7118941B2 (en) * 2003-06-25 2006-10-10 Intel Corporation Method of fabricating a composite carbon nanotube thermal interface device
US7168484B2 (en) * 2003-06-30 2007-01-30 Intel Corporation Thermal interface apparatus, systems, and methods
US20050038188A1 (en) * 2003-08-14 2005-02-17 Dongchan Ahn Silicones having improved chemical resistance and curable silicone compositions having improved migration resistance
US7109581B2 (en) * 2003-08-25 2006-09-19 Nanoconduction, Inc. System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US20050061496A1 (en) * 2003-09-24 2005-03-24 Matabayas James Christopher Thermal interface material with aligned carbon nanotubes
US7378715B2 (en) * 2003-10-10 2008-05-27 General Electric Company Free-standing electrostatically-doped carbon nanotube device
US7374793B2 (en) * 2003-12-11 2008-05-20 International Business Machines Corporation Methods and structures for promoting stable synthesis of carbon nanotubes
TWI253467B (en) * 2003-12-23 2006-04-21 Hon Hai Prec Ind Co Ltd Thermal interface material and method for making same
CN100383213C (zh) * 2004-04-02 2008-04-23 清华大学 一种热界面材料及其制造方法
CN100345472C (zh) * 2004-04-10 2007-10-24 清华大学 一种热界面材料及其制造方法
CN1290764C (zh) * 2004-05-13 2006-12-20 清华大学 一种大量制造均一长度碳纳米管的方法
US20050255304A1 (en) * 2004-05-14 2005-11-17 Damon Brink Aligned nanostructure thermal interface material
US7169250B2 (en) * 2004-07-27 2007-01-30 Motorola, Inc. Nanofibrous articles
US7351360B2 (en) * 2004-11-12 2008-04-01 International Business Machines Corporation Self orienting micro plates of thermally conducting material as component in thermal paste or adhesive
JP2006147801A (ja) 2004-11-18 2006-06-08 Seiko Precision Inc 放熱シート、インターフェース、電子部品及び放熱シートの製造方法
CN1837147B (zh) * 2005-03-24 2010-05-05 清华大学 热界面材料及其制备方法
CN100337981C (zh) * 2005-03-24 2007-09-19 清华大学 热界面材料及其制造方法
CN1841713A (zh) * 2005-03-31 2006-10-04 清华大学 热界面材料及其制作方法
CN100404242C (zh) * 2005-04-14 2008-07-23 清华大学 热界面材料及其制造方法
CN100358132C (zh) * 2005-04-14 2007-12-26 清华大学 热界面材料制备方法
US20060258054A1 (en) * 2005-05-11 2006-11-16 Molecular Nanosystems, Inc. Method for producing free-standing carbon nanotube thermal pads
US20060255450A1 (en) * 2005-05-11 2006-11-16 Molecular Nanosystems, Inc. Devices incorporating carbon nanotube thermal pads
US20070116626A1 (en) * 2005-05-11 2007-05-24 Molecular Nanosystems, Inc. Methods for forming carbon nanotube thermal pads
US20070116957A1 (en) * 2005-05-11 2007-05-24 Molecular Nanosystems, Inc. Carbon nanotube thermal pads
CN100454526C (zh) * 2005-06-30 2009-01-21 鸿富锦精密工业(深圳)有限公司 热界面材料制造方法
CN101054467B (zh) * 2006-04-14 2010-05-26 清华大学 碳纳米管复合材料及其制备方法
US7476339B2 (en) * 2006-08-18 2009-01-13 Saint-Gobain Ceramics & Plastics, Inc. Highly filled thermoplastic composites

Also Published As

Publication number Publication date
US8064203B2 (en) 2011-11-22
CN101636436B (zh) 2014-04-16
US20120034422A1 (en) 2012-02-09
CN101636436A (zh) 2010-01-27
US20120034418A1 (en) 2012-02-09
ATE474876T1 (de) 2010-08-15
US20100061063A1 (en) 2010-03-11
WO2008103221A1 (en) 2008-08-28
DE602008001879D1 (de) 2010-09-02
KR20090115794A (ko) 2009-11-06
JP5355423B2 (ja) 2013-11-27
EP2115046A1 (en) 2009-11-11
CN103588984A (zh) 2014-02-19
EP2115046B1 (en) 2010-07-21
JP2010519162A (ja) 2010-06-03

Similar Documents

Publication Publication Date Title
TW200900443A (en) Process for preparing conductive films and articles prepared using the process
Dai et al. Metal-level thermally conductive yet soft graphene thermal interface materials
CN101054467B (zh) 碳纳米管复合材料及其制备方法
Cheng et al. Stretchable thin‐film electrodes for flexible electronics with high deformability and stretchability
JP5239768B2 (ja) 放熱材料並びに電子機器及びその製造方法
Zheng et al. Highly stable and conductive microcapsules for enhancement of joule heating performance
Haberkorn et al. Template-assisted fabrication of free-standing nanorod arrays of a hole-conducting cross-linked triphenylamine derivative: toward ordered bulk-heterojunction solar cells
Zhu et al. Well-aligned open-ended carbon nanotube architectures: an approach for device assembly
CN105579393B (zh) 石墨片、其制造方法、配线用层叠板、石墨配线材料和配线板的制造方法
Lynch et al. Organizing carbon nanotubes with liquid crystals
Warzoha et al. Engineering interfaces in carbon nanostructured mats for the creation of energy efficient thermal interface materials
Wang et al. Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal conductive composite film
JP2010519162A5 (zh)
TW200951210A (en) Sheet structure and method of manufacturing sheet structure
US20120285673A1 (en) Nanostructured composite polymer thermal/electrical interface material and method for making the same
JP5447069B2 (ja) シート状構造体、電子機器及び電子機器の製造方法
JP2009298691A (ja) 電歪複合材料及びその製造方法
Jiang et al. Vertically stacked carbon nanotube-based interconnects for through silicon via application
JP5563945B2 (ja) 垂直配向カーボンナノチューブの成長密度制御方法
Li et al. Low-resistivity long-length horizontal carbon nanotube bundles for interconnect applications—Part I: Process development
Yan et al. Fabrication of three-dimensional ZnO− Carbon Nanotube (CNT) hybrids using self-assembled CNT micropatterns as framework
Huang et al. Fabrication and electromechanical characterization of near-field electrospun composite fibers
US20120280422A1 (en) Method of fabricating shape memory polymer-based three-dimensional devices
CN108929541A (zh) 碳纳米管复合结构及其制备方法
US20180354232A1 (en) Method for making composite structure with porous metal