CN101624216A - 一种纳米氧化镍的制备方法 - Google Patents

一种纳米氧化镍的制备方法 Download PDF

Info

Publication number
CN101624216A
CN101624216A CN200810116445A CN200810116445A CN101624216A CN 101624216 A CN101624216 A CN 101624216A CN 200810116445 A CN200810116445 A CN 200810116445A CN 200810116445 A CN200810116445 A CN 200810116445A CN 101624216 A CN101624216 A CN 101624216A
Authority
CN
China
Prior art keywords
accordance
nickel
aqueous solution
ligand
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200810116445A
Other languages
English (en)
Other versions
CN101624216B (zh
Inventor
关莉莉
汪颖
吴佳
舒兴田
慕旭宏
罗一斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN2008101164450A priority Critical patent/CN101624216B/zh
Publication of CN101624216A publication Critical patent/CN101624216A/zh
Application granted granted Critical
Publication of CN101624216B publication Critical patent/CN101624216B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种纳米氧化镍的制备方法,先用配位体水溶液和镍盐水溶液反应,制得镍配合物溶液;然后向镍配合物溶液中加入沉淀剂溶液,制得氢氧化镍,经干燥、焙烧后,得到纳米氧化镍。本发明的方法具有工艺简单、操作方便的特点,且在制备过程中不需要使用表面活性剂,环境污染小。

Description

一种纳米氧化镍的制备方法
技术领域
本发明涉及一种纳米氧化镍的制备方法,特别涉及一种采用配位沉淀法制备纳米氧化镍的方法。
背景技术
氧化镍可用于搪瓷的密着剂、陶瓷和玻璃的颜料,也可用于磁性材料、冶金和显像管行业。纳米氧化镍具有大的比表面积和孔体积以及大量处于晶界和晶粒内缺陷的中心原子,是一种新型催化材料、电极材料、磁性材料和气敏材料。
目前,纳米氧化镍材料的制备大多通过使用表面活性剂实现,制备过程复杂。例如,CN1887728A公布了一种用于电化学电容器的氧化镍及其制备方法,其采用硝酸镍为镍源,草酸钠和氢氧化钠为沉淀剂,吐温-80为表面活性剂,经液相沉淀、老化和250~350℃热分解等过程制得晶粒大小为8~15nm氧化镍纳米颗粒,比表面积为150~250m2/g。该方法可制备纳米氧化镍材料,但在制备过程中需要使用表面活性剂,存在制备过程复杂,环境不友好,以及氧化镍纳米材料耐高温性能较差等缺点。
CN1616355A公布了一种利用配位均匀沉淀法制备纳米氢氧化镍的方法,该方法以镍盐为原料,氨水为配位剂,先合成水溶性的六氨合镍配合物的溶液,再通过加水稀释或分解该配合物释放出氨,在表面活性剂存在下使金属镍离子均匀地析出,与溶液中的氢氧根反应生成氢氧化镍,经过滤、稀氨水和有机溶剂洗涤、烘干后得纳米氢氧化镍。该方法同样存在制备过程复杂,需使用表面活性剂、污染环境和制备成本高等缺点。
发明内容
本发明要解决的技术问题是提供一种纳米氧化镍的制备方法,该方法不需使用表面活性剂,所得到的氧化镍的晶粒度小、耐热性能更好。
一种纳米氧化镍的制备方法,包括以下步骤:
(1)用配位体水溶液和镍盐水溶液反应,得到镍配合物溶液;
(2)将沉淀剂水溶液加入到步骤(1)的镍配合物溶液中,反应生成沉淀,经过滤、洗涤、干燥、焙烧,得到纳米氧化镍;
所说的配位体是1gβ≤5的配位体,β表示配位体与Ni2+在25℃和离子强度I=0时的配合物形成常数;
所说的沉淀剂是能在水中产生OH-、CO3 -2-OOCCOO-的物质。
步骤(1)中,配位体选自CH3COO-、SCN-和SO4 2-中的一种或几种。
步骤(1)中,镍盐选自水溶性镍盐,例如硝酸镍、氯化镍、溴化镍、碘化镍和硫酸镍中的一种或几种。
步骤(1)中,镍盐水溶液的浓度为0.05~3mol/L,优选为0.5~2mol/L。
步骤(1)中,配位体水溶液的浓度为0.01~3mol/L,优选为0.5~2mol/L。
步骤(1)中,配位体与镍盐的摩尔比为0.5∶1~3∶1。
步骤(1)中,反应温度为10~95℃,优选为30~60℃。
步骤(1)中,反应时间为0.1~24h,优选为0.5~2h。
步骤(2)中,沉淀剂选自氨水、尿素、氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、碳酸铵、碳酸氢铵、草酸、草酸钠和草酸钾中的一种或几种。
步骤(2)中,沉淀剂水溶液的浓度为0.05~3mol/L,优选为0.5~2mol/L。
沉淀剂与镍盐的摩尔比为1∶1~3∶1。
步骤(2)中,反应温度为10~95℃,优选为30~60℃。
步骤(2)中,反应时间为0.1~24h,优选为3~8h。
步骤(2)中,干燥温度为80~130℃;焙烧温度为300~600℃,焙烧时间为2~8h。
本发明采用配位沉淀法制备纳米氧化镍,所得到的氧化镍的晶粒度小、耐热性能更好;同时,本发明具有方法简单、操作方便的优点,且在制备过程中不需要使用表面活性剂,环境污染小。
具体实施方式
以下结合实施例进一步阐述本发明。
实施例1
量取1.0mol/L的硝酸镍溶液200mL,控制溶液温度为40℃。另配制0.5mol/L的乙酸钠溶液500mL,加入上述的硝酸镍溶液中,在40℃混合搅拌0.5h。再配制2.0mol/L的氢氧化钠溶液200mL,预热到40℃后加入到硝酸镍和乙酸钠的混合溶液中,立刻产生氢氧化镍沉淀。加料完毕后,混合物继续在40℃搅拌老化5h。老化后将混合物过滤,用去离子水洗涤,并在110℃烘干得氢氧化镍粉末。将上述的氢氧化镍粉末在450℃焙烧5h,得到黑绿色的固体粉末,X射线粉末衍射表明此粉末为纯相的氧化镍。由X射线衍射峰的宽化经谢乐公式计算得到此氧化镍的平均晶粒度为7nm,氮吸附法测得氧化镍的比表面积为128m2/g,孔体积为0.21mL/g。
对比例1
量取1.0mol/L的硝酸镍溶液200mL,控制溶液温度为40℃。配制2.0mol/L的氢氧化钠溶液200mL,预热到40℃后加入到硝酸镍溶液中,立刻产生氢氧化镍沉淀。加料完毕后,混合物继续在40℃搅拌老化5h。老化后将混合物过滤,用去离子水洗涤,并在110℃烘干得氢氧化镍粉末。将上述的氢氧化镍粉末在450℃焙烧5h,得到黑绿色的固体粉末,X射线粉末衍射表明此粉末为纯相的氧化镍。由X射线衍射峰的宽化经谢乐公式计算得到此氧化镍的平均晶粒度为44nm,氮吸附法测得氧化镍的比表面积为20m2/g,孔体积为0.11mL/g。
实施例2
取1.5mol/L氯化镍溶液100mL,调节溶液的温度到50℃。向此氯化镍溶液中加入1.0mol/L乙酸铵溶液300mL,并在50℃下继续搅拌1h得到澄清的溶液。配制1.5mol/L的碳酸钠溶液100mL并预热到50℃,将碳酸钠溶液加入上述的混合溶液中,溶液中立刻产碱式碳酸镍沉淀。将此沉淀在50℃下继续老化5h。沉淀经过滤、去离子水洗涤,110℃烘干后,将得到的碱式碳酸镍粉末在400℃焙烧6h,得到黑绿色的固体粉末,X射线粉末衍射表明此粉末为纯相的氧化镍。由X射线衍射峰的宽化经谢乐公式计算得到此氧化镍的平均晶粒度为10nm,氮吸附法测得氧化镍的比表面积为78m2/g,孔体积为0.22mL/g。
对比例2
取1.5mol/L氯化镍溶液100mL,调节溶液的温度到50℃。配制1.5mol/L的碳酸钠溶液100mL并预热到50℃,将碳酸钠溶液加入上述的氯化镍溶液中,溶液中立刻产生碱式碳酸镍沉淀。将此沉淀在50℃下继续老化5h。沉淀经过滤、去离子水洗涤,110℃烘干后,将得到碱式碳酸镍粉末在400℃焙烧6h,得到黑绿色的固体粉末,X射线粉末衍射表明此粉末为纯相的氧化镍。由X射线衍射峰的宽化经谢乐公式计算得到此氧化镍的平均晶粒度为40nm,氮吸附法测得氧化镍的比表面积为22m2/g,孔体积为0.12mL/g。
实施例3
量取2.0mol/L的硝酸镍溶液100mL,控制溶液温度为60℃。另配制1.0mol/L的硫酸钠溶液200mL,加入上述的硝酸镍溶液中,在60℃混合搅拌1.0h。再配制1.0mol/L的草酸溶液200mL,预热到60℃后加入到硝酸镍和硫酸钠的混合溶液中,立刻产生草酸镍的沉淀。加料完毕后,混合物继续在60℃搅拌老化6h。老化后将混合物过滤,用去离子水洗涤,并在120℃烘干得草酸镍粉末。将上述的草酸镍粉末在450℃焙烧6h,得到黑绿色的固体粉末,X射线粉末衍射表明此粉末为纯相的氧化镍。由X射线衍射峰的宽化经谢乐公式计算得到此氧化镍的平均晶粒度为16nm,氮吸附法测得氧化镍的比表面积为58m2/g,孔体积为0.18mL/g。
对比例3
量取2.0mol/L的硝酸镍溶液100mL,控制溶液温度为60℃。再配制1.0mol/L的草酸溶液200mL,预热到60℃后加入上述硝酸镍溶液中,立刻产生草酸镍的沉淀。加料完毕后,混合物继续在60℃搅拌老化6h。老化后将混合物过滤,用去离子水洗涤,并在120℃烘干得草酸镍粉末。将上述的草酸镍粉末在450℃焙烧6h,得到黑绿色的固体粉末,X射线粉末衍射表明此粉末为纯相的氧化镍。由X射线衍射峰的宽化经谢乐公式计算得到此氧化镍的平均晶粒度为59nm,氮吸附法测得氧化镍的比表面积为14m2/g,孔体积为0.08mL/g。
实施例4
取1.0mol/L氯化镍溶液100mL,调节溶液的温度到40℃。向此氯化镍溶液中加入1.0mol/L硫氰化铵溶液250mL,并在40℃下继续搅拌1h。配制1.2mol/L的碳酸钾溶液100mL并预热到40℃,将碳酸钾溶液加入上述的混合溶液中,溶液中立刻产生碱式碳酸镍沉淀。将此沉淀在40℃下继续老化5h。沉淀经过滤、去离子水洗涤,110℃烘干后,将得到碱式碳酸镍粉末在380℃焙烧7h,得到黑绿色的固体粉末,X射线粉末衍射表明此粉末为纯相的氧化镍。由X射线衍射峰的宽化经谢乐公式计算得到此氧化镍的平均晶粒度为8nm,氮吸附法测得氧化镍的比表面积为115m2/g,孔体积为0.19mL/g。
对比例4
取1.0mol/L氯化镍溶液100mL,调节溶液的温度到40℃。配制1.2mol/L的碳酸钾溶液100mL并预热到40℃,将碳酸钾溶液加入上述的氯化镍溶液中,溶液中立刻产生碱式碳酸镍沉淀。将此沉淀在40℃下继续老化5h。沉淀经过滤、去离子水洗涤,110℃烘干后,将得到碱式碳酸镍粉末在380℃焙烧7h,得到黑绿色的固体粉末,X射线粉末衍射表明此粉末为纯相的氧化镍。由X射线衍射峰的宽化经谢乐公式计算得到此氧化镍的平均晶粒度为29nm,氮吸附法测得氧化镍的比表面积为27m2/g,孔体积为0.12mL/g。

Claims (21)

1.一种纳米氧化镍的制备方法,包括以下步骤:
(1)用配位体水溶液和镍盐水溶液反应,得到镍配合物溶液;
(2)将沉淀剂水溶液加入到步骤(1)的镍配合物溶液中,反应,经过滤、洗涤、干燥、焙烧,得到纳米氧化镍;
所说的配位体是1gβ≤5的配位体,β表示配位体与Ni2+在25℃和离子强度I=0时的配合物形成常数;
所说的沉淀剂是能在水中产生OH-、CO3 -2-OOCCOO-的物质。
2.按照权利要求1所述的方法,其特征在于,步骤(1)中,配位体选自CH3COO-、SCN-和SO4 2-中的一种或几种。
3.按照权利要求1所述的方法,其特征在于,步骤(1)中,镍盐选自硝酸镍、氯化镍、溴化镍、碘化镍和硫酸镍中的一种或几种。
4.按照权利要求1所述的方法,其特征在于,步骤(1)中,镍盐水溶液的浓度为0.05~3mol/L。
5.按照权利要求4所述的方法,其特征在于,步骤(1)中,镍盐水溶液的浓度为0.5~2mol/L。
6.按照权利要求1所述的方法,其特征在于,步骤(1)中,配位体水溶液的浓度为0.01~3mol/L。
7.按照权利要求6所述的方法,其特征在于,步骤(1)中,配位体水溶液的浓度为0.5~2mol/L。
8.按照权利要求1所述的方法,其特征在于,配位体与镍盐的摩尔比为0.5∶1~3∶1。
9.按照权利要求1所述的方法,其特征在于,步骤(1)中,反应温度为10~95℃。
10.按照权利要求9所述的方法,其特征在于,步骤(1)中,反应温度为30~60℃。
11.按照权利要求1所述的方法,其特征在于,步骤(1)中,反应时间为0.1~24h。
12.按照权利要求11所述的方法,其特征在于,步骤(1)中,反应时间为0.5~2h。
13.按照权利要求1所述的方法,其特征在于,步骤(2)中,沉淀剂选自氨水、尿素、氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、碳酸铵、碳酸氢铵、草酸、草酸钠和草酸钾中的一种或几种。
14.按照权利要求1所述的方法,其特征在于,步骤(2)中,沉淀剂水溶液的浓度为0.05~3mol/L。
15.按照权利要求14所述的方法,其特征在于,步骤(2)中,沉淀剂水溶液的浓度为0.5~2mol/L。
16.按照权利要求1所述的方法,其特征在于,沉淀剂与镍盐的摩尔比为1∶1~3∶1。
17.按照权利要求1所述的方法,其特征在于,步骤(2)中,反应温度为10~95℃。
18.按照权利要求17所述的方法,其特征在于,步骤(2)中,反应温度为30~60℃。
19.按照权利要求1所述的方法,其特征在于,步骤(2)中,反应时间为0.1~24h。
20.按照权利要求19所述的方法,其特征在于,步骤(2)中,反应时间为3~8h。
21.按照权利要求1所述的方法,其特征在于,步骤(2)中,焙烧温度为300~600℃,焙烧时间为2~8h。
CN2008101164450A 2008-07-10 2008-07-10 一种纳米氧化镍的制备方法 Active CN101624216B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101164450A CN101624216B (zh) 2008-07-10 2008-07-10 一种纳米氧化镍的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101164450A CN101624216B (zh) 2008-07-10 2008-07-10 一种纳米氧化镍的制备方法

Publications (2)

Publication Number Publication Date
CN101624216A true CN101624216A (zh) 2010-01-13
CN101624216B CN101624216B (zh) 2011-07-20

Family

ID=41520232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101164450A Active CN101624216B (zh) 2008-07-10 2008-07-10 一种纳米氧化镍的制备方法

Country Status (1)

Country Link
CN (1) CN101624216B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830523A (zh) * 2010-06-09 2010-09-15 华中科技大学 一种镍基氧化物纳米结构的制备方法
CN102139931B (zh) * 2010-01-29 2012-08-01 中国石油化工股份有限公司 纳米氧化镍的制备方法
CN103754913A (zh) * 2014-01-28 2014-04-30 复旦大学 一种氢氧化铝纳米颗粒材料的简易制备方法
CN104891581A (zh) * 2015-05-22 2015-09-09 重庆大学 氧化镍针状边缘纳米花的制备方法
CN109987654A (zh) * 2017-12-29 2019-07-09 荆门市格林美新材料有限公司 一种小粒径碱式碳酸镍的制备方法
CN109987652A (zh) * 2017-12-29 2019-07-09 荆门市格林美新材料有限公司 一种小粒径、类球状碱式碳酸镍的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1887728A (zh) * 2006-06-09 2007-01-03 江西财经大学 用于电化学电容器的氧化镍及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102139931B (zh) * 2010-01-29 2012-08-01 中国石油化工股份有限公司 纳米氧化镍的制备方法
CN101830523A (zh) * 2010-06-09 2010-09-15 华中科技大学 一种镍基氧化物纳米结构的制备方法
CN103754913A (zh) * 2014-01-28 2014-04-30 复旦大学 一种氢氧化铝纳米颗粒材料的简易制备方法
CN103754913B (zh) * 2014-01-28 2016-08-17 复旦大学 一种氢氧化铝纳米颗粒材料的简易制备方法
CN104891581A (zh) * 2015-05-22 2015-09-09 重庆大学 氧化镍针状边缘纳米花的制备方法
CN109987654A (zh) * 2017-12-29 2019-07-09 荆门市格林美新材料有限公司 一种小粒径碱式碳酸镍的制备方法
CN109987652A (zh) * 2017-12-29 2019-07-09 荆门市格林美新材料有限公司 一种小粒径、类球状碱式碳酸镍的制备方法

Also Published As

Publication number Publication date
CN101624216B (zh) 2011-07-20

Similar Documents

Publication Publication Date Title
CN101624216B (zh) 一种纳米氧化镍的制备方法
CN101624215B (zh) 纳米氧化镍的制备方法
JP5852270B2 (ja) フィッシャー・トロプシュ合成のCo−Ru/Al2O3廃触媒からの金属コバルト、ルテニウムおよびアルミニウムの包括的回収方法
CN103407969B (zh) 一种三维有序大孔-介孔金属氧化物或复合氧化物的气相渗透-沉淀制备方法及所得产品
KR100427005B1 (ko) 구상으로 응집된 염기성 탄산코발트(ii) 및 구상으로 응집된 수산화코발트(ii), 그의 제조방법 및 그의 용도
CN101372353A (zh) 超声雾化工艺制备纳米CeO2粉体的方法
CN102070206A (zh) 一种纳米氧化镍的制备方法
CN106558695A (zh) 一种镍钴铝复合氢氧化物、镍钴铝复合氧化物及其制备方法
CN102441675B (zh) 高结晶度球形银粉的制备方法
CN110040782A (zh) 一种二氧化锰、及其制备方法和用途
CN101830498A (zh) Ito粉末及ito烧结体的制备方法
CN102139931B (zh) 纳米氧化镍的制备方法
CN103626222B (zh) 一种微米级二氧化锡粉体的制备方法
CN100554204C (zh) 纳米级氧化铟锡复合粉体的制备方法
CN102838145B (zh) 一种合成高比表面镁铝尖晶石的方法
CN102070179B (zh) 球形碳酸盐三元前驱体的制备方法
CN103949271A (zh) 一种钴锰水滑石负载纳米金催化剂及其制备方法
CN109569642A (zh) 一种含铜-锰的双组分氧化物的共沉淀制备方法
CN107915255A (zh) 纳米氧化锆的制备方法及其制备的纳米氧化锆
CN103551154B (zh) 马来酸二甲酯加氢催化剂的制备方法及催化方法
CN102070207B (zh) 制备纳米氧化镍的方法
CN107326192A (zh) 从汽车尾气催化剂中回收铑的方法
CN110857222A (zh) 三氧化二钒粉体的制备方法
CN112619662B (zh) 一种生产低碳烯烃的催化剂及其制备方法和应用
JPH06234522A (ja) 導電性材料およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant