CN101595250A - 用于制备第ⅲ-ⅴ族化合物半导体的方法 - Google Patents

用于制备第ⅲ-ⅴ族化合物半导体的方法 Download PDF

Info

Publication number
CN101595250A
CN101595250A CNA2008800033243A CN200880003324A CN101595250A CN 101595250 A CN101595250 A CN 101595250A CN A2008800033243 A CNA2008800033243 A CN A2008800033243A CN 200880003324 A CN200880003324 A CN 200880003324A CN 101595250 A CN101595250 A CN 101595250A
Authority
CN
China
Prior art keywords
raw material
reactor
iii
family
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008800033243A
Other languages
English (en)
Inventor
土田良彦
秦雅彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of CN101595250A publication Critical patent/CN101595250A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45585Compression of gas before it reaches the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明提供一种用于制备第III-V族化合物半导体的方法,所述方法包括如下步骤:将第III族原料、第V族原料、载气以及必要时的其它原料供给到反应器中,以在所述反应器中的基板上通过有机金属气相外延法生长第III-V族化合物半导体,其中将所述第III族原料和所述第V族原料独立地供给到所述反应器中,并且将卤化氢与除所述第V族原料以外的原料或所述载气一起供给到所述反应器中。

Description

用于制备第Ⅲ-Ⅴ族化合物半导体的方法
技术领域
本发明涉及一种用于制备第III-V族化合物半导体的方法,以及在所述方法中使用的有机金属气相生长用反应器。
背景技术
通过有机金属的热分解在基板上连续外延生长所需单晶薄膜层的方法,即,有机金属气相外延(下面称作“MOVPE”),通常被广泛用于获得在第III-V族化合物半导体装置的制备中使用的化合物半导体,比如氮化物半导体。
近年来,提出了各种方法作为以高生长速率外延生长氮化物半导体的方法。例如,提出了氢化物气相外延法(下面,称作“HVPE”)(JP2000-12900A、JP 2000-22212A和JP 2003-178984A)。此外,提出了有机金属氯化物法(下面,称作“MO氯化物法”),其中用于Ga源的有机金属被氯化,并且使所得产物与氨进行反应以生长氮化物半导体。在这些方法中,反应器必需具有热壁结构。
注意到,通过使用冷壁在MOVPE反应器中以高生长速率生长氮化物半导体的方法大规模生产出高质量的第III-V族化合物半导体装置。例如,作为这样的方法,提出了通过如下步骤在具有高的散热性的GaN基板上制备LED的方法:在HVPE反应器中,在蓝宝石基板上生长膜厚度为几十μm以上的n-型GaN底层,在MOVPE反应器中生长发光层(量子阱结构)或空穴传输层,以及用激光分离蓝宝石基板(WO2005/112080A1)。
然而,当在HVPE反应器中生长作为底层的n-型氮化物半导体,以及接着在MOVPE反应器中生长发光层和功能层比如空穴传输层时,必需的是,在HVPE反应器中生长n-型半导体并使其冷却之后,将该n-型半导体从HVPE反应器中取出,并且放置在另一个MOVPE反应器中,之后加热以升高温度,由此生长功能层。尽管可以在HVPE反应器中以高的生长速率(约100μm/hr)生长半导体,但是生产节拍时间(tact time)已经被极大地损害。
在通过常规MOVPE生长n-型半导体层和功能层的情况下,生长速率为约5μm/hr,例如,生长膜厚度为20μm的层需要约4小时。另一方面,提高生长速率导致Ga金属以液滴形状析出在GaN晶体表面上的问题。
发明内容
本发明的一个目的是提供一种用于制备第III-V族化合物半导体的方法,从而解决上述问题。
本发明的另一个目的是提供一种用于有机金属气相生长的反应器,所述反应器用于通过冷壁以高的生长速率和良好的效率生长第III-V族化合物半导体。
作为认真研究的结果,本发明人实现了本发明的完成。
即,本发明人提供了下面的(1)至(4)方面。
(1)一种用于制备第III-V族化合物半导体的方法,所述方法包括如下步骤:将第III族原料、第V族原料、载气以及必要时的其它原料供给到反应器中,以在所述反应器中的基板上通过有机金属气相外延法生长第III-V族化合物半导体,其中将所述第III族原料和所述第V族原料独立地供给到所述反应器中,并且将卤化氢与除所述第V族原料以外的原料或所述载气一起供给到所述反应器中。
(2)在(1)中所述的方法,其中第V族元素是氨。
(3)在(1)或(2)中所述的方法,其中所述卤化氢是氯化氢。
(4)一种用于有机金属气相生长的反应器,所述反应器包括:用于供给原料的入口;用于在其上放置生长用基板的基座;以及用于冷却原料的水冷装置,其中所述反应器具有冷壁型结构,并且所述水冷装置被安置在所述基座的上游侧。
(5)在(4)中所述的反应器,其中所述水冷装置被安置在所述入口和所述基座之间。
附图简述
图1显示半导体制备装置的概略图。
图2显示GaN层的生长速率(μm/H)和HCl供给速率(sccm)之间的关系。
图3显示GaN层的(0004)的X射线半宽度和HCl供给速率(sccm)之间的关系。
符号说明
1半导体制备装置
2反应装置(用于气相生长的反应器)
3供给原料用的装置
21主体
21A一个端部
22基座
31第一供给通道
32第二供给通道
33第三供给通道
34第四供给通道
31A至34A排出口
S基板
G1载气
G2第II族原料
G3第III族原料
G4第V族原料
实施本发明的最佳方式
本发明的用于制备第III-V族化合物半导体的方法包括如下步骤:将第III族原料、第V族原料、载气以及必要时的其它原料供给到反应器中,以在反应器中的基板上通过有机金属气相外延法生长第III-V族化合物半导体。
在这种方法中,将第III族原料和第V族原料独立供给到反应器中。
而且,将氯化氢与除第V族原料以外的原料或载气一起供给到反应器中。
第III族原料的实例包括由式R1R2R3Ga(其中R1、R2和R3表示低级烷基)表示的三烷基镓比如三甲基镓((CH3)3Ga,下面称作“TMG”)以及三乙基镓((C2H5)3Ga,下面称作“TEG”);由式R1R2R3Al(其中R1、R2和R3表示低级烷基)表示的三烷基铝比如三甲基铝((CH3)3Al,下面称作“TMA”)、三乙基铝((C2H5)3Al,下面称作“TEA”)和三异丁基铝((i-C4H9)3Al);三甲基胺铝烷((CH3)3N:AlH3);由式R1R2R3In(其中R1、R2和R3表示低级烷基)表示的三烷基铟比如三甲基铟((CH3)3In,下面称作“TMI”)和三乙基铟((C2H5)3In);其中三烷基铟中的一个或两个烷基被一个或多个卤素原子取代的化合物,比如氯化二乙基铟(C2H5)2InCl);以及由式InX(其中X表示卤素原子)表示的卤化铟,比如氯化铟(InCl)。这些化合物可以单独地或以其混合物形式使用。在第III族原料中,优选TMG作为镓源,优选TMA作为铝源以及优选TMI作为铟源。
第V族原料的实例包括氨、肼、甲基肼、1,1-二甲基肼、1,2-二甲基肼、叔丁基胺和乙二胺。这些化合物可以单独地或以其混合物形式使用。在第V族原料中,优选氨和肼,并且更优选氨。
其它原料包括n-型掺杂剂和p-型掺杂剂的原料。用作n-型掺杂剂的原料的实例包括硅烷、乙硅烷、锗烷和四甲基锗。p-型掺杂剂的实例包括Mg、Zn、Cd、Ca和Be,优选Mg和Ca。用作p-型掺杂剂的Mg原料的实例包括双环戊二烯基锗((C5H5)2Mg)、双甲基环戊二烯基锗((C5H4CH3)2Mg)和双乙基环戊二烯基锗((C5H4C2H5)2Mg)。Ca原料的实例包括双环戊二烯基钙((C5H5)2Ca)及其衍生物,比如双甲基环戊二烯基钙((C5H4CH3)2Ca)、双乙基环戊二烯基钙((C5H4C2H5)2Ca)和双全氟环戊二烯基钙((C5F5)2Ca);二-1-萘基钙及其衍生物;以及乙炔化钙(calcium acetylide)及其衍生物,比如双(4,4-二氟-3-丁烯-1-炔)-钙和双苯基乙基钙。这些化合物可以单独地或以其混合物形式使用。
第III族原料、第V族原料和其它原料通常以气体形式供给。
卤化氢的实例包括氯化氢和溴化氢,并且优选氯化氢。按1mmol的第III族原料的量计,卤化氢气体的量通常为约1cc以上,并且优选2cc以上,并且通常为约50cc以下,并且优选约20cc以下。所述量(体积)是基于标准态的。
载气的实例包括氮、氢、氩和氦,并且优选氢。这些气体可以单独地或以其混合物形式使用。
生长在通常条件下进行。例如,生长在约1,000℃至约1,300℃并且优选约1,100℃至约1,200℃的生长温度进行。
参考附图,描述本发明的实施方案。
图1显示了在本发明的制备方法中使用的半导体制备装置1的概略图。
半导体制备装置1制备例如GaN-基第III-V族化合物半导体晶片,比如InGaAlN,或GaAs-基第III-V族化合物半导体晶片。
半导体制备装置1包括反应装置(用于气相生长的反应器)2和原料供给装置3,所述原料供给装置3用于将原料等单独供给到反应装置2中。
反应装置2包括主体21以及基座22,所述主体21包括石英管等,所述基座22用于将基板S设置到主体21上。反应装置2具有冷壁型结构,因而基座22通过安置在基座22附近的加热装置(未显示)比如高频感应加热线圈或红外灯加热,由此可以将设置到基座22上的基板S加热至所需的温度。
反应装置2是立式反应器形式,并且具有例如可以设置1个2-英寸基板的构造。反应装置2不限于立式反应器形式,并且可以是其它形式。
原料供给装置3将必需的原料和载气供给到反应装置2以通过MOCVD法在反应装置2中的基板S上生长第III-V族化合物半导体的单晶薄膜层。
原料供给装置3包括用于将载气供给到反应装置2的第一供给通道31、用于将第II族原料供给到反应装置2的第二供给通道32、用于将第III族原料供给到反应装置2的第三供给通道33以及用于将第V族原料供给到反应装置2的第四供给通道34。载气G1、第II族原料G2、第III族原料G3和第V族原料G4分别供给。
在反应装置21的一个端部21A打开原料供给装置3的第一至第四供给通道31至34的各个排出口31A至34A。将载气G1和原料G2、G3、G4和G5以相互独立的状态供给到主体21。从排出口31A至34A供给到反应装置21的载气和原料沿着反应装置21的箭头A方向流动,并且经由基板S的表面(图1中为基板S的上表面),从安置在反应装置21的另一端的出口边缘(未显示)排出。通常在用于处理排出气体的装置中处理排出气体。
如图1所示,反应装置21具有这样的结构:一个端部21A的直径大,该直径朝其上设置基板S的部分减小,并且排出口31A至34A朝基板S敞开。载气G1从位于最上面的第一供给通道31排出。原料从位于第一供给通道31下面的第二至第四供给通道32至34排出。因此,原料G2、G3和G4通过载气G1的作用被喷送到基板S的表面上。
相对于基座22的位置,在流向箭头A方向的原料的上游侧,安置用于冷却流向基板S的原料的水冷机构4。水冷机构4包含由钼(Mo)制备的冷却器主体41以及在冷却器主体41上的由氮化硼(BN)制备的保护板42。
在到达基板S之前的时间期间,通过水冷机构4冷却从反应装置21的一端21A供给到反应装置21的原料。因此,有效地防止原料在到达基板S之前分解。而且,抑制了卤化氢和氨之间的副反应。
在冷却器主体41上安置保护板42。因此,当原料通过水冷机构4时,原料被冷却,同时有效地防止原料被来源于冷却器主体41的构成材料的杂质污染,此外,抑制了卤化氢和金属之间的副反应。
当利用半导体制备装置1通过有机金属氯化物法在基板S上外延生长第III-V族化合物半导体时,将HCl气体供给到原料中。在半导体制备装置1中,将HCl气体供给到第二供给通道32、第三供给通道33或供给载气的第一供给通道31中,并且将HCl气体与第II族原料或第III族原料一起供给到反应装置21中。具体地,在半导体制备装置1中,将适量的HCl气体从充满HCl气体的气瓶(未显示)经由管道(未显示)供给到第二供给通道32、第三供给通道33或第一供给通道31中。
与通过常规MOCVD法的外延生长相比,即使在增加供给的原料的量以及以高生长速率生长的情况下,通过上述方法将HCl气体供给到反应装置21也抑制了Ga液滴的生成。例如,在镜面可生长区域中,即使在比常规MOCVD生长速率(约5μm/hr)更高的生长速率(约15至20μm/hr以上)的情况下,也可以有效地抑制Ga液滴的生成。此外,通过以高生长速率生长获得的外延层具有足够良好的结晶性。
在由此获得的n-型氮化物半导体层上生长发光层和功能层(比如空穴传输层)的情况下,在n-型氮化物半导体层生长之后,可以在相同的反应炉中,在不冷却至室温的情况下生长发光层和功能层。在HVPE的情况下,在生长之后,在冷却并且取出基板之前,需要约2至3小时。然而,本发明的制备方法并不需要冷却时间。
实施例
实施例1
在下列条件下,使用GaN缓冲剂(buffer),通过两步生长在直径为50mm的蓝宝石基板的C面上外延生长出膜厚度为3μm的GaN层。
条件
载气:氢气(H2)
第III族元素原料:三甲基镓(TMG)
第V族元素原料:氨
生长温度:1,150℃
TMG供给速率:0.233mmol/min
将TMG供给速率改变为2.14mmol/min,将HCl气体(HCl 20%/氢80%)从Mo管线或Mg管线以0至400sccm(标准cc/min)供给,并且使GaN层生长30分钟。关于从Mo管线的供给以及从Mg管线的供给,在图2中显示了HCl供给速率和GaN生长速率之间的关系。在图3中显示了HCl供给速率和在所得的GaN晶体的(0004)面上的X-射线半宽度(FWHM)之间的关系。由Mo供给管线和Mg供给管线中任一个获得的GaN晶体具有小的FWHM,并且其结晶性良好。
工业适用性
本发明的制备方法可以允许具有良好结晶性的III-V族化合物半导体的高速率生长。本发明的有机金属气相生长反应器适用于第III-V族化合物半导体的制备方法。

Claims (5)

1.一种用于制备第III-V族化合物半导体的方法,所述方法包括如下步骤:将第III族原料、第V族原料、载气以及必要时的其它原料供给到反应器中,以在所述反应器中的基板上通过有机金属气相外延法生长第III-V族化合物半导体,其中将所述第III族原料和所述第V族原料独立地供给到所述反应器中,并且将卤化氢与除所述第V族原料以外的原料或所述载气一起供给到所述反应器中。
2.根据权利要求1所述的方法,其中所述第V族元素是氨。
3.根据权利要求1或2所述的方法,其中所述卤化氢是氯化氢。
4.一种用于有机金属气相生长的反应器,所述反应器包括:用于供给原料的入口;用于在其上放置生长用基板的基座;以及用于冷却原料的水冷装置,其中所述反应器具有冷壁型结构,并且所述水冷装置被安置在所述基座的上游侧。
5.根据权利要求4所述的反应器,其中所述水冷装置被安置在所述入口和所述基座之间。
CNA2008800033243A 2007-01-31 2008-01-24 用于制备第ⅲ-ⅴ族化合物半导体的方法 Pending CN101595250A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP021297/2007 2007-01-31
JP2007021297 2007-01-31

Publications (1)

Publication Number Publication Date
CN101595250A true CN101595250A (zh) 2009-12-02

Family

ID=39674066

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008800033243A Pending CN101595250A (zh) 2007-01-31 2008-01-24 用于制备第ⅲ-ⅴ族化合物半导体的方法

Country Status (8)

Country Link
US (1) US20090320746A1 (zh)
JP (1) JP5042053B2 (zh)
KR (1) KR20090104090A (zh)
CN (1) CN101595250A (zh)
DE (1) DE112008000279T5 (zh)
GB (1) GB2460355A (zh)
TW (1) TW200833886A (zh)
WO (1) WO2008093759A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245814A (zh) * 2010-02-01 2011-11-16 吉坤日矿日石金属株式会社 氮化物系化合物半导体基板的制造方法及氮化物系化合物半导体自支撑基板
CN109423696A (zh) * 2017-08-24 2019-03-05 北京大学深圳研究生院 一种多层有机单晶结构的生长装置
CN110047973A (zh) * 2019-04-23 2019-07-23 北京蜃景光电科技有限公司 一种基于铜掺杂硫化镉纳米线的光电传感器及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011296357B2 (en) 2010-08-31 2017-01-05 The Lubrizol Corporation Preparation of phosphorus - containing antiwear compounds for use in lubricant compositions
JP2013115313A (ja) * 2011-11-30 2013-06-10 Stanley Electric Co Ltd 結晶成長装置
TWI565825B (zh) * 2012-06-07 2017-01-11 索泰克公司 沉積系統之氣體注入組件及相關使用方法
WO2015145907A1 (ja) * 2014-03-27 2015-10-01 宇部興産株式会社 有機金属化合物含有ガスの供給装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175727A (ja) * 1987-12-29 1989-07-12 Nec Corp 3−v族化合物半導体の選択埋め込み成長方法
US5294632A (en) * 1991-05-01 1994-03-15 Ciba-Geigy Corporation Phosphono/biaryl substituted dipetide derivatives
US5843590A (en) * 1994-12-26 1998-12-01 Sumitomo Electric Industries, Ltd. Epitaxial wafer and method of preparing the same
JPH08293473A (ja) * 1995-04-25 1996-11-05 Sumitomo Electric Ind Ltd エピタキシャルウェハおよび化合物半導体発光素子ならびにそれらの製造方法
JP3879173B2 (ja) * 1996-03-25 2007-02-07 住友電気工業株式会社 化合物半導体気相成長方法
JP3142054B2 (ja) * 1996-12-03 2001-03-07 日本碍子株式会社 化学気相堆積装置
JPH10167884A (ja) * 1996-12-03 1998-06-23 Nissin Electric Co Ltd 化学気相堆積装置
JPH111395A (ja) * 1997-06-09 1999-01-06 Sumitomo Electric Ind Ltd GaN系化合物半導体のエピタキシャル成長方法
JP3788037B2 (ja) 1998-06-18 2006-06-21 住友電気工業株式会社 GaN単結晶基板
TW417315B (en) * 1998-06-18 2001-01-01 Sumitomo Electric Industries GaN single crystal substrate and its manufacture method of the same
JP3788041B2 (ja) 1998-06-30 2006-06-21 住友電気工業株式会社 GaN単結晶基板の製造方法
JP3607664B2 (ja) * 2000-12-12 2005-01-05 日本碍子株式会社 Iii−v族窒化物膜の製造装置
JP2002261030A (ja) * 2001-03-02 2002-09-13 Sumitomo Chem Co Ltd 3−5族化合物半導体エピタキシャル成長方法及び装置
JP3631724B2 (ja) 2001-03-27 2005-03-23 日本電気株式会社 Iii族窒化物半導体基板およびその製造方法
JP5194334B2 (ja) 2004-05-18 2013-05-08 住友電気工業株式会社 Iii族窒化物半導体デバイスの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245814A (zh) * 2010-02-01 2011-11-16 吉坤日矿日石金属株式会社 氮化物系化合物半导体基板的制造方法及氮化物系化合物半导体自支撑基板
CN109423696A (zh) * 2017-08-24 2019-03-05 北京大学深圳研究生院 一种多层有机单晶结构的生长装置
CN109423696B (zh) * 2017-08-24 2021-07-23 北京大学深圳研究生院 一种多层有机单晶结构的生长装置
CN110047973A (zh) * 2019-04-23 2019-07-23 北京蜃景光电科技有限公司 一种基于铜掺杂硫化镉纳米线的光电传感器及其制备方法
CN110047973B (zh) * 2019-04-23 2020-05-01 范佳旭 一种基于铜掺杂硫化镉纳米线的光电传感器及其制备方法

Also Published As

Publication number Publication date
DE112008000279T5 (de) 2010-04-01
TW200833886A (en) 2008-08-16
US20090320746A1 (en) 2009-12-31
KR20090104090A (ko) 2009-10-05
GB0915133D0 (en) 2009-10-07
JP2008211198A (ja) 2008-09-11
WO2008093759A1 (ja) 2008-08-07
JP5042053B2 (ja) 2012-10-03
GB2460355A (en) 2009-12-02

Similar Documents

Publication Publication Date Title
US8778783B2 (en) Methods for improved growth of group III nitride buffer layers
JP4874618B2 (ja) フィルムを堆積させる方法および蒸気送達装置
EP2038456B1 (en) System and process for high volume deposition of gallium nitride
US20110244663A1 (en) Forming a compound-nitride structure that includes a nucleation layer
US20080050889A1 (en) Hotwall reactor and method for reducing particle formation in GaN MOCVD
US8980002B2 (en) Methods for improved growth of group III nitride semiconductor compounds
US20090223441A1 (en) High volume delivery system for gallium trichloride
CN101595250A (zh) 用于制备第ⅲ-ⅴ族化合物半导体的方法
TW201106502A (en) Cluster tool for LEDs
WO2010129183A2 (en) Mocvd single chamber split process for led manufacturing
US9708733B2 (en) Method for manufacturing aluminum-based group III nitride single crystal by hydride vapor phase epitaxy
EP2083935A2 (en) Abatement of reaction gases from gallium nitride deposition
EP2084304A2 (en) Gallium trichloride injection scheme
CN102414846A (zh) 用于led制造的改良多腔室分离处理
US11393683B2 (en) Methods for high growth rate deposition for forming different cells on a wafer
JP2011054935A (ja) ドーピング方法
US20030038302A1 (en) Nitride semiconductor growing process
WO2011047182A1 (en) High growth rate deposition for group iii/v materials
JPH1012554A (ja) 化合物半導体の製造方法
JPH08316151A (ja) 半導体の製造方法
WO2019067177A1 (en) HIGH GROWTH SPEED DEPOSITION OF GROUP III / V MATERIALS
JPH01141899A (ja) 3−5族化合物半導体の気相成長方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20091202