CN110047973B - 一种基于铜掺杂硫化镉纳米线的光电传感器及其制备方法 - Google Patents

一种基于铜掺杂硫化镉纳米线的光电传感器及其制备方法 Download PDF

Info

Publication number
CN110047973B
CN110047973B CN201910328691.0A CN201910328691A CN110047973B CN 110047973 B CN110047973 B CN 110047973B CN 201910328691 A CN201910328691 A CN 201910328691A CN 110047973 B CN110047973 B CN 110047973B
Authority
CN
China
Prior art keywords
doped
temperature
vapor phase
substrate
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910328691.0A
Other languages
English (en)
Other versions
CN110047973A (zh
Inventor
范佳旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fan Jiaxu
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910328691.0A priority Critical patent/CN110047973B/zh
Publication of CN110047973A publication Critical patent/CN110047973A/zh
Application granted granted Critical
Publication of CN110047973B publication Critical patent/CN110047973B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G11/00Compounds of cadmium
    • C01G11/02Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于铜掺杂硫化镉纳米线的光电传感器及其制备方法,包括将衬底材料清洗,氮气吹干,放置掩膜,在真空腔中用电子束蒸发的方法沉积先后沉积Ti膜和Au膜;用UV激光打标机在Au/Ti膜上沿设定的方波状路线烧蚀划刻沟槽,构建指叉状电极;将衬底放入气相生长设备中,利用Au作为催化剂,通过高温气相生长法制备Cu掺杂的CdS纳米线,根据掺杂原料的填充量,掺杂入CdS中的Cu原子百分比可在0‑7%之间调控,纳米线在沟槽上部相互搭叠桥连,形成光电传感单元,本发明的光电传感器具有晶体缺陷少、无表面污染、且电流按照一维路径传输的特点,所用的气相生长设备实现了纳米线蒸气的高效生长。

Description

一种基于铜掺杂硫化镉纳米线的光电传感器及其制备方法
技术领域
本发明属于光电所用的新材料及其制备技术领域,尤其涉及一种基于铜掺杂硫化镉纳米线的光电传感器及其制备方法。
背景技术
硫化镉(CdS)禁带宽度为2.4eV,能够吸收波长小于520nm的紫外和可见光,具有很强的光电导效应,因此是一种优良的窗口材料。在II-VI族化合物中,它是非常具有研究潜力的一种光电子材料。随着薄膜制备技术的发展,已经能够廉价、大规模制备CdS薄膜,使CdS在薄膜的研究和应用得到了不断发展。对半导体材料进行元素掺杂是调节材料的禁带宽度、电导率、以及半导体类型的有效手段。将部分元素掺入CdS晶体中,可以缩小禁带宽度,材料光响应所对应的光波波长阈值得以缩短。
传统的基于CdS的光电探测器件一般使用薄膜材料,制备方法有真空蒸发法、溅射法、喷涂热解法、电沉积法、丝网印刷法、溶胶-凝胶法、溶液化学沉积法等等。这些薄膜一般是多晶形态。利用多晶CdS薄膜制备光电探测器,由于存在大量的晶粒边界,导致无法解决其电阻高、光电响应慢、Q值低的问题。一般来说,单晶材料往往比多晶的薄膜材料具有更加优异的性能,而单晶的半导体纳米线,又会由于尺寸效应,产生优于块体单晶材料的光电性能。目前用来制备高质量单晶薄膜的方法有:电子束热蒸发法、热壁外延、MOCVD、分子束外延、脉冲激光沉积等,但上述方法的主要问题在于所需设备比较昂贵,同时由于需要考虑到晶格匹配的问题,对衬底材料的要求也比较高。
目前在纳米线阵列制备方法方面,通常采用带有进气口和出气口的水平管式炉为反应炉,加热使其气化,并利用载气携带蒸气使其在温度较低的衬底上沉积得到,如专利CN104762608A所公开的,该过程中,需要在衬底的选择、粉末蒸发温度、沉积温度、载气流量、炉内压力的协同作用下,才能得到优质的纳米线阵列。但是在该设备的沉积过程中,管式炉的设计方式,仅靠中间位置和进出口位置形成的自然温度差实现蒸发和沉积,温度可控性差,且蒸气分布于管式炉的整个空间中,其中只有少部分能够沉积在衬底上形成纳米线,存在着沉积效率低,原料较容易浪费等问题。
发明内容
为解决上述技术问题,本发明提供了一种基于铜掺杂硫化镉纳米线的光电传感器及其制备方法,利用真空气相生长法制备铜掺杂的硫化镉单晶纳米线,一步法构建光电探测器。
本发明完整的技术方案包括:
(1)以氧化铝陶瓷片为基底,进行清洗吹干后,采用镂空掩膜遮挡的方法,在衬底表面利用电子束蒸发方法沉积若干“十”字形Au/Ti薄膜阵列,金属薄膜厚度分别为Au:20nm,Ti:100nm;
(2)在衬底的Au/Ti膜上沿设定的方波状路线烧蚀划刻出宽度约4μm的绝缘沟槽,制备两排指叉状电极;
(3)采用气相生长设备利用Au作为催化剂,通过高温气相生长法制备Cu掺杂的CdS纳米线,所用的气相生长设备包括管式炉,管式炉设有多段垂直炉壁,将炉体内空间分隔为四个隔断,每个隔断分别设有独立的加热体,加热体由测温与控温机构控制,气相生长管穿过炉体,底部一侧底部放置有陶瓷舟,气相生长管另一侧设有梯形突起的平台,平台下方连接有冷却部,将衬底放置于突起平台上,将硫化镉和硫化铜粉体研磨混合后装入陶瓷舟中,用机械真空泵抽气,并通入氮气以排除残留空气,然后分别控制四段加热体开始加热,以15℃/min将陶瓷所在位置的第一隔断升温,同时分别以13℃/min、11℃/min、10℃/min升温速度使第二、三、四隔断的温度升高,各隔断温度分别维持在750℃、690℃、630℃、580℃左右,随后开启冷却部对平台进行冷却,使平台上部的温度降至550℃左右,以150SCCM的流量送入氮气,并使真空度保持在30Torr,维持40min,生长Cu掺杂的CdS纳米线,自然降温至室温;
(4)将衬底取出、切割分离各“十”字形单元。在Au/Ti膜上焊接金属导线,得到铜掺杂的CdS纳米线光电传感器搭接电路。
掺杂入CdS中的Cu原子百分比可在0-7%之间调控。
步骤(2)中单电极宽度约10μm,长度30μm。
步骤(1)中金属薄膜厚度分别为Au:20nm,Ti:100nm。
本发明相对于现有技术的改进为:通过采用气相法生长的Cu掺杂的CdS纳米线,具有晶体缺陷少、无表面污染、且电流按照一维路径传输的特点。用在光电探测方面具有响应快、器件体积小、Q值高的优点。Cu元素可以缩小禁带宽度,材料光响应所对应的光波波长阈值得以缩短。所用的气相生长设备各段之间的温度独立控制,并结合单独的冷却设备,实现了纳米线的高效生长。
附图说明
图1为本发明基于Cu掺杂的CdS纳米线的光电传感器制备流程示意图。
图2为本发明桥连与两电极之间的Cu掺杂CdS纳米线的扫描电子显微镜图。
图3为本发明光电传感器电流随着白光照射的开起与关闭而变化的曲线图。
图4为本发明所用气相生长设备的结构示意图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步说明。
实施例1:
本发明所用的方法流程如图1所示,包括清洗衬底、沉积Au/Ti膜、激光烧蚀准备电极和生长Cu掺杂的CdS纳米线,具体步骤如下:
(1)以氧化铝陶瓷片为基底,先后用乙醇、丙酮、去离子水超声清洗,氮气吹干,采用镂空掩膜遮挡的方法,在衬底表面利用电子束蒸发方法沉积若干“十”字形Au/Ti薄膜阵列,金属层厚度分别为Au:20nm,Ti:100nm。
(2)取出衬底,用UV激光打标机在Au/Ti膜中间沿设定的方波状路线烧蚀划刻出绝缘沟槽,宽度约4μm,将金属膜上制备两排指叉状电极。单电极宽度约10μm,长度30μm。
(3)采用气相生长设备,利用Au作为催化剂,通过高温气相生长法制备Cu掺杂的CdS纳米线。所用的气相生长设备包括管式炉1,管式炉炉体内设有多段垂直炉壁2,将炉体内空间分隔为4个隔断,每个隔断分别设有独立的加热体3,加热体由测温与控温机构控制,采用热电偶进行测温,用以监控炉体内各段的实时温度,并将温度反馈给PCL,PCL根据反馈的温度对加热体的功率进行调整,实现各段温度的梯度分布,气相生长管4穿过炉体,两侧由端盖5封闭,其横截面为方形,气相生长管底部一侧底部放置有陶瓷舟6,气相生长管另一侧设有梯形突起的平台7,使此处的内部空间变窄,平台下方,即位于管式炉炉体外侧的部分,连接有冷却部9,冷却部两侧可以连接供冷却介质,如冷却水通过的进出口。将覆盖有金属膜的一面朝上,把衬底8放入将衬底放置于突起平台上,同时,将2g硫化镉和0.5g硫化铜粉体研磨混合后装入陶瓷舟中,封闭端盖,用机械真空泵抽气,并通入氮气以排除残留空气,然后分别控制四段加热体开始加热,以15℃/min将陶瓷所在位置的第一隔断,即蒸发位置升温至750℃,同时分别以13℃/min、11℃/min、10℃/min升温速度使第二、三、四隔断的温度升高,各隔断之间受到自身的加热体加热,以及相邻隔断之间的传热作用,形成一定的温度梯度,最终各各段的温度分别达到750℃、690℃、630℃、580℃左右,同时开启冷却部对平台进行冷却,使平台上部的温度降至550℃左右。继续以150SCCM的流量送入氮气,并使真空度保持在30Torr,氮气携带蒸气沿突起的平台上升,由于平台处截面积变窄,蒸气密度前期在此处实现一定程度的富集,如此维持40min。生长Cu掺杂的CdS纳米线。之后自然降温至室温。
(4)将衬底取出、切割分离各“十”字形单元。在Au/Ti膜上焊接金属导线,得到铜掺杂的CdS纳米线光电传感器搭接电路。
如图2所示,所得到的Cu掺杂CdS纳米线在沟槽上部相互搭叠桥连,形成光电传感单元。这样,在两排指叉状电极之间存在电势差时,电流经过桥连的纳米线,电流值会因可见光的照射而发生方波状的明显变化,如图3所示。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (3)

1.一种基于铜掺杂硫化镉纳米线的光电传感器的制备方法,其特征在于,包括如下步骤:
(1)以氧化铝陶瓷片为基底,进行清洗吹干后,采用镂空掩膜遮挡的方法,在衬底表面利用电子束蒸发方法沉积若干“十”字形Au/Ti薄膜阵列,金属薄膜厚度分别为Au:20nm,Ti:100nm;
(2)在衬底的Au/Ti膜上沿设定的方波状路线烧蚀划刻出宽度4μm的绝缘沟槽,制备两排指叉状电极;
(3)采用气相生长设备利用Au作为催化剂,通过高温气相生长法制备Cu掺杂的CdS纳米线,所用的气相生长设备包括管式炉,管式炉设有多段垂直炉壁,将炉体内空间分隔为四个隔断,每个隔断分别设有独立的加热体,加热体由测温与控温机构控制,气相生长管穿过炉体,底部一侧底部放置有陶瓷舟,气相生长管另一侧设有梯形突起的平台,平台下方连接有冷却部,将衬底放置于突起平台上,将硫化镉和硫化铜粉体研磨混合后装入陶瓷舟中,用机械真空泵抽气,并通入氮气以排除残留空气,然后分别控制四段加热体开始加热,以15℃/min将陶瓷舟所在位置的第一隔断升温,同时分别以13℃/min、11℃/min、10℃/min升温速度使第二、三、四隔断的温度升高,各隔断温度分别达到750℃、690℃、630℃、580℃,随后开启冷却部对平台进行冷却,使平台上部的温度降至550℃,以150SCCM的流量送入氮气,并使真空度保持在30Torr,维持40min,生长Cu掺杂的CdS纳米线,自然降温至室温;
(4)将衬底取出、切割分离各“十”字形单元;在Au/Ti膜上焊接金属导线,得到铜掺杂的CdS纳米线光电传感器搭接电路。
2.如权利要求1所述的一种基于铜掺杂硫化镉纳米线的光电传感器的制备方法,其特征在于,掺杂入CdS中的Cu原子百分比大于0,且小于等于7%,可调控。
3.如权利要求1或2所述的一种基于铜掺杂硫化镉纳米线的光电传感器的制备方法,其特征在于,步骤(2)中单电极宽度10μm,长度30μm。
CN201910328691.0A 2019-04-23 2019-04-23 一种基于铜掺杂硫化镉纳米线的光电传感器及其制备方法 Active CN110047973B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910328691.0A CN110047973B (zh) 2019-04-23 2019-04-23 一种基于铜掺杂硫化镉纳米线的光电传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910328691.0A CN110047973B (zh) 2019-04-23 2019-04-23 一种基于铜掺杂硫化镉纳米线的光电传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN110047973A CN110047973A (zh) 2019-07-23
CN110047973B true CN110047973B (zh) 2020-05-01

Family

ID=67278645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910328691.0A Active CN110047973B (zh) 2019-04-23 2019-04-23 一种基于铜掺杂硫化镉纳米线的光电传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN110047973B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5384458A (en) * 1976-12-29 1978-07-25 Fujitsu Ltd Vapor growth method
JPS53105370A (en) * 1977-02-25 1978-09-13 Hitachi Ltd Vapor phase growing unit
CN101562209A (zh) * 2008-04-17 2009-10-21 韩国科学技术研究院 基于可见光范围的半导体纳米线的光传感器及其制造方法
CN101595250A (zh) * 2007-01-31 2009-12-02 住友化学株式会社 用于制备第ⅲ-ⅴ族化合物半导体的方法
CN101979723A (zh) * 2010-11-23 2011-02-23 东华大学 一种p型CdS纳米线的制备方法
KR20120092431A (ko) * 2011-02-11 2012-08-21 서울대학교산학협력단 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서 및 이의 제조방법
CN103882514A (zh) * 2014-02-28 2014-06-25 湖南大学 一种半导体CdS/CdSSe异质结纳米线及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5384458A (en) * 1976-12-29 1978-07-25 Fujitsu Ltd Vapor growth method
JPS53105370A (en) * 1977-02-25 1978-09-13 Hitachi Ltd Vapor phase growing unit
CN101595250A (zh) * 2007-01-31 2009-12-02 住友化学株式会社 用于制备第ⅲ-ⅴ族化合物半导体的方法
CN101562209A (zh) * 2008-04-17 2009-10-21 韩国科学技术研究院 基于可见光范围的半导体纳米线的光传感器及其制造方法
CN101979723A (zh) * 2010-11-23 2011-02-23 东华大学 一种p型CdS纳米线的制备方法
KR20120092431A (ko) * 2011-02-11 2012-08-21 서울대학교산학협력단 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서 및 이의 제조방법
CN103882514A (zh) * 2014-02-28 2014-06-25 湖南大学 一种半导体CdS/CdSSe异质结纳米线及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"CdS Nanoscale Photodetectors";Kaimo Deng;《Adv. Mater. 》;20140314;全文 *
"Effect of Cu-doping on the photoluminescence and photoconductivity of template synthesized CdS nanowires";Vijay Kumar;《Journal of Physics and Chemistry of Solid》;20180828;全文 *
"Schottky junction UV photodetector based on CdS and visible photodetector based on CdS:Cu quantum dots";Jumi Kakati;《Optik》;20151231;全文 *
"低维 CdS 纳米结构器件的制备及其光电性能研究";汪振环;《CNKI硕士学位论文》;20171231;全文 *

Also Published As

Publication number Publication date
CN110047973A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
Yu et al. Perovskite CsPbBr 3 crystals: growth and applications
CN108369991B (zh) 混合阳离子钙钛矿
Hsueh et al. Cu2O/n-ZnO nanowire solar cells on ZnO: Ga/glass templates
CN105200522A (zh) 一种大面积钙钛矿薄片及其制备和应用
JP2002343993A5 (zh)
Ding et al. Preparation and characterization of pulsed laser deposited CdTe thin films at higher FTO substrate temperature and in Ar+ O2 atmosphere
Periasamy et al. Large-area and nanoscale n-ZnO/p-Si heterojunction photodetectors
KR102037130B1 (ko) 박막 광전지 소자를 위한 무기염-나노입자 잉크 및 이에 관련된 방법
KR20100099753A (ko) 구리-인듐-갈륨-황-셀레늄 박막 태양전지의 광 흡수층의 제조 방법
JPH07263732A (ja) 多結晶シリコンデバイス
Bao et al. The study of CdSe thin film prepared by pulsed laser deposition for CdSe/CdTe solar cell
Perng et al. Enhancement of short-circuit current density in Cu2O/ZnO heterojunction solar cells
JP2002343993A (ja) 薄膜多結晶太陽電池及びその形成方法
CN103579415A (zh) 一种氧化锌纳米线阵列紫外光电探测器的制备方法
US20140158202A1 (en) Light-absorbing material and photoelectric conversion element using the same
CN105118851A (zh) 基于蓝宝石衬底的多层氧化镓薄膜及其生长方法
CN110047973B (zh) 一种基于铜掺杂硫化镉纳米线的光电传感器及其制备方法
JP5132963B2 (ja) 薄膜太陽電池の製造方法
CN115295676B (zh) 一种高光响应Te/MoS2异质结光探测器及制备方法
KR101397451B1 (ko) Cu(In,Ga)Se2 나노로드 또는 나노와이어의 제조방법 및 이를 포함하는 재료
Terrazas et al. Ordered polycrystalline thin films for high performance CdTe/CdS solar cells
TWI732704B (zh) 鈣鈦礦金屬-半導體-金屬型光電探測器及其製法
JP2009117431A (ja) pn接合型太陽電池およびその製造方法
CN111969075B (zh) 一种宽光谱响应的GaN:ZnO固溶体纳米线光电探测器及其制备方法
CN210092100U (zh) 一种基于石墨烯模板上AlGaN纳米柱基MSM型紫外探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200410

Address after: Room 305, unit 2, No. 39, Wujing street, Zhenxing District, Dandong City, Liaoning Province

Applicant after: Fan Jiaxu

Address before: 100200 Block E 105, Huanxing Building, 14 Huanyuan North Road, Haidian District, Beijing

Applicant before: BEIJING SHENJING PHOTOELECTRIC TECHNOLOGY Co.,Ltd.