CN101582382A - 薄膜晶体管的制备方法 - Google Patents

薄膜晶体管的制备方法 Download PDF

Info

Publication number
CN101582382A
CN101582382A CN200810067163.6A CN200810067163A CN101582382A CN 101582382 A CN101582382 A CN 101582382A CN 200810067163 A CN200810067163 A CN 200810067163A CN 101582382 A CN101582382 A CN 101582382A
Authority
CN
China
Prior art keywords
carbon nano
tube
thin
film transistor
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200810067163.6A
Other languages
English (en)
Other versions
CN101582382B (zh
Inventor
刘锴
姜开利
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN200810067163.6A priority Critical patent/CN101582382B/zh
Priority to US12/384,331 priority patent/US7947542B2/en
Priority to EP09160164.1A priority patent/EP2120274B1/en
Priority to JP2009117601A priority patent/JP5139367B2/ja
Publication of CN101582382A publication Critical patent/CN101582382A/zh
Application granted granted Critical
Publication of CN101582382B publication Critical patent/CN101582382B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/18Deposition of organic active material using non-liquid printing techniques, e.g. thermal transfer printing from a donor sheet
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/708Integrated with dissimilar structures on a common substrate with distinct switching device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/72On an electrically conducting, semi-conducting, or semi-insulating substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/723On an electrically insulating substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/743Carbon nanotubes, CNTs having specified tube end structure, e.g. close-ended shell or open-ended tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • Y10S977/751Single-walled with specified chirality and/or electrical conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/779Possessing nanosized particles, powders, flakes, or clusters other than simple atomic impurity doping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/784Electrically conducting, semi-conducting, or semi-insulating host material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition
    • Y10S977/789Of specified organic or carbon-based composition in array format
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition
    • Y10S977/795Composed of biological material
    • Y10S977/796Composed of biological material for electrical or electronic purpose

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明涉及一种薄膜晶体管的制备方法,包括以下步骤:提供一碳纳米管阵列;采用一拉伸工具从碳纳米管阵列中拉取获得至少一碳纳米管薄膜;铺设上述至少一碳纳米管薄膜于一绝缘基底表面,形成一碳纳米管层;间隔形成一源极及一漏极,并使该源极及漏极与上述碳纳米管层电连接;形成一绝缘层于上述碳纳米管层表面;以及形成一栅极于上述绝缘层表面,得到一薄膜晶体管。

Description

薄膜晶体管的制备方法
技术领域
本发明涉及一种薄膜晶体管的制备方法,尤其涉及一种基于碳纳米管的薄膜晶体管的制备方法。
背景技术
薄膜晶体管(Thin Film Transistor,TFT)是现代微电子技术中的一种关键性电子元件,目前已经被广泛的应用于平板显示器等领域。薄膜晶体管主要包括栅极、绝缘层、半导体层、源极和漏极。其中,源极和漏极间隔设置并与半导体层电连接,栅极通过绝缘层与半导体层及源极和漏极间隔绝缘设置。所述半导体层位于所述源极和漏极之间的区域形成一沟道区域。薄膜晶体管中的栅极、源极、漏极均由导电材料构成,该导电材料一般为金属或合金。当在栅极上施加一电压时,与栅极通过绝缘层间隔设置的半导体层中的沟道区域会积累载流子,当载流子积累到一定程度,与半导体层电连接的源极漏极之间将导通,从而有电流从源极流向漏极。在实际应用中,对薄膜晶体管的要求是希望得到较大的开关电流比。影响上述开关电流比的因素除薄膜晶体管的制备工艺外,薄膜晶体管半导体层中半导体材料的载流子迁移率为影响开关电流比的最重要的影响因素之一。
现有技术中,薄膜晶体管中形成半导体层的材料为非晶硅、多晶硅或有机半导体聚合物等(R.E.I.Schropp,B.Stannowski,J.K.Rath,New challengesin thin film transistor research,Journal of Non-Crystalline Solids,299-302,1304-1310(2002))。以非晶硅作为半导体层的非晶硅薄膜晶体管的制备技术较为成熟,但在非晶硅薄膜晶体管中,由于半导体层中通常含有大量的悬挂键,使得载流子的迁移率很低,从而导致薄膜晶体管的响应速度较慢。以多晶硅作为半导体层的薄膜晶体管相对于以非晶硅作为半导体层的薄膜晶体管,具有较高的载流子迁移率,因此响应速度也较快。但多晶硅薄膜晶体管低温制备成本较高,方法较复杂,大面积制备困难,且多晶硅薄膜晶体管的关态电流较大。相较于上述传统的无机薄膜晶体管,采用有机半导体做半导体层的有机薄膜晶体管具有成本低、制备温度低的优点,且有机薄膜晶体管具有较高的柔韧性。但由于有机半导体聚合物在常温下多为跳跃式传导,表现出较高的电阻率、较低的载流子迁移率,使得有机薄膜晶体管的响应速度较慢。
碳纳米管具有优异的力学及电学性能。并且,随着碳纳米管螺旋方式的变化,碳纳米管可呈现出金属性或半导体性。半导体性的碳纳米管具有较高的载流子迁移率(一般可达1000~1500cm2V-1s-1),是制备晶体管的理想材料。现有技术中已有报道采用半导体性碳纳米管形成碳纳米管层作为薄膜晶体管的半导体层。上述采用碳纳米管层作为半导体层的薄膜晶体管的制备方法主要包括以下步骤:将碳纳米管粉末分散于有机溶剂中;通过喷墨打印的方法将碳纳米管与有机溶剂的混合液打印在绝缘基板上,待有机溶剂挥发后,在绝缘基板的预定位置上形成一碳纳米管层;通过沉积及刻蚀金属薄膜的方法在碳纳米管层上形成源极及漏极;在碳纳米管层上沉积一层氮化硅形成一绝缘层;以及在绝缘层上沉积一金属薄膜形成栅极。然而,在上述方法中,碳纳米管需要通过有机溶剂进行分散,碳纳米管易团聚,在半导体层中无法均匀分布。且分散碳纳米管所用的有机溶剂易残留在碳纳米管层中,影响薄膜晶体管的性能。并且,在上述碳纳米管层中,碳纳米管随机分布。载流子在上述无序碳纳米管层中的传导路径较长,故上述碳纳米管层中碳纳米管的排列方式不能使碳纳米管的高载流子迁移率得到有效利用,进而不利于获得具有较高载流子迁移率的薄膜晶体管。另外,通过有机溶剂结合的碳纳米管层结构松散,柔韧性差,不利于制备柔性的薄膜晶体管。
综上所述,确有必要提供一种薄膜晶体管的制备方法,该制备方法简单、适于低成本大量生产,该薄膜晶体管具有较高的载流子迁移率,较高的响应速度,以及较好的柔韧性。
发明内容
一种薄膜晶体管的制备方法,包括以下步骤:提供一碳纳米管阵列;采用一拉伸工具从碳纳米管阵列中拉取获得至少一碳纳米管薄膜;铺设上述至少一碳纳米管薄膜于一绝缘基底表面,形成一碳纳米管层;间隔形成一源极及一漏极,并使该源极及漏极与上述碳纳米管层电连接;形成一绝缘层于上述碳纳米管层表面;以及形成一栅极于上述绝缘层表面,得到一薄膜晶体管。
一种薄膜晶体管的制备方法,包括以下步骤:提供一碳纳米管阵列;采用一拉伸工具从碳纳米管阵列中拉取获得至少一碳纳米管薄膜;提供一绝缘基底;形成一栅极于所述绝缘基底表面;形成一绝缘层覆盖所述栅极;铺设上述至少一碳纳米管薄膜于绝缘层表面,形成一碳纳米管层;以及间隔形成一源极及一漏极,并使该源极及漏极与上述碳纳米管层电连接。
一种薄膜晶体管的制备方法,包括以下步骤:提供一碳纳米管阵列;采用一拉伸工具从碳纳米管阵列中拉取获得至少一碳纳米管薄膜;铺设上述至少一碳纳米管薄膜于一绝缘基底表面,图案化该碳纳米管薄膜,形成多个碳纳米管层;间隔形成多个源极及多个漏极,并使上述每一碳纳米管层均与一源极及一漏极电连接;在每一碳纳米管层表面形成一绝缘层;以及在每一绝缘层表面形成一栅极,得到多个薄膜晶体管。
本技术方案实施例提供的薄膜晶体管及薄膜晶体管阵列的制备方法具有以下优点:其一,本技术方案通过从碳纳米管阵列中直接拉取的方式获得碳纳米管薄膜作为半导体层,该碳纳米管薄膜中碳纳米管分布均匀,且纯度较高,避免了现有技术中形成的碳纳米管层中碳纳米管易团聚,从而分布不均,且碳纳米管层中易残留有机溶剂的问题。其二,由于采用直接拉取的方式获得的碳纳米管薄膜具有较大黏性,因此,可以通过直接黏附的方法将碳纳米管薄膜设置于所需位置,该方法简单、成本低,且可以在较低温度下进行,因此,本技术方案提供的薄膜晶体管的制备方法具有成本低、环保及节能的优点。并且,由于碳纳米管薄膜可以直接黏附于任意材料的基底表面,因此,该基底的材料可以选择不耐高温的柔性材料,有利于制备柔性的薄膜晶体管。其三,直接从碳纳米管阵列中拉取的碳纳米管薄膜中,碳纳米管首尾相连并沿同一方向排列,因此,将该碳纳米管薄膜作为半导体层时,可以通过控制碳纳米管薄膜的设置方向进而控制源极至漏极间碳纳米管的排列方向,从而使薄膜晶体管获得较大的载流子迁移率。
附图说明
图1是本技术方案第一实施例薄膜晶体管的制备方法的流程图。
图2是本技术方案第一实施例薄膜晶体管的制备工艺流程图。
图3是本技术方案第一实施例薄膜晶体管中碳纳米管薄膜的扫描电镜照片。
图4是本技术方案第二实施例薄膜晶体管的制备方法的流程图。
图5是本技术方案第二实施例薄膜晶体管的制备工艺流程图。
图6是本技术方案第三实施例薄膜晶体管的制备方法的流程图。
具体实施方式
以下将结合附图详细说明本技术方案实施例提供的薄膜晶体管的制备方法。
请参阅图1及图2,本技术方案第一实施例提供一种顶栅型薄膜晶体管10的制备方法,主要包括以下步骤:
步骤一:提供一碳纳米管阵列,优选地,该阵列为超顺排碳纳米管阵列。
本技术方案实施例提供的碳纳米管阵列为单壁碳纳米管阵列、双壁碳纳米管或多壁碳纳米管阵列。本实施例中,超顺排碳纳米管阵列的制备方法采用化学气相沉积法,其具体步骤包括:(a)提供一平整基底,该基底可选用P型或N型硅基底,或选用形成有氧化层的硅基底,本实施例优选为采用4英寸的硅基底;(b)在基底表面均匀形成一催化剂层,该催化剂层材料可选用铁(Fe)、钴(Co)、镍(Ni)或其任意组合的合金之一;(c)将上述形成有催化剂层的基底在700~900℃的空气中退火约30分钟~90分钟;(d)将处理过的基底置于反应炉中,在保护气体环境下加热到500~740℃,然后通入碳源气体反应约5~30分钟,生长得到超顺排碳纳米管阵列,其高度为200~400微米。该超顺排碳纳米管阵列为多个彼此平行且垂直于基底生长的碳纳米管形成的纯碳纳米管阵列。通过上述控制生长条件,该超顺排碳纳米管阵列中基本不含有杂质,如无定型碳或残留的催化剂金属颗粒等。该碳纳米管阵列中的碳纳米管彼此通过范德华力紧密接触形成阵列。该碳纳米管阵列与上述基底面积基本相同。
本实施例中碳源气可选用乙炔、乙烯、甲烷等化学性质较活泼的碳氢化合物,本实施例优选的碳源气为乙炔;保护气体为氮气或惰性气体,本实施例优选的保护气体为氩气。
可以理解,本实施例提供的碳纳米管阵列不限于上述制备方法,也可为石墨电极恒流电弧放电沉积法、激光蒸发沉积法等。
步骤二:采用一拉伸工具从碳纳米管阵列中拉取获得至少一碳纳米管薄膜。其具体包括以下步骤:(a)从上述碳纳米管阵列中选定一定宽度的多个碳纳米管片断,本实施例优选为采用具有一定宽度的胶带接触碳纳米管阵列以选定一定宽度的多个碳纳米管片断;(b)以一定速度沿基本垂直于碳纳米管阵列生长方向拉伸该多个碳纳米管片断,以形成一连续的碳纳米管薄膜。
在上述拉伸过程中,该多个碳纳米管片段在拉力作用下沿拉伸方向逐渐脱离基底的同时,由于范德华力作用,该选定的多个碳纳米管片断分别与其它碳纳米管片断首尾相连地连续地被拉出,从而形成一碳纳米管薄膜。该碳纳米管薄膜包括多个首尾相连且定向排列的碳纳米管束。该碳纳米管薄膜中碳纳米管的排列方向基本平行于碳纳米管薄膜的拉伸方向。
请参阅图3,该碳纳米管薄膜为择优取向排列的多个碳纳米管束首尾相连形成的具有一定宽度的碳纳米管薄膜。该碳纳米管薄膜中碳纳米管的排列方向基本平行于碳纳米管薄膜的拉伸方向。该直接拉伸获得的择优取向排列的碳纳米管薄膜比无序的碳纳米管薄膜具有更好的均匀性,即具有更均匀的厚度以及具有均匀的半导体性能。并且,该碳纳米管薄膜具有良好的柔韧性及透明度。同时该直接拉伸获得碳纳米管薄膜的方法简单快速,适宜进行工业化应用。
步骤三:铺设上述至少一碳纳米管薄膜于一绝缘基底110表面,形成一碳纳米管层140作为薄膜晶体管10的半导体层。其具体包括以下步骤:提供一绝缘基底110;将上述碳纳米管薄膜铺设于该绝缘基底110表面。
所述绝缘基底110的材料可选用大规模集成电路中的基板的材料。所述绝缘基底110形状不限,可为方形、圆形等任何形状。所述绝缘基底110的大小尺寸不限,具体可根据实际情况而定。所述绝缘基底110具有一平整的表面。具体地,所述绝缘基底110的材料可以为硬性材料,如P型或N型硅、形成有氧化层的硅、透明石英、或形成有氧化层的透明石英。另外,该绝缘基底110的材料还可以是塑料或树脂材料,如一PET薄膜。
由于本实施例超顺排碳纳米管阵列中的碳纳米管非常纯净,且由于碳纳米管本身的比表面积非常大,所以该碳纳米管薄膜本身具有较强的粘性。因此,可直接将上述碳纳米管薄膜黏附在绝缘基底110表面作为半导体层。另外,可以通过重复步骤二从碳纳米管阵列中拉取多个碳纳米管薄膜,并将该多个碳纳米管薄膜重叠黏附于绝缘基底110表面,形成一碳纳米管层140。该碳纳米管薄膜的重叠方向不限,多个碳纳米管薄膜间通过范德华力紧密结合。
另外,可使用有机溶剂处理上述黏附在绝缘基底110上的碳纳米管层140。具体地,可通过试管将有机溶剂滴落在碳纳米管层140表面浸润整个碳纳米管层140。该有机溶剂为挥发性有机溶剂,如乙醇、甲醇、丙酮、二氯乙烷或氯仿,本实施例中采用乙醇。该碳纳米管层140经有机溶剂浸润处理后,在挥发性有机溶剂的表面张力的作用下,该碳纳米管层140可牢固地贴附在绝缘基底110表面,且表面体积比减小,粘性降低,具有良好的机械强度及韧性。
步骤四:间隔形成一源极151及一漏极152,并使该源极151及漏极152与上述碳纳米管层140电连接。
该源极151及漏极152的材料应具有较好的导电性。具体地,该源极151及漏极152的材料可以为金属、合金、铟锡氧化物(ITO)、锑锡氧化物(ATO)、导电银胶、导电聚合物以及金属性碳纳米管薄膜等导电材料。根据形成源极151及漏极152的材料种类的不同,可以采用不同方法形成该源极151及漏极152。具体地,当该源极151及漏极152的材料为金属、合金、ITO或ATO时,可以通过蒸镀、溅射、沉积、掩模及刻蚀等方法形成源极151及漏极152。当该源极151及漏极152的材料为导电银胶、导电聚合物或碳纳米管薄膜时,可以通过印刷涂附或直接黏附的方法,将该导电银胶或碳纳米管薄膜涂附或黏附于绝缘基底110或碳纳米管层140表面,形成源极151及漏极152。一般地,该源极151及漏极152的厚度为0.5纳米~100微米,源极151至漏极152之间的距离为1~100微米。
当碳纳米管层140中的碳纳米管薄膜沿基本相同的方向重叠时,该源极151及漏极152应沿碳纳米管层140中碳纳米管的排列方向间隔形成于碳纳米管层140上,从而使碳纳米管层140中的碳纳米管的排列方向均沿源极151至漏极152的方向排列。
本实施例中,该源极151及漏极152材料为金属。上述步骤四具体可通过两种方式进行。第一种方式具体包括以下步骤:首先,在上述碳纳米管层140表面均匀涂覆一层光刻胶;其次,通过曝光及显影等光刻方法在光刻胶上形成源极151及漏极152区域,在该源极151及漏极152区域露出该碳纳米管层140;再次,通过真空蒸镀、磁控溅射或电子束蒸发沉积等沉积方法在上述光刻胶、源极151及漏极152区域表面沉积一金属层,优选为钯、钛或镍金属层;最后,通过丙酮等有机溶剂去除光刻胶及其上的金属层,即得到形成在碳纳米管层140上的源极151及漏极152。第二种方式具体包括以下步骤:首先,在碳纳米管层140表面沉积一金属层;其次,在该金属层表面涂覆一层光刻胶;再次,通过曝光及显影等光刻方法去除源极151区域及漏极152区域外的光刻胶;最后,通过等离子体刻蚀等方法去除源极151区域及漏极152区域外的金属层,并以丙酮等有机溶剂去除源极151区域及漏极152区域上的光刻胶,即得到形成在碳纳米管层140上的源极151及漏极152。本实施例中,该源极151及漏极152的厚度为1微米,源极151至漏极152之间的距离为50微米。
可以理解,为了得到具有更好的半导体性的碳纳米管层140,在形成源极151及漏极152之后,可以进一步包括一去除碳纳米管层140中的金属性碳纳米管的步骤。具体包括以下步骤:首先,提供一外部电源,其次,将外部电源的正负两极连接至源极151及漏极152;最后,通过外部电源在源极151及漏极152两端施加一电压,使金属性的碳纳米管发热并烧蚀,获得一半导体性的碳纳米管层140。该电压在1~1000伏范围内。
另外,上述去除碳纳米管层140中金属性碳纳米管的方法也可以使用氢等离子体、微波、太赫兹(THz)、红外线(IR)、紫外线(UV)或可见光(Vis)照射该碳纳米管层140,使金属性的碳纳米管发热并烧蚀,获得一半导体性的碳纳米管层140。
步骤五:在上述碳纳米管层140上形成一绝缘层130。
该绝缘层130的材料可以为氮化硅、氧化硅等硬性材料或苯并环丁烯(BCB)、聚酯或丙烯酸树脂等柔性材料。根据绝缘层130的材料种类的不同,可以采用不同方法形成该绝缘层130。具体地,当该绝缘层130的材料为氮化硅或氧化硅时,可以通过沉积的方法形成绝缘层130。当该绝缘层130的材料为苯并环丁烯(BCB)、聚酯或丙烯酸树脂时,可以通过印刷涂附的方法形成绝缘层130。一般地,该绝缘层130的厚度为0.5纳米~100微米。
本实施方式中采用等离子体化学气相沉积等沉积方法形成一氮化硅绝缘层130覆盖于碳纳米管层140及形成在碳纳米管层140上的源极151及漏极152表面。绝缘层130的厚度约为1微米。
可以理解,根据薄膜晶体管10的不同应用,可以采用与形成源极151及漏极152相似的光刻或刻蚀的方法将所述源极151及漏极152的一部分暴露在绝缘层130外。
步骤六:形成一栅极120于所述绝缘层130表面,得到一薄膜晶体管10。
该栅极120的材料应具有较好的导电性。具体地,该栅极120的材料可以为金属、合金、ITO、ATO、导电银胶、导电聚合物以及碳纳米管薄膜等导电材料。该金属或合金材料可以为铝、铜、钨、钼、金或它们的合金。具体地,当该栅极120的材料为金属、合金、ITO或ATO时,可以通过蒸镀、溅射、沉积、掩模及刻蚀等方法形成栅极120。当该栅极120的材料为导电银胶、导电聚合物或碳纳米管薄膜时,可以通过直接黏附或印刷涂附的方法形成栅极120。一般地,该栅极120的厚度为0.5纳米~100微米。
本技术方案实施例中通过与形成源极151及漏极152相似的方法在绝缘层130表面且与半导体层相对的位置形成一导电薄膜作为栅极120。该栅极120通过绝缘层130与半导体层电绝缘。本技术方案实施例中,所述栅极120的材料为铝,栅极120的厚度约为1微米。
请参阅图4及图5,本技术方案第二实施例提供一种底栅型薄膜晶体管20的制备方法,其与第一实施例中薄膜晶体管10的制备方法基本相同。主要区别在于,本实施例中形成的薄膜晶体管20为一底栅型结构。本技术方案第二实施例薄膜晶体管20的制备方法包括以下步骤:
步骤一:提供一碳纳米管阵列,优选地,该阵列为超顺排碳纳米管阵列。
步骤二:采用一拉伸工具从碳纳米管阵列中拉取获得至少一碳纳米管薄膜。
步骤三:提供一绝缘基底210。
步骤四:形成一栅极220于所述绝缘基底210表面。
步骤五:形成一绝缘层230覆盖所述栅极220。
步骤六:铺设上述至少一碳纳米管薄膜于绝缘层230表面,形成一碳纳米管层240。
步骤七:间隔形成一源极252及一漏极252,并使该源极251及漏极252与上述碳纳米管层240电连接。
上述至少一碳纳米管薄膜黏附于绝缘层230表面,从而与栅极220电绝缘,并与栅极220相对。上述源极251及漏极252直接形成于上述碳纳米管层240表面。可以理解,上述步骤七可以先于步骤六进行,即上述源极251及漏极252形成于绝缘层230表面后,铺设上述碳纳米管薄膜于绝缘层230表面并覆盖源极251及漏极252。
请参阅图6,本技术方案第三实施例提供一种薄膜晶体管的制备方法,其与第一实施例薄膜晶体管10的制备方法基本相同。主要区别在于,本实施例在同一绝缘基底上形成多个薄膜晶体管,从而形成一薄膜晶体管阵列。本实施例薄膜晶体管的制备方法具体包括以下步骤:
步骤一:提供一碳纳米管阵列,优选地,该阵列为超顺排碳纳米管阵列。
步骤二:采用一拉伸工具从碳纳米管阵列中拉取获得至少一碳纳米管薄膜。
步骤三:铺设上述至少一碳纳米管薄膜于一绝缘基底表面,图案化该碳纳米管薄膜,形成多个碳纳米管层。
上述多个碳纳米管层可以根据需要形成于绝缘基底表面的特定位置。当应用于液晶显示器中时,多个碳纳米管层可以按行及按列方式形成于上述绝缘基底表面。具体地,该步骤三进一步包括以下步骤:(a)将至少一碳纳米管薄膜黏附于上述绝缘基底表面。该多个碳纳米管薄膜相互重叠黏附于绝缘基底表面。(b)采用激光刻蚀、等离子体刻蚀等方法对该至少一碳纳米管薄膜进行切割,从而使其图案化,在绝缘基底的表面形成多个碳纳米管层。
步骤四:间隔形成多个源极及多个漏极,并使上述每一碳纳米管层均与一源极及一漏极电连接。
与第一实施例薄膜晶体管10中源极151及漏极152的形成方法相似,本实施例可以先在形成有多个碳纳米管层的整个绝缘基底表面沉积一金属薄膜,再通过刻蚀等方法图案化该金属薄膜,从而在预定位置上一次形成多个源极及多个漏极。上述源极及漏极的材料也可为ITO薄膜、ATO薄膜、导电聚合物薄膜、导电银胶或碳纳米管薄膜。
步骤五:在每一碳纳米管层上形成一绝缘层。与第一实施例薄膜晶体管10中绝缘层的制备方法相似地的,可以先在整个绝缘基底的表面沉积一氮化硅薄膜,再通过刻蚀等方法图案化该氮化硅薄膜,从而在预定位置上一次形成多个绝缘层。上述绝缘层的材料也可为氧化硅等硬性材料或苯并环丁烯(BCB)、聚酯或丙烯酸树脂等柔性材料。
步骤六:在每一绝缘层表面形成一栅极,得到一薄膜晶体管阵列,该薄膜晶体管阵列包括多个薄膜晶体管。本技术领域的技术人员应该明白,上述步骤三中采用激光刻蚀或等离子体刻蚀等方法切割上述碳纳米管薄膜的步骤也可以在步骤四至步骤六中的任意步骤中进行。
可以理解,通过与第二实施例相似的方法,也可以形成一薄膜晶体管阵列,其具体包括以下步骤:
步骤一:提供一碳纳米管阵列,优选地,该阵列为超顺排碳纳米管阵列。
步骤二:采用一拉伸工具从碳纳米管阵列中拉取获得至少一碳纳米管薄膜。
步骤三:提供一绝缘基底。
步骤四:形成一多个栅极于所述绝缘基底表面。
步骤五:形成至少一绝缘层覆盖所述多个栅极。
步骤六:铺设上述至少一碳纳米管薄膜于绝缘层表面,图案化该碳纳米管薄膜,形成多个碳纳米管层,该多个碳纳米管层与上述多个栅极通过绝缘层相对并绝缘设置。
步骤七:间隔形成多个源极及多个漏极,并使上述每一碳纳米管层均与一源极及一漏极电连接。
本技术方案实施例提供的薄膜晶体管及薄膜晶体管阵列的制备方法具有以下优点:其一,本技术方案通过从碳纳米管阵列中直接拉取的方式获得碳纳米管薄膜作为半导体层,这种半导体层的形成方法比现有技术中的喷墨打印法形成薄膜晶体管半导体层的方法简单,无需经过在有机溶剂中分散碳纳米管的步骤。得到的碳纳米管薄膜中碳纳米管分布均匀,且纯度较高,避免了现有技术中形成的碳纳米管层中碳纳米管易团聚,从而分布不均,且碳纳米管层中易残留有机溶剂的问题。其二,由于采用直接拉取的方式获得的碳纳米管薄膜具有较大黏性,因此,可以通过直接黏附的方法将碳纳米管薄膜设置于所需位置,该方法简单、成本低,且可以在较低温度下进行,因此,本技术方案提供的薄膜晶体管的制备方法具有成本低、环保及节能的优点。并且,由于碳纳米管薄膜可以直接黏附于任意材料的基底表面,因此,该基底的材料可以选择不耐高温的柔性材料,有利于制备柔性的薄膜晶体管。其三,直接从碳纳米管阵列中拉取的碳纳米管薄膜中,碳纳米管首尾相连并沿同一方向排列,因此,将该碳纳米管薄膜作为半导体层时,可以通过控制碳纳米管薄膜的设置方向进而控制源极至漏极间碳纳米管的排列方向,从而使薄膜晶体管获得较大的载流子迁移率。
另外,本领域技术人员还可在本发明精神内作其它变化,当然这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。

Claims (16)

1.一种薄膜晶体管的制备方法,其包括以下步骤:
提供一碳纳米管阵列;
采用一拉伸工具从碳纳米管阵列中拉取获得至少一碳纳米管薄膜;
铺设上述至少一碳纳米管薄膜于一绝缘基底表面,形成一碳纳米管层;
间隔形成一源极及一漏极,并使该源极及漏极与上述碳纳米管层电连接;
形成一绝缘层于上述碳纳米管层表面;以及
形成一栅极于上述绝缘层表面,得到一薄膜晶体管。
2.如权利要求1所述的薄膜晶体管的制备方法,其特征在于,进一步包括沿相同或不同的方向重叠铺设多个碳纳米管薄膜于绝缘基底表面,形成碳纳米管层。
3.如权利要求1所述的薄膜晶体管的制备方法,其特征在于,所述碳纳米管薄膜包括多个定向排列的连续的碳纳米管,该多个碳纳米管具有相等的长度且通过范德华力首尾相连。
4.如权利要求3所述的薄膜晶体管的制备方法,其特征在于,所述碳纳米管为半导体性碳纳米管。
5.如权利要求3所述的薄膜晶体管的制备方法,其特征在于,所述源极及漏极沿碳纳米管薄膜中碳纳米管排列方向间隔形成。
6.如权利要求5所述的薄膜晶体管的制备方法,其特征在于,所述源极及漏极直接形成于所述碳纳米管层表面。
7.如权利要求1所述的薄膜晶体管的制备方法,其特征在于,铺设至少一碳纳米管薄膜于绝缘基底表面后,进一步包括一去除碳纳米管薄膜中的金属性碳纳米管的步骤。
8.如权利要求7所述的薄膜晶体管的制备方法,其特征在于,所述去除碳纳米管薄膜中的金属性碳纳米管的步骤在形成所述源极及漏极后进行,具体包括:提供一外部电源;将外部电源的正负两极连接至源极及漏极;以及通过外部电源在源极及漏极两端施加1~1000伏电压,使金属性的碳纳米管发热并烧蚀,获得一半导体性的碳纳米管层。
9.如权利要求7所述的薄膜晶体管的制备方法,其特征在于,所述去除碳纳米管层中的金属性碳纳米管的步骤为通过氢等离子体、微波、太赫兹、红外线、紫外线或可见光照射该碳纳米管层,使金属性碳纳米管烧蚀。
10.如权利要求1所述的薄膜晶体管的制备方法,其特征在于,铺设至少一碳纳米管薄膜于绝缘基底表面后,进一步包括一采用有机溶剂处理该碳纳米管薄膜的步骤。
11.如权利要求1所述的薄膜晶体管的制备方法,其特征在于,所述绝缘基底的材料为P型或N型硅、形成有氧化层的硅、透明石英、形成有氧化层的透明石英、塑料基底或树脂。
12.如权利要求1所述的薄膜晶体管的制备方法,其特征在于,形成绝缘层后,进一步包括一将源极及漏极部分暴露于绝缘层外的步骤。
13.如权利要求1所述的薄膜晶体管的制备方法,其特征在于,所述栅极、源极和漏极材料为金属、合金、铟锡氧化物、锑锡氧化物、导电银胶、导电聚合物或金属性碳纳米管。
14.一种薄膜晶体管的制备方法,包括以下步骤:
提供一碳纳米管阵列;
采用一拉伸工具从碳纳米管阵列中拉取获得至少一碳纳米管薄膜;
提供一绝缘基底;
形成一栅极于所述绝缘基底表面;
形成一绝缘层覆盖所述栅极;
铺设上述至少一碳纳米管薄膜于绝缘层表面,形成一碳纳米管层;以及间隔形成一源极及一漏极,并使该源极及漏极与上述碳纳米管层电连接。
15.一种薄膜晶体管的制备方法,包括以下步骤:
提供一碳纳米管阵列;
采用一拉伸工具从碳纳米管阵列中拉取获得至少一碳纳米管薄膜;
铺设上述至少一碳纳米管薄膜于一绝缘基底表面,图案化该碳纳米管薄膜,形成多个碳纳米管层;
间隔形成多个源极及多个漏极,并使上述每一碳纳米管层均与一源极及一漏极电连接;
在每一碳纳米管层表面形成一绝缘层;以及
在每一绝缘层表面形成一栅极,得到多个薄膜晶体管。
16.如权利要求15所述的薄膜晶体管的制备方法,其特征在于,所述图案化碳纳米管层的步骤为通过激光刻蚀或等离子体刻蚀方式切割所述碳纳米管薄膜,从而形成多个碳纳米管层。
CN200810067163.6A 2008-05-14 2008-05-14 薄膜晶体管的制备方法 Active CN101582382B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200810067163.6A CN101582382B (zh) 2008-05-14 2008-05-14 薄膜晶体管的制备方法
US12/384,331 US7947542B2 (en) 2008-05-14 2009-04-02 Method for making thin film transistor
EP09160164.1A EP2120274B1 (en) 2008-05-14 2009-05-13 Carbon Nanotube Thin Film Transistor
JP2009117601A JP5139367B2 (ja) 2008-05-14 2009-05-14 薄膜トランジスタの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810067163.6A CN101582382B (zh) 2008-05-14 2008-05-14 薄膜晶体管的制备方法

Publications (2)

Publication Number Publication Date
CN101582382A true CN101582382A (zh) 2009-11-18
CN101582382B CN101582382B (zh) 2011-03-23

Family

ID=41364468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810067163.6A Active CN101582382B (zh) 2008-05-14 2008-05-14 薄膜晶体管的制备方法

Country Status (3)

Country Link
US (1) US7947542B2 (zh)
JP (1) JP5139367B2 (zh)
CN (1) CN101582382B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399349A (zh) * 2013-07-26 2013-11-20 清华大学 一种基于“碳纳米管-镍”异质结的太赫兹电磁波探测器
CN105609636A (zh) * 2016-02-17 2016-05-25 上海交通大学 定向单壁碳纳米管阵列为沟道的场效应晶体管及制作方法
CN106752048A (zh) * 2016-12-15 2017-05-31 大新县科学技术情报研究所(大新县生产力促进中心) 一种纳米薄膜的制作方法
CN108963077A (zh) * 2017-05-17 2018-12-07 清华大学 薄膜晶体管
CN111864069A (zh) * 2019-04-26 2020-10-30 京东方科技集团股份有限公司 一种薄膜晶体管及其制备方法、显示装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239712B (zh) * 2007-02-09 2010-05-26 清华大学 碳纳米管薄膜结构及其制备方法
CN101315974B (zh) * 2007-06-01 2010-05-26 清华大学 锂离子电池负极及其制备方法
CN101400198B (zh) 2007-09-28 2010-09-29 北京富纳特创新科技有限公司 面热光源,其制备方法及应用其加热物体的方法
CN101409962B (zh) 2007-10-10 2010-11-10 清华大学 面热光源及其制备方法
US20100122980A1 (en) * 2008-06-13 2010-05-20 Tsinghua University Carbon nanotube heater
US20100126985A1 (en) * 2008-06-13 2010-05-27 Tsinghua University Carbon nanotube heater
US20100000669A1 (en) * 2008-06-13 2010-01-07 Tsinghua University Carbon nanotube heater
CN101880035A (zh) 2010-06-29 2010-11-10 清华大学 碳纳米管结构
US8471249B2 (en) * 2011-05-10 2013-06-25 International Business Machines Corporation Carbon field effect transistors having charged monolayers to reduce parasitic resistance
CN102856495B (zh) * 2011-06-30 2014-12-31 清华大学 压力调控薄膜晶体管及其应用
CN103367121B (zh) * 2012-03-28 2016-04-13 清华大学 外延结构体的制备方法
US8889475B1 (en) * 2013-05-30 2014-11-18 International Business Machines Corporation Self-aligned bottom-gated graphene devices
CN105679676A (zh) * 2016-03-01 2016-06-15 京东方科技集团股份有限公司 薄膜晶体管及其制备方法、阵列基板
CN108946700B (zh) 2017-05-17 2020-03-17 清华大学 碳纳米管的制备方法
CN108963079B (zh) 2017-05-17 2020-03-17 清华大学 光电探测元件以及光电探测器
CN108946658B (zh) * 2017-05-17 2020-03-17 清华大学 碳纳米管结构
CN109971387B (zh) * 2017-12-28 2021-01-22 清华大学 碳纳米管结构作为双面胶的应用

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6648711B1 (en) * 1999-06-16 2003-11-18 Iljin Nanotech Co., Ltd. Field emitter having carbon nanotube film, method of fabricating the same, and field emission display device using the field emitter
JP4063451B2 (ja) * 1999-07-26 2008-03-19 双葉電子工業株式会社 カーボンナノチューブのパターン形成方法
US6423583B1 (en) 2001-01-03 2002-07-23 International Business Machines Corporation Methodology for electrically induced selective breakdown of nanotubes
US7084507B2 (en) * 2001-05-02 2006-08-01 Fujitsu Limited Integrated circuit device and method of producing the same
JP4207398B2 (ja) 2001-05-21 2009-01-14 富士ゼロックス株式会社 カーボンナノチューブ構造体の配線の製造方法、並びに、カーボンナノチューブ構造体の配線およびそれを用いたカーボンナノチューブデバイス
US6814832B2 (en) 2001-07-24 2004-11-09 Seiko Epson Corporation Method for transferring element, method for producing element, integrated circuit, circuit board, electro-optical device, IC card, and electronic appliance
US7067867B2 (en) 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
KR101191632B1 (ko) 2002-09-30 2012-10-17 나노시스, 인크. 대형 나노 인에이블 매크로전자 기판 및 그 사용
CN1745468B (zh) 2002-09-30 2010-09-01 纳米系统公司 大面积纳米启动宏电子衬底及其用途
CN1208818C (zh) * 2002-10-16 2005-06-29 中国科学院化学研究所 一种阵列碳纳米管薄膜晶体管的制备方法
US7673521B2 (en) 2002-12-09 2010-03-09 Rensselaer Polytechnic Institute Embedded nanotube array sensor and method of making a nanotube polymer composite
CN1321885C (zh) * 2003-01-23 2007-06-20 南昌大学 在软基底上制造定向碳纳米管膜方法
US7150865B2 (en) 2003-03-31 2006-12-19 Honda Giken Kogyo Kabushiki Kaisha Method for selective enrichment of carbon nanotubes
JP4586334B2 (ja) 2003-05-07 2010-11-24 ソニー株式会社 電界効果型トランジスタ及びその製造方法
KR100757615B1 (ko) 2003-07-17 2007-09-10 마츠시타 덴끼 산교 가부시키가이샤 전계 효과형 트랜지스터 및 그 제조 방법
US20050061496A1 (en) 2003-09-24 2005-03-24 Matabayas James Christopher Thermal interface material with aligned carbon nanotubes
US7399400B2 (en) 2003-09-30 2008-07-15 Nano-Proprietary, Inc. Nanobiosensor and carbon nanotube thin film transistors
US6921684B2 (en) 2003-10-17 2005-07-26 Intel Corporation Method of sorting carbon nanotubes including protecting metallic nanotubes and removing the semiconducting nanotubes
US7382040B2 (en) 2004-01-15 2008-06-03 Matsushita Electric Industrial Co., Ltd. Organic field effect transistor and display using same
TWI231153B (en) 2004-02-26 2005-04-11 Toppoly Optoelectronics Corp Organic electroluminescence display device and its fabrication method
US7129097B2 (en) 2004-07-29 2006-10-31 International Business Machines Corporation Integrated circuit chip utilizing oriented carbon nanotube conductive layers
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US20060194058A1 (en) 2005-02-25 2006-08-31 Amlani Islamshah S Uniform single walled carbon nanotube network
JP4636921B2 (ja) 2005-03-30 2011-02-23 セイコーエプソン株式会社 表示装置の製造方法、表示装置および電子機器
KR100770258B1 (ko) 2005-04-22 2007-10-25 삼성에스디아이 주식회사 유기 박막트랜지스터 및 그의 제조 방법
US7538040B2 (en) 2005-06-30 2009-05-26 Nantero, Inc. Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers
JP4899368B2 (ja) * 2005-07-29 2012-03-21 ソニー株式会社 金属的単層カーボンナノチューブの破壊方法、半導体的単層カーボンナノチューブ集合体の製造方法、半導体的単層カーボンナノチューブ薄膜の製造方法、半導体的単層カーボンナノチューブの破壊方法、金属的単層カーボンナノチューブ集合体の製造方法、金属的単層カーボンナノチューブ薄膜の製造方法、電子素子の製造方法およびカーボンナノチューブfetの製造方法
US7687841B2 (en) 2005-08-02 2010-03-30 Micron Technology, Inc. Scalable high performance carbon nanotube field effect transistor
JP2007073706A (ja) 2005-09-06 2007-03-22 Seiko Epson Corp 配線基板、電気光学装置、電子機器、および配線基板の製造方法
JP2007123870A (ja) 2005-09-29 2007-05-17 Matsushita Electric Ind Co Ltd 平板表示装置およびその製造方法
US20070069212A1 (en) 2005-09-29 2007-03-29 Matsushita Electric Industrial Co., Ltd. Flat panel display and method for manufacturing the same
US7821079B2 (en) 2005-11-23 2010-10-26 William Marsh Rice University Preparation of thin film transistors (TFTs) or radio frequency identification (RFID) tags or other printable electronics using ink-jet printer and carbon nanotube inks
US7559653B2 (en) 2005-12-14 2009-07-14 Eastman Kodak Company Stereoscopic display apparatus using LCD panel
CN1808670A (zh) * 2005-12-16 2006-07-26 中国科学院上海微系统与信息技术研究所 提高印刷法制备碳纳米管薄膜场致电子发射性能的方法
WO2007099975A1 (ja) * 2006-02-28 2007-09-07 Toyo Boseki Kabushiki Kaisha カーボンナノチューブ集合体、カーボンナノチューブ繊維及びカーボンナノチューブ繊維の製造方法
JP2009528254A (ja) 2006-03-03 2009-08-06 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ 空間的に配列したナノチューブ及びナノチューブアレイの作製方法
US20070273798A1 (en) 2006-05-26 2007-11-29 Silverstein Barry D High efficiency digital cinema projection system with increased etendue
US20070273797A1 (en) 2006-05-26 2007-11-29 Silverstein Barry D High efficiency digital cinema projection system with increased etendue
US7458687B2 (en) 2006-05-26 2008-12-02 Eastman Kodak Company High efficiency digital cinema projection system with increased etendue
US20080134961A1 (en) 2006-11-03 2008-06-12 Zhenan Bao Single-crystal organic semiconductor materials and approaches therefor
US20080277718A1 (en) 2006-11-30 2008-11-13 Mihai Adrian Ionescu 1T MEMS scalable memory cell
WO2008075642A1 (ja) 2006-12-18 2008-06-26 Nec Corporation 半導体装置及びその製造方法
US20080173864A1 (en) 2007-01-20 2008-07-24 Toshiba America Research, Inc. Carbon nanotube transistor having low fringe capacitance and low channel resistance
JP2008235880A (ja) 2007-02-21 2008-10-02 Brother Ind Ltd 薄膜トランジスタ及び薄膜トランジスタの製造方法
US20080252202A1 (en) 2007-04-11 2008-10-16 General Electric Company Light-emitting device and article
KR101365411B1 (ko) 2007-04-25 2014-02-20 엘지디스플레이 주식회사 박막 트랜지스터의 제조 방법과 액정표시장치의 제조 방법
US7872334B2 (en) * 2007-05-04 2011-01-18 International Business Machines Corporation Carbon nanotube diodes and electrostatic discharge circuits and methods
JP2009032894A (ja) 2007-07-26 2009-02-12 Sharp Corp 半導体装置の製造方法
JP4737474B2 (ja) 2007-09-07 2011-08-03 日本電気株式会社 半導体素子
CN101409338A (zh) 2007-10-10 2009-04-15 清华大学 锂离子电池负极,其制备方法和应用该负极的锂离子电池
US9963781B2 (en) 2007-10-29 2018-05-08 Southwest Research Institute Carbon nanotubes grown on nanostructured flake substrates and methods for production thereof
US20090159891A1 (en) 2007-12-21 2009-06-25 Palo Alto Research Center Incorporated Modifying a surface in a printed transistor process
US7612270B1 (en) 2008-04-09 2009-11-03 International Business Machines Corporation Nanoelectromechanical digital inverter
US8598569B2 (en) 2008-04-30 2013-12-03 International Business Machines Corporation Pentacene-carbon nanotube composite, method of forming the composite, and semiconductor device including the composite
US20090282802A1 (en) 2008-05-15 2009-11-19 Cooper Christopher H Carbon nanotube yarn, thread, rope, fabric and composite and methods of making the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399349A (zh) * 2013-07-26 2013-11-20 清华大学 一种基于“碳纳米管-镍”异质结的太赫兹电磁波探测器
CN105609636A (zh) * 2016-02-17 2016-05-25 上海交通大学 定向单壁碳纳米管阵列为沟道的场效应晶体管及制作方法
CN105609636B (zh) * 2016-02-17 2018-05-08 上海交通大学 定向单壁碳纳米管阵列为沟道的场效应晶体管及制作方法
CN106752048A (zh) * 2016-12-15 2017-05-31 大新县科学技术情报研究所(大新县生产力促进中心) 一种纳米薄膜的制作方法
CN108963077A (zh) * 2017-05-17 2018-12-07 清华大学 薄膜晶体管
CN111864069A (zh) * 2019-04-26 2020-10-30 京东方科技集团股份有限公司 一种薄膜晶体管及其制备方法、显示装置

Also Published As

Publication number Publication date
JP5139367B2 (ja) 2013-02-06
JP2009278105A (ja) 2009-11-26
US7947542B2 (en) 2011-05-24
CN101582382B (zh) 2011-03-23
US20100075469A1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
CN101582382B (zh) 薄膜晶体管的制备方法
CN101582381B (zh) 薄膜晶体管及其阵列的制备方法
CN101587839B (zh) 薄膜晶体管的制备方法
CN101593699B (zh) 薄膜晶体管的制备方法
CN101582449B (zh) 薄膜晶体管
CN101458975B (zh) 电子元件
US8847313B2 (en) Transparent electronics based on transfer printed carbon nanotubes on rigid and flexible substrates
Kim et al. Fully transparent pixel circuits driven by random network carbon nanotube transistor circuitry
Kim et al. Fully transparent thin-film transistors based on aligned carbon nanotube arrays and indium tin oxide electrodes
CN102856395B (zh) 压力调控薄膜晶体管及其应用
CN101582448A (zh) 薄膜晶体管
Massey et al. The electrical and optical properties of oriented Langmuir-Blodgett films of single-walled carbon nanotubes
WO2010053171A1 (ja) スイッチング素子及びその製造方法
CN101582445B (zh) 薄膜晶体管
US20150364706A1 (en) Method of making n-type semiconductor layer and method of making n-type thin film transistor
EP2120274B1 (en) Carbon Nanotube Thin Film Transistor
TWI358092B (en) Method for making thin film transistor
CN101582451A (zh) 薄膜晶体管
TWI476837B (zh) 薄膜電晶體的製備方法
TWI388013B (zh) 薄膜電晶體的製備方法
TW200927690A (en) Electron element
TW200950092A (en) Method for making thin film transistor
TWI493719B (zh) 薄膜電晶體
TW200950095A (en) Thin film transistor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CI01 Publication of corrected invention patent application

Correction item: Patentee|Address|Co-patentee

Correct: Tsinghua University| 100084. Haidian District 1, Tsinghua Yuan, Beijing, Tsinghua University, Room 401, research center of Tsinghua Foxconn nanometer science and technology|Hung Fujin Precision Industrial (Shenzhen) Co., Ltd.

False: Hongfujin Precision Industry (Shenzhen) Co., Ltd.|518109 Guangdong city of Shenzhen province Baoan District Longhua Town Industrial Zone tabulaeformis tenth East Ring Road No. 2 two

Number: 12

Volume: 27

CI03 Correction of invention patent

Correction item: Patentee|Address|Co-patentee

Correct: Tsinghua University| 100084. Haidian District 1, Tsinghua Yuan, Beijing, Tsinghua University, Room 401, research center of Tsinghua Foxconn nanometer science and technology|Hung Fujin Precision Industrial (Shenzhen) Co., Ltd.

False: Hongfujin Precision Industry (Shenzhen) Co., Ltd.|518109 Guangdong city of Shenzhen province Baoan District Longhua Town Industrial Zone tabulaeformis tenth East Ring Road No. 2 two

Number: 12

Page: The title page

Volume: 27

ERR Gazette correction

Free format text: CORRECT: PATENTEE; ADDRESS; CO-PATENTEE; FROM: HONGFUJIN PRECISION INDUSTRY (SHENZHEN) CO., LTD.;518109 NO. 2, EAST RING 2ND ROAD, YOUSONG 10TH INDUSTRIAL ZONE, LONGHUA TOWN, BAOAN DISTRICT, SHENZHEN CITY, GUANGDONG PROVINCE TO: TSINGHUA UNIVERSITY;100084 ROOM 401, TSINGHUA-FOXCONN NANOTECHNOLOGY RESEARCH CENTER, TSINGHUA UNIVERSITY, NO. 1, TSINGHUA PARK, HAIDIAN DISTRICT, BEIJING; HONGFUJIN PRECISION INDUSTRY (SHENZHEN) CO., LTD.