TW200927690A - Electron element - Google Patents

Electron element Download PDF

Info

Publication number
TW200927690A
TW200927690A TW96149398A TW96149398A TW200927690A TW 200927690 A TW200927690 A TW 200927690A TW 96149398 A TW96149398 A TW 96149398A TW 96149398 A TW96149398 A TW 96149398A TW 200927690 A TW200927690 A TW 200927690A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
electronic component
substrate
transparent conductive
conductive layer
Prior art date
Application number
TW96149398A
Other languages
Chinese (zh)
Other versions
TWI436957B (en
Inventor
Qun-Qing Li
Kai-Li Jiang
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96149398A priority Critical patent/TWI436957B/en
Publication of TW200927690A publication Critical patent/TW200927690A/en
Application granted granted Critical
Publication of TWI436957B publication Critical patent/TWI436957B/en

Links

Abstract

The present invention relates to an electron element. The electron element includes a base, and a transparent conductive layer. The transparent conductive layer is disposed on a surface of the base. The transparent conductive layer includes a carbon nanotube layer.

Description

200927690 九、發明說明: .【發明所屬之技術領域】 本發明涉及一種電子元件,尤其涉及一種用于偏振 片、電極電池、場發射顯示等領域的含有透明導電層的電 子元件。 【先前技術】 從1991年曰本科學家iijima首次發現奈米碳管 (Carbon Nanotube,CNT)以來(“Helical microtubules of • graphitic carbon” Iijima S.,Nature,Vol 354, p56(1991)), 以奈米碳管爲代表的奈米材料以其獨特的結構和性質引起 了人們極大的關注。近幾年來,隨著奈米碳管及奈米材料 研究的不斷深入’其廣闊應用前景不斷顯現出來。例如, 由于奈米碳管所具有的獨特的電磁學、光學、力學、化學 性能等’大量有關其在場發射電子源、傳感器、新型光學 材料、軟鐵磁材料等領域的應用研究不斷被報道。 奈米碳管層爲奈米碳管實際應用的一種重要形式。具 ❿體地,奈米碳管層已被研究用作場發射源、光電和生物傳 感器、電池電極、吸波材料、水淨化材料、發光材料等。 先前技術中的液晶顯示器(LCD)、電漿顯示器(PDP)、 電致發光顯示器(EL/OLED)、觸摸屏(Touch Panel)、太陽 能電池以及其它電子儀錶通常需要一個具有透明導電層的 電子元件,該電子元件通常包括一基體和一透明導電層。 上述的透明導電層通常採用IT0層。上述ITO層主要採用 濺射或蒸鍍等方法製備,在製備的過程,需要較高的真空 環境及加熱到200~300°C,因此,使得ITO層的製備成本 6 200927690 -較尚,從而相應地使的電子元件得成本較高。另外,由于 •汀〇層的機械和化學耐用性不够好及ΙΤ〇層作透明導電層 存在電阻阻值分布不均勻等缺點,導致了先前的電子元件 的性能不好。 有鑒于此,確有必要提供一種電子元件,該電子元件 的透月if 電層具有成本低、機械性能優异、阻值分布均句 及透光性好等優點。 【發明内容】 ❹ 一種電子元件,該電子元件包括一基體;一透明導電 層’該透明導電層設置于所述基體的表面。其巾 透明導電層包括一奈米碳管層。 與先前技術的電子元件相比較,本技術方案提供的電 二:牛具有以下優點:其一,由于奈米碳管層具有很好 的早刃性和機械强度,故,采用奈米碳管層作透明導電居, 可以相應的提高電子元件的耐用性。其二 3 管層具有較均勾的結構,故,釆用奈米 ._ ^ 具有均勻的電阻,從而提吝雪 二性能。其三’由于本技術方案的奈米碳管屏可 接鋪設作透明導電層’而無需濺射和加熱‘工 云,故,降低了電子元件的製作成本。 ”’、 【實施方式】BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic component, and more particularly to an electronic component including a transparent conductive layer for use in a polarizing plate, an electrode battery, a field emission display, and the like. [Prior Art] Since 1991, when the scientist iijima first discovered the Carbon Nanotube (CNT) ("Helical microtubules of • graphitic carbon" Iijima S., Nature, Vol 354, p56 (1991)), Nano-materials represented by carbon nanotubes have attracted great attention due to their unique structure and properties. In recent years, with the deepening of research on carbon nanotubes and nanomaterials, its broad application prospects have been continuously revealed. For example, due to the unique electromagnetic, optical, mechanical, and chemical properties of carbon nanotubes, a large number of applications related to their applications in field emission electron sources, sensors, new optical materials, and soft ferromagnetic materials have been reported. . The carbon nanotube layer is an important form of practical application of carbon nanotubes. In a carcass manner, the carbon nanotube layer has been studied as a field emission source, a photoelectric and biosensor, a battery electrode, a absorbing material, a water purification material, a luminescent material, and the like. Liquid crystal displays (LCDs), plasma display (PDPs), electroluminescent displays (EL/OLEDs), touch panels, solar cells, and other electronic meters in the prior art generally require an electronic component having a transparent conductive layer. The electronic component typically includes a substrate and a transparent conductive layer. The transparent conductive layer described above generally employs an IT0 layer. The above ITO layer is mainly prepared by sputtering or evaporation, and a high vacuum environment and heating to 200-300 ° C are required in the preparation process, so that the preparation cost of the ITO layer is 6 200927690 - correspondingly, correspondingly The electronic components of the ground are costly. In addition, due to the shortcomings of the mechanical and chemical durability of the Tings layer and the uneven distribution of the resistance of the transparent conductive layer, the performance of the prior electronic components is not good. In view of this, it is indeed necessary to provide an electronic component having a low cost, excellent mechanical properties, uniform resistance distribution, and good light transmission. SUMMARY OF THE INVENTION An electronic component includes a substrate; a transparent conductive layer. The transparent conductive layer is disposed on a surface of the substrate. The towel transparent conductive layer comprises a carbon nanotube layer. Compared with the prior art electronic components, the second embodiment of the present invention provides the following advantages: First, since the carbon nanotube layer has good early edge and mechanical strength, the carbon nanotube layer is used. As a transparent conductive home, the durability of electronic components can be improved accordingly. The second and third tube layers have a relatively uniform structure, so the nanometer ._ ^ has a uniform resistance, thereby improving the performance of the snow. The third embodiment is because the carbon nanotube screen of the present technical solution can be laid as a transparent conductive layer without sputtering and heating, thereby reducing the manufacturing cost of the electronic component. ”, [Embodiment]

以下將結合_料技财t作a _步 請參閱圖1和圖2,本技術方案實施例提供—種W 包括一基體22和一透明導電層以。透明 : 5又置在基體22的至少一個表面上。 層4 7 200927690 所述基體22爲-曲面型或平面型的結構。該基體^ 由玻璃、石英、金剛石或塑料等硬性材料或柔性材料形成。 所述基體22主要起支撑的作用。 所述透明導電層24包括至少—個奈米碳管層,該夺米 碳管層包括無序或有序排列的多個奈米碳管。當奈米碳管 層包括多個有序奈米碳管時,所述多個奈米碳管在所述夺 米碳管層中平行于基體表面排列,且沿同—方向擇優取向 排列或沿不同方向擇優取向排列或各向同性。具體地,所 述奈米碳管層爲-個奈米碳管薄膜或多個平行 設的奈米碳管薄膜。 另,本實施例中,所述透明導電層24包括至少兩個重 ΐ 管層。每個奈米碳管層中的奈米碳管沿固 疋方向擇優取向排列,相鄰的兩個奈米碳管層中的沿同一 方向排列或沿不同方向排列, 管層中的奈米碳管層具有一交;=,相:的兩個奈米碳 ^度可依據實際需求製備。可㈣解, = …的奈米破管層可重叠設w,所述透明導;: 24的厚度不限,可根摅音 处π守电層 導電層24。 需要製成具有任意厚度的透明 列所’所述奈米碳管薄膜的寬度與奈米碳管陣 二::眘λ尺寸有關’該奈米碳管薄膜的長度不In the following, referring to FIG. 1 and FIG. 2, the embodiment of the present invention provides a substrate 22 and a transparent conductive layer. Transparent: 5 is again placed on at least one surface of the substrate 22. Layer 4 7 200927690 The base 22 is a curved surface or a planar structure. The substrate ^ is formed of a hard material such as glass, quartz, diamond or plastic or a flexible material. The base 22 serves primarily as a support. The transparent conductive layer 24 includes at least one carbon nanotube layer including a plurality of carbon nanotubes that are disordered or ordered. When the carbon nanotube layer comprises a plurality of ordered carbon nanotubes, the plurality of carbon nanotubes are arranged parallel to the surface of the substrate in the carbon nanotube layer, and are arranged along the same direction or along the preferred orientation Orientation or isotropic in different directions. Specifically, the carbon nanotube layer is a carbon nanotube film or a plurality of parallel carbon nanotube films. In addition, in this embodiment, the transparent conductive layer 24 includes at least two layers of heavy tubes. The carbon nanotubes in each carbon nanotube layer are arranged in a preferred orientation along the solid-state direction, and the adjacent two carbon nanotube layers are arranged in the same direction or arranged in different directions, and the nanocarbon in the tube layer The tube layer has an intersection; =, phase: two nano carbon degrees can be prepared according to actual needs. The (four) solution, the nano tube breaking layer of the ... can be overlapped with w, the transparent guiding; 24 thickness is not limited, and the root layer can be π the electric layer. It is required to form a transparent column having an arbitrary thickness. The width of the carbon nanotube film is related to the size of the carbon nanotube array: the size of the carbon nanotube film.

二生長1 4二需求製得。由于釆用化學氣相沈積法(CVD 進一+祕卢^ :基底生長超順排奈米碳管陣列’並進行 7地戶斤仔—奈米碳管薄膜’故該奈米碳管薄膜的 200927690 .寬度可爲0.01厘米〜10厘米,該奈米碳管薄膜的厚度爲1〇 .奈米〜100微米。所述奈米碳管薄膜包括單壁奈米碳管、雙 壁奈米碳管及多壁奈米碳管的一種或幾種。其中,該單壁 奈米碳管的直徑爲0.5奈米〜50奈米;該雙壁奈米碳管的 直徑爲1.0奈米〜50奈米;該多壁奈米碳管的直徑爲15奈 米〜50奈米。 ,、 本技術方案實施例透明導電層24包括至少兩個重叠 設置的奈米碳管層,每一奈米碳管層包括多個定向排列的 ❹奈米碳管,且相鄰的兩個奈米碳管層中的奈米碳管沿不同 方向排列或沿同一方向排列。所述透明導電層的製備方法 主要包括以下步驟: 步驟一:提供一奈米碳管陣列,優選地,該陣列爲超 順排奈米碳管陣列。 ^本技術方案實施例提供的奈米碳管陣列爲單壁奈米碳 管陣列、雙壁奈米碳管陣列或多壁奈米碳管陣列。本實施 ⑬例中,超順排奈米碳管陣列的製備方法采用化學氣相沈積 去,其具體步驟包括:(a)提供一平整基底,該基底可選 用P型或N型矽基底,或選用形成有氧化層的矽基底,’本 實施例優選爲採用4英寸的石夕基底;⑴在基底表面均勾 形成催化劑層’該催化劑層材料可選用鐵(Fe )、鈷 (Co)鎳(Ni)或其任意組合的合金之一;(。)將上述 形成有催化劑層的基底在700〜900。(:的空氣中退火約30分 =90刀鐘,(d )將處理過的基底置于反應爐中,在保護 氣體環境下加熱到500~74(TC ,然後通入碳源氣體反應約 200927690 -5〜30分鐘,生長得到超順排奈米碳管陣列,其高度爲 ,200〜400微米。該超順排奈米碳管陣列爲多個彼此平行且 垂直于基底生長的奈米碳管形成的純奈米碳管陣列。通過 上述控製生長條件,該超順排奈米碳管陣列中基本不含有 雜質’如無定型碳或殘留的催化劑金屬顆粒等。該奈米碳 管陣列中的奈米碳管彼此通過凡德瓦爾力緊密接觸形成陣 列。該奈米碳管陣列與上述基底面積基本相同。 本實施例中碳源氣可選用乙炔、乙烯、曱烷等化學性 ❺質較活潑的碳氫化合物,本實施例優選的碳源氣爲乙炔,· 保護氣體爲氮氣或惰性氣體,本實施例優選的保護氣體爲 氬氣。 ‘ ,可以理解,本實施例提供的奈米碳管陣列不限于上述 製備方法。也可爲石墨電極恒流電弧放電沈積法、激光基 發沈積法等。 … v驟一.釆用一拉伸工具從奈米碳管陣列中拉取獲得 -奈米碳管薄膜。其具體包括以下步驟:“)從上述奈米 碳管陣列中選定-定寬度的多個奈米碳管片斷,本實施例 優選爲采用具有-定寬度的膠帶接觸奈米碳管陣列以選定 一定寬度的多個奈米碳管片斷;⑴以1速度沿基本垂 直于奈米碳管陣列生長方向拉伸該多個奈米碳管片斷,以 形成一連續的奈米碳管薄膜。 在上述拉伸過財,該多個奈米碳管片段在拉力作用 下沿拉伸方向逐漸脫離基底的料,由于凡德瓦爾力作 用’該選定的多個奈米碳管片斷分別與其他奈米碳管片斷 200927690 Γ尾,連地連續地被拉出,從而形成—奈米碳管薄膜。該 .:米石反&薄膜包括多個首尾相連且定向排列的奈米碳管 束。該奈米碳管薄膜令奈米碳管的排列方向基本平行于奈 米碳管薄膜的拉伸方向。 步驟三:製備上述的兩個奈米碳管薄膜,並重叠且交 叉設置’從而形成透明導電層24。 取上述製備的兩個奈米碳管薄膜,每一個奈米碳管薄 膜作爲-個奈米碳管層。重叠設置上述的兩個奈米碳管 ❿層,從而使得到上述兩個奈米碳管層中的定向排列的夺米 碳管之間具有一交又角度α,〇如9〇。。可以理解由于^ 米碳管薄膜中奈米碳管的排列方向基本平行于奈米碳管薄 膜的拉伸方向,故,可以使得上述的兩個奈米碳管層之間 的奈米碳管成一交叉角度α設置。 曰 請參閱圖3,該奈米碳管薄膜爲擇優取向排列的多個 奈米碳管束首尾相連形成的具有一定寬度的奈米碳管薄 膜。=米碳管薄膜中奈米碳管的排列方向基本平行于奈 米碳管薄膜的拉伸方向。該直接拉伸獲得的擇優取向排二 的奈米碳管薄膜比無序的奈米碳管薄膜具有更好的均勻 f生即具有更均勻的厚度以及具有均勾的導電性能。同時 該直接拉伸獲得奈米碳管薄膜的方法簡單快速,適宜進行 業化應用& ’採用本技術方案的奈米碳管層作透明導 電詹24 ’可以降低了電子元件20的製作。 可以理解,由于本實施例超順排奈米碳管陣列中的卉 米碳管非常純淨’且由于奈米碳管本身的比表面積非^ 11 200927690 大所以該不米碳官薄膜本身具有較强的枯性。因此,采 用本實施射的奈米碳管薄膜形成奈米碳管層,並作爲透 明導電層24時,可直接㈣在基體22的—個表面上。 一另外’可使用有機溶劑處理上述粘附在基體22上的奈 ^ 炭管層m地’可通過試管將有機溶劑滴落在奈米碳 g層表面&潤整個奈米碳管層。該有機溶劑爲揮發性有機 溶劑’如乙醇、?醇、丙酮、二氯乙烧或氯仿,本實施例 〇 中知用乙醇。所述奈米碳管薄膜經有機溶劑浸潤處理後, 在揮發性有機溶劑的表面張力的作許,奈米碳管薄膜中 的平行?Ϊ米碳管片斷會部分聚集成奈米碳管束,因此, 該不米碳官薄臈表面體積比小,m且具有良好 械强度及韌性。 佩 此外,根據實際需要,還可在透明導電層24的一個表 面上設置有至少兩個電極26。優選地,上述的至少兩個電 極26間隔設置在透明導電層24遠離基體22的一個表面 上。可以理解,上述的電極26也可以設置在透明導電層 24的不同表面上,其關鍵在于確保上述的電極26與透明 導電層24形成電連接即可。上述至少兩個電極%的材料 可以爲銅、銀、金、石墨或奈米碳管長綫。具體地,在本 實也“中基體22爲玻璃基板,所述至少兩個電極%爲 由銅的鏡層或者箱片、组成的條狀電極。所述電極%可以採 用濺射電鍍、化學鍵等沈積方法直接形成在透明導電層 24上另外,也可用銀膠等導電粘結劑將上述的至少兩個 電極26粘結在透明導電層24上。 12 200927690 可以理解’在本技術方案提供的電子元件20的透明導 電層24上采用光刻或激光㈣的方法,形成錢後,所述 電子το件20可以用作透明電極或電路用于平面顯示、光 電、觸摸屏、電致發光和電磁屏蔽(EMI)中。 具體地,當用于做熱源時,電子元件2〇可包括兩個電 極’上述的兩個電極間隔設置在透明導電層%的遠離基體 22的-個表面上。上述的兩個電極分別連接導線後,接入 電源。由于上述的兩個電極間隔一定距離設置。故,在上 ❿述兩個電極之間的透明導電層24上接入了一定的阻值,防 止了短路現象的發生。因此,當電源接入後,電子元件2〇 的透明導電層24可輕射出一定波長範圍的電磁波。 當用于觸摸屏時,電子元件20可包括四個電極,上述 的四個電極間隔設置在透明導電層24的遠離基體22的一 個表面上。上述的四個電極分別連接導線,接入電源。由 于上述的四個電極間隔一定距離設置,且所述透明導電層 ❹24包括一奈米碳管層,該奈米碳管層中的奈米碳管有序: 列,從而使得透明導電層24具有均勾的阻值分布。故,接 :電源後,在透明導電層24上形成均勾分布的等電位面。 曰手‘或導電筆等觸摸物賴或靠近觸鮮的透明導電声 Μ時,觸摸物與透明導電層24之間形成一耦合電容; Z高頻電流來說,電容爲直接導體,故,手指從接觸點吸 ^了 一部分電流。這個電流分別從觸摸屏2〇上的電極中流 ’並且流經這四個電極的電流與手指到四角的距離成正 t觸摸屏控製器通過對這四個電流比例的精確計算,得 13 200927690 •出觸摸點的位置。 * 本技術方案實施例提供的電子元件20具有以下優 點:其-,由于奈米碳管層具有很好的勒性和機械强度, 故,采用奈米碳管層作透明導電層24,可以相應的提高電 子元件的耐用性。其二,由于奈米碳管層具有較均句的緒 構,故,采用奈米碳管層作透明導電層24,可使得透明導 電層具有均勻的電阻,從而提高電子元件的性能。其三, 由于本技術方案的奈米碳管層可通過直接鋪設作透明導電 ©層,而纟需濺射和加熱等工藝,故,降低了電子元件的製 作成本。 β综上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅爲本發明之較佳實施例, 自不能以此限製本案之申請專利範圍。舉凡熟悉本案技藝 =人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋于以下申請專利範圍内。 ◎【圖式簡單說明】 圖1為本技術方案實施例的電子元件的結構示意圖。 圖2為沿圖1所示的線ΙΙ-ΙΙ,的剖視圖。 圖3爲本技術方案實施例的透明導電層的奈米碳管薄 膜的掃描電鏡圖。 【主要元件符號說明】 30 22 24 電子元件 基體 透明導電層 , 14 200927690 -.電極Two growth of 1 4 two demand was made. Because of the use of chemical vapor deposition (CVD into a + secret Lu ^: substrate growth super-sequential carbon nanotube array 'and carry out 7 households - Nike carbon nanotube film') the carbon nanotube film 200927690 The width may be 0.01 cm to 10 cm, and the thickness of the carbon nanotube film is 1 〇. nm to 100 μm. The carbon nanotube film comprises a single-walled carbon nanotube, a double-walled carbon nanotube and One or more of the multi-walled carbon nanotubes, wherein the single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm; and the double-walled carbon nanotube has a diameter of 1.0 nm to 50 nm; The multi-walled carbon nanotube has a diameter of 15 nm to 50 nm. The transparent conductive layer 24 of the embodiment of the present invention includes at least two carbon nanotube layers arranged in an overlapping manner, and each carbon nanotube layer includes a plurality of aligned carbon nanotubes, and the carbon nanotubes in the adjacent two carbon nanotube layers are arranged in different directions or arranged in the same direction. The preparation method of the transparent conductive layer mainly comprises the following steps Step 1: Provide a carbon nanotube array, preferably the array is a super-sequential carbon nanotube array. The carbon nanotube array provided by the embodiment of the technical solution is a single-walled carbon nanotube array, a double-walled carbon nanotube array or a multi-walled carbon nanotube array. In the 13th embodiment, the super-shoring carbon nanotube array The preparation method adopts chemical vapor deposition, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or a germanium substrate formed with an oxide layer, 'this embodiment preferably In order to adopt a 4-inch stone base; (1) a catalyst layer is formed on the surface of the substrate. The catalyst layer material may be one of iron (Fe), cobalt (Co) nickel (Ni) or any combination thereof; The substrate on which the catalyst layer is formed is in the range of 700 to 900. (: air is annealed for about 30 minutes = 90 knives, (d) the treated substrate is placed in a reaction furnace, and heated to 500 in a protective gas atmosphere. 74 (TC, then pass into the carbon source gas reaction about 200927690 -5~30 minutes, grow to obtain a super-sequential carbon nanotube array, the height is 200~400 microns. The super-shunary carbon nanotube array is more Formed by carbon nanotubes that are parallel to each other and perpendicular to the substrate Nano carbon tube array. The above-mentioned controlled growth conditions, the super-sequential carbon nanotube array is substantially free of impurities such as amorphous carbon or residual catalyst metal particles, etc. Nanocarbon in the carbon nanotube array The tubes are in close contact with each other to form an array by van der Waals force. The carbon nanotube array is substantially the same area as the above substrate. In this embodiment, the carbon source gas may be selected from chemical enamels such as acetylene, ethylene, and decane. The preferred carbon source gas in the present embodiment is acetylene, and the shielding gas is nitrogen or an inert gas. The preferred shielding gas in this embodiment is argon. ' It is understood that the carbon nanotube array provided in the embodiment is not limited. The above preparation method may also be a graphite electrode constant current arc discharge deposition method, a laser based deposition method, or the like. ... v. I. Using a stretching tool to pull from the carbon nanotube array to obtain a carbon nanotube film. Specifically, the method includes the following steps: ") selecting a plurality of carbon nanotube segments of a predetermined width from the carbon nanotube array, and the embodiment preferably adopts a tape having a constant width to contact the carbon nanotube array to select a certain a plurality of carbon nanotube segments of a width; (1) stretching the plurality of carbon nanotube segments at a rate substantially perpendicular to the growth direction of the carbon nanotube array to form a continuous carbon nanotube film. Excessively, the plurality of carbon nanotube segments are gradually separated from the substrate by the tensile force in the direction of stretching, and the selected plurality of carbon nanotube segments are respectively associated with the other carbon nanotubes due to the van der Waals force. Fragment 200927690 The appendix is continuously pulled out continuously to form a film of carbon nanotubes. The: Meteorite & film comprises a plurality of carbon nanotube bundles connected end to end and oriented. The carbon nanotubes The film is arranged such that the arrangement direction of the carbon nanotubes is substantially parallel to the stretching direction of the carbon nanotube film. Step 3: preparing the two carbon nanotube films described above, and overlapping and intersecting each other to form a transparent conductive layer 24. preparation Two carbon nanotube films, each of which is a carbon nanotube layer. The two carbon nanotube layers are overlapped, so that the two carbon nanotube layers are The aligned carbon nanotubes have an intersection angle α, such as 9〇. It can be understood that the arrangement direction of the carbon nanotubes in the carbon nanotube film is substantially parallel to the stretching direction of the carbon nanotube film. Therefore, the carbon nanotubes between the two carbon nanotube layers can be set at an intersection angle α. Referring to FIG. 3, the carbon nanotube film is a plurality of carbon nanotube bundles arranged in a preferred orientation. The carbon nanotube film having a certain width formed by the end-to-end connection. The arrangement direction of the carbon nanotubes in the carbon nanotube film is substantially parallel to the stretching direction of the carbon nanotube film. The preferred orientation obtained by the direct stretching is two. The carbon nanotube film has better uniformity than the disordered carbon nanotube film, that is, has a more uniform thickness and has uniform electrical conductivity. At the same time, the method of directly stretching the carbon nanotube film is simple. Fast and suitable for industrial application & 'Using the carbon nanotube layer of the present technology as the transparent conductive Jen 24' can reduce the fabrication of the electronic component 20. It can be understood that the Huimi carbon tube in the super-sequential carbon nanotube array of this embodiment is very Pure' and because the specific surface area of the carbon nanotube itself is not large, the carbon film itself has a strong dryness. Therefore, the carbon nanotube film formed by the present embodiment forms a carbon nanotube layer. And as the transparent conductive layer 24, it can be directly (four) on the surface of the substrate 22. An additional 'the organic solvent can be used to treat the above-mentioned carbon nanotube layer adhered to the substrate 22', which can be organically The solvent is dripped on the surface of the nano carbon layer and the entire carbon nanotube layer is moistened. The organic solvent is a volatile organic solvent such as ethanol, alcohol, acetone, dichloroethane or chloroform, which is known in the present embodiment. Use ethanol. After the carbon nanotube film is infiltrated by the organic solvent, the surface tension of the volatile organic solvent is made, and the parallel carbon nanotube segments in the carbon nanotube film are partially aggregated into the carbon nanotube bundle, so The non-carbon carbon thin crucible has a small surface volume ratio, m and good mechanical strength and toughness. Further, at least two electrodes 26 may be disposed on one surface of the transparent conductive layer 24 according to actual needs. Preferably, the at least two electrodes 26 are spaced apart from each other on a surface of the transparent conductive layer 24 away from the substrate 22. It can be understood that the above-mentioned electrodes 26 can also be disposed on different surfaces of the transparent conductive layer 24, and the key is to ensure that the above-mentioned electrode 26 and the transparent conductive layer 24 are electrically connected. The material of at least two of the above electrodes may be a long line of copper, silver, gold, graphite or carbon nanotubes. Specifically, in the present invention, the intermediate substrate 22 is a glass substrate, and the at least two electrodes are strip electrodes composed of a mirror layer or a box of copper. The electrode % can be sputter-plated, chemically bonded, or the like. The deposition method is directly formed on the transparent conductive layer 24. Alternatively, the at least two electrodes 26 may be bonded to the transparent conductive layer 24 by a conductive adhesive such as silver paste. 12 200927690 It is understood that the electrons provided in the present technical solution can be understood. The transparent conductive layer 24 of the component 20 is formed by photolithography or laser (4). After forming the money, the electronic component 20 can be used as a transparent electrode or circuit for planar display, photoelectric, touch screen, electroluminescence and electromagnetic shielding ( Specifically, when used as a heat source, the electronic component 2 can include two electrodes. The two electrodes described above are spaced apart from each other on the surface of the transparent conductive layer % away from the substrate 22. The above two After the electrodes are respectively connected to the wires, the power is connected. Since the two electrodes are arranged at a certain distance, a certain resistance is connected to the transparent conductive layer 24 between the two electrodes. The value prevents the occurrence of a short circuit phenomenon. Therefore, when the power source is connected, the transparent conductive layer 24 of the electronic component 2 can emit electromagnetic waves of a certain wavelength range. When used for a touch screen, the electronic component 20 can include four electrodes. The above four electrodes are spaced apart on one surface of the transparent conductive layer 24 away from the base 22. The above four electrodes are respectively connected to the wires and connected to the power source. Since the above four electrodes are spaced apart by a certain distance, the transparent conductive The layer 24 includes a carbon nanotube layer, and the carbon nanotubes in the carbon nanotube layer are ordered: the column, so that the transparent conductive layer 24 has a uniform resistance distribution. Therefore, after the power supply, the transparent The equipotential surface of the uniform layer is formed on the conductive layer 24. When a touch object such as a hand or a conductive pen is close to or close to the transparent conductive sonar, a coupling capacitor is formed between the touch object and the transparent conductive layer 24; In terms of frequency current, the capacitor is a direct conductor, so the finger sucks a part of the current from the contact point. This current flows from the electrode on the touch screen 2〇 and flows through the four electrodes. The distance from the finger to the four corners is positive. The touch screen controller obtains the position of the touch point by accurately calculating the ratio of the four currents. The electronic component 20 provided by the embodiment of the present technical solution has the following advantages: The carbon nanotube layer has good tensile strength and mechanical strength. Therefore, the use of a carbon nanotube layer as the transparent conductive layer 24 can improve the durability of the electronic component. Second, because the carbon nanotube layer has a comparative The structure of the average sentence, therefore, the use of a carbon nanotube layer as the transparent conductive layer 24, the transparent conductive layer can have a uniform electrical resistance, thereby improving the performance of electronic components. Third, due to the carbon nanotube layer of the technical solution It can be directly laid as a transparent conductive layer, and there is no need for sputtering and heating processes, so the manufacturing cost of electronic components is reduced. As described above, the present invention has indeed met the requirements of the invention patent, and has patented according to law. Application. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by persons in accordance with the spirit of the present invention are intended to be within the scope of the following claims. ◎ [Simple Description of the Drawings] FIG. 1 is a schematic structural view of an electronic component according to an embodiment of the present technical solution. Figure 2 is a cross-sectional view taken along line ΙΙ-ΙΙ of Figure 1. Fig. 3 is a scanning electron micrograph of a carbon nanotube film of a transparent conductive layer according to an embodiment of the present technology. [Main component symbol description] 30 22 24 Electronic component Substrate Transparent conductive layer , 14 200927690 -. Electrode

Claims (1)

200927690 ,十、申請專利範圍 .1. 一種電子元件,包括 一基體;一透明導電層,該透明導電層設置于所述 基體的至少一個表面,其改良在于,所述透明導電 層包括至少一個奈米碳管層。 2. 如申請專利範圍第1項所述的電子元件,其中,所述 奈米碳管層包括多個無序或有序排列的奈米碳管。 3. 如申請專利範圍第2項所述的電子元件,其中,所述 〇 奈米碳管層包括多個平行于基體表面排列,且沿同一 方向擇優取向排列或沿不同方向擇優取向排列或各 向同性的奈米碳管。 4·如申請專利範圍第2項所述的電子元件,其中,所述 奈米碳管層爲一個奈米碳管薄膜或多個平行且無間 隙鋪設的奈米碳管薄膜,該奈米碳管薄膜包括多個沿 同一方向擇優取向排列的奈米碳管。 5 ·如申清專利範圍第4項所述的電子元件,其中,所述 奈米碳管薄膜進一步包括多個奈米碳管束片段,每個 奈米^反%*束片段具有大致相等的長度且每個奈米碳 管束片段由多個相互平行的奈米碳管束構成,所述多 個奈米碳管束片段兩端通過凡德瓦爾力相互連接。 6. 如申請專利範圍第4項所述的電子元件,其中,所述 奈米碳管薄膜的厚度爲〇.〇1微米〜100微米。 7. 如申請專利範圍第6項所述的電子元件,其中,所述 奈米碳管包括單壁奈米碳管、雙壁奈米碳管及多壁奈 16 200927690 • 米碳管中的一種或几種。 —8.如申清專利範圍第7項所述的電子元件,其中,所述 單壁奈米碳管的直徑爲0.5奈米〜50奈米,雙壁奈米 碳管的直徑爲1.0奈米〜50奈米,多壁奈米碳管的直 徑爲1.5奈米〜5〇奈米。 9.如申請專利範圍第i項所述的電子元件,其中,所述 透明導電層包括至少兩個重叠設置的奈米碳管層,每 個奈米碳管層中的奈米碳管沿固定方向擇優取向排 〇 列。 10.如申請專利範圍第9項所述的電子元件,其中,所述 相鄰兩個奈米碳管層之間的奈米碳管沿不同方向排 列或沿同-方向排列,即具有一交叉角度 等于0度且小于等于90度。 U.=請:利範圍第1項所述的電子元件,其中,所述200927690, X. Patent Application Range 1. An electronic component comprising a substrate; a transparent conductive layer disposed on at least one surface of the substrate, wherein the transparent conductive layer comprises at least one nano Carbon tube layer. 2. The electronic component of claim 1, wherein the carbon nanotube layer comprises a plurality of disordered or ordered carbon nanotubes. 3. The electronic component according to claim 2, wherein the carbon nanotube layer comprises a plurality of layers arranged parallel to the surface of the substrate, and arranged in a preferred orientation in the same direction or in a preferred orientation in different directions or each Isotropic carbon nanotubes. 4. The electronic component according to claim 2, wherein the carbon nanotube layer is a carbon nanotube film or a plurality of parallel and gap-free carbon nanotube films, the nanocarbon The tube film comprises a plurality of carbon nanotubes arranged in a preferred orientation in the same direction. 5. The electronic component of claim 4, wherein the carbon nanotube film further comprises a plurality of carbon nanotube bundle segments, each of the nanometers having a substantially equal length And each of the carbon nanotube bundle segments is composed of a plurality of mutually parallel carbon nanotube bundles, and the plurality of carbon nanotube bundle segments are connected to each other by a van der Waals force. 6. The electronic component according to claim 4, wherein the carbon nanotube film has a thickness of from 1 μm to 100 μm. 7. The electronic component of claim 6, wherein the carbon nanotube comprises a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled nanometer 16 200927690 • one of a carbon nanotube Or several. 8. The electronic component according to claim 7, wherein the single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm, and the double-walled carbon nanotube has a diameter of 1.0 nm. ~50 nm, multi-walled carbon nanotubes with a diameter of 1.5 nm ~ 5 〇 nanometer. 9. The electronic component of claim i, wherein the transparent conductive layer comprises at least two layers of carbon nanotubes disposed in an overlapping manner, and the carbon nanotubes in each of the carbon nanotube layers are fixed along the surface Directions are preferred. 10. The electronic component according to claim 9, wherein the carbon nanotubes between the adjacent two carbon nanotube layers are arranged in different directions or arranged in the same direction, that is, have a cross. The angle is equal to 0 degrees and less than or equal to 90 degrees. U.= please: the electronic component described in item 1 of the benefit range, wherein 件進-步包括至少兩個電極,該至少兩個電極 曰1隔》又置在上述透 面,並㈣透二 或基體的-表 /、通透明導電層電連接。 12.如申請專利範 、+•石丨、 第11項所述的電子元件,其中,所 13如由社畜一科爲銅銀、金、翻或石墨。 ,,s . 乐12項所述的電子元件,其中,阱 述至;兩個電極 ^ 兵〒所 上。 ㈣通過m膝設置在透明導電層 如申請專利範圍 基體爲平面基體 第1項所述的電子元件 或曲面基體。 ’其中,所述 17 14. 200927690 • 15.如申請專利範圍第1項所述的電子元件,其中,所述 . 基體的材料爲玻璃、石英、金剛石或塑料。 ❹ 18The step further comprises at least two electrodes, the at least two electrodes being placed on the transmissive surface and electrically connected to the transparent conductive layer of the substrate or the substrate. 12. For example, the electronic component described in the patent application, +• Dendrobium, item 11, wherein the article 13 is made of copper, silver, gold, or graphite. , s. The electronic component described in item 12, wherein the well is described; the two electrodes are on the armor. (4) The transparent conductive layer is disposed through the m knee, as in the patent application. The base is a planar substrate, the electronic component or the curved substrate described in item 1. The electronic component of claim 1, wherein the material of the substrate is glass, quartz, diamond or plastic. ❹ 18
TW96149398A 2007-12-21 2007-12-21 Electron element TWI436957B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96149398A TWI436957B (en) 2007-12-21 2007-12-21 Electron element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96149398A TWI436957B (en) 2007-12-21 2007-12-21 Electron element

Publications (2)

Publication Number Publication Date
TW200927690A true TW200927690A (en) 2009-07-01
TWI436957B TWI436957B (en) 2014-05-11

Family

ID=44863729

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96149398A TWI436957B (en) 2007-12-21 2007-12-21 Electron element

Country Status (1)

Country Link
TW (1) TWI436957B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI496167B (en) * 2009-08-21 2015-08-11 Innolux Corp A conductive plate having a plurity of conductive films
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI496167B (en) * 2009-08-21 2015-08-11 Innolux Corp A conductive plate having a plurity of conductive films
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media

Also Published As

Publication number Publication date
TWI436957B (en) 2014-05-11

Similar Documents

Publication Publication Date Title
KR101297525B1 (en) Electronic component
TWI354921B (en) Touch panel and displaying device using the same
US8325585B2 (en) Touch panel and display device using the same
US8199119B2 (en) Touch panel and display device using the same
TW201508602A (en) Touch sensitive device
US8237671B2 (en) Touch panel and display device using the same
TW200926471A (en) Touch panel and displaying device using the same
CN101458604B (en) Touch screen and display device
TW201000393A (en) Method for making carbon nanotube film
CN103730302B (en) Field emitting electronic source and field emission apparatus
TWI386831B (en) Touch panel and displaying device using the same
CN103730305B (en) The preparation method of field emitting electronic source
TW200929649A (en) Touchable control device
TWI436957B (en) Electron element
TW200928915A (en) Method for making touch panel
TWI408575B (en) Touch panel and displaying device using the same
TW200928908A (en) Touch panel and displaying device using the same
TWI403928B (en) Method for making touch panel
TWI436510B (en) Touch panel and displaying device using the same
TWI374302B (en) Touch panel
TW200929636A (en) Touch panel and displaying device using the same
TWI354920B (en) Touch panel and displaying device using the same
TWI423084B (en) Touch panel and displaying device using the same
TWI362776B (en) Touch panel and displaying device using the same
TWI482324B (en) Touch panel and displaying device using the same