TWI403928B - Method for making touch panel - Google Patents

Method for making touch panel Download PDF

Info

Publication number
TWI403928B
TWI403928B TW97126325A TW97126325A TWI403928B TW I403928 B TWI403928 B TW I403928B TW 97126325 A TW97126325 A TW 97126325A TW 97126325 A TW97126325 A TW 97126325A TW I403928 B TWI403928 B TW I403928B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
layer
polymer material
preparing
rotating shaft
Prior art date
Application number
TW97126325A
Other languages
Chinese (zh)
Other versions
TW201003488A (en
Inventor
Kai-Li Jiang
Liang Liu
Shou-Shan Fan
Ga-Lane Chen
Jia Shyong Cheng
Jeah Sheng Wu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97126325A priority Critical patent/TWI403928B/en
Publication of TW201003488A publication Critical patent/TW201003488A/en
Application granted granted Critical
Publication of TWI403928B publication Critical patent/TWI403928B/en

Links

Abstract

The present invention relates to a method for making touch panel. The method includes the following steps: providing a first substrate; forming a carbon nanotube composite layer on a surface of the first substrate, to achieve a first electrode plate; repeating the former steps and forming a second electrode plate; encapsulating the first electrode plate and the second electrode, to achieve the touch panel.

Description

觸摸屏製備方法 Touch screen preparation method

本發明涉及一種觸摸屏,尤其涉及一種基於奈米碳管的觸摸屏。 The invention relates to a touch screen, in particular to a carbon nanotube-based touch screen.

近年來,伴隨著移動電話與觸摸導航系統等各種電子設備的高性能化和多樣化的發展,在液晶等顯示元件的前面安裝透光性的觸摸屏的電子設備逐步增加。這樣的電子設備的利用者通過觸摸屏,一邊對位於觸摸屏背面的顯示元件的顯示內容進行視覺確認,一邊利用手指或筆等方式按壓觸摸屏來進行操作。由此,可操作電子設備的各種功能。 In recent years, with the development of high performance and diversification of various electronic devices such as mobile phones and touch navigation systems, electronic devices in which a translucent touch panel is mounted on the front surface of a display element such as a liquid crystal are gradually increasing. The user of such an electronic device operates by pressing the touch panel with a finger or a pen while visually checking the display content of the display element located on the back surface of the touch panel through the touch panel. Thereby, various functions of the electronic device can be operated.

按照觸摸屏的工作原理和傳輸介質的不同,先前的觸摸屏通常分為四種類型,分別為電阻式、電容感應式、紅外線式以及表面聲波式。其中電阻式觸摸屏的應用最為廣泛,請參見文獻“Production of Transparent Conductive Films with Inserted SiO2 Anchor Layer,and Application to a Resistive Touch Panel”Kazuhiro Noda,Kohtaro Tanimura.Electronics and Communications in Japan, Part2,Vol.84,P39-45(2001)。 According to the working principle of the touch screen and the transmission medium, the previous touch screens are generally divided into four types, namely, resistive, capacitive inductive, infrared, and surface acoustic wave. Among them, the resistive touch screen is the most widely used, please refer to the document "Production of Transparent Conductive Films with Inserted SiO 2 Anchor Layer, and Application to a Resistive Touch Panel" Kazuhiro Noda, Kohtaro Tanimura. Electronics and Communications in Japan, Part 2, Vol. , P39-45 (2001).

先前的電阻式觸摸屏一般包括一上基板,該上基板的下表面形成有一上透明導電層;一下基板,該下基板的上表面形成有一下透明導電層;以及複數個點狀隔離物(Dot Spacer)設置在上透明導電層與下透明導電層之間 。其中,該上透明導電層與該下透明導電層通常採用具有導電特性的銦錫氧化物(Indium Tin Oxide,ITO)層(下稱ITO層)。當使用手指或筆按壓上基板時,上基板發生扭曲,使得按壓處的上透明導電層與下透明導電層彼此接觸。通過外接的電子電路分別向上透明導電層與下透明導電層依次施加電壓,觸摸屏控制器通過分別測量第一導電層上的電壓變化與第二導電層上的電壓變化,並進行精確計算,將它轉換成觸點座標。觸摸屏控制器將數位化的觸點座標傳遞給中央處理器。中央處理器根據觸點座標發出相應指令,啟動電子設備的各種功能切換,並通過顯示器控制器控制顯示元件顯示。 The prior resistive touch screen generally comprises an upper substrate, the upper surface of which is formed with an upper transparent conductive layer; the lower substrate, the upper surface of which is formed with a transparent conductive layer; and a plurality of dot spacers (Dot Spacer ) is disposed between the upper transparent conductive layer and the lower transparent conductive layer . The upper transparent conductive layer and the lower transparent conductive layer generally adopt an indium tin oxide (ITO) layer (hereinafter referred to as an ITO layer) having conductive properties. When the upper substrate is pressed with a finger or a pen, the upper substrate is twisted such that the upper transparent conductive layer and the lower transparent conductive layer at the pressing portion are in contact with each other. The voltage is sequentially applied to the upper transparent conductive layer and the lower transparent conductive layer through the external electronic circuit, and the touch screen controller measures the voltage change on the first conductive layer and the voltage change on the second conductive layer, respectively, and performs accurate calculation. Converted to contact coordinates. The touch screen controller passes the digitized contact coordinates to the central processor. The central processor issues corresponding commands according to the contact coordinates, initiates various function switching of the electronic device, and controls the display of the display components through the display controller.

先前的電阻式觸摸屏的製備方法通常係採用離子束濺射或蒸鍍等工藝在上下基板上沈積一層ITO層作為透明導電層,在製備的過程,需要較高的真空環境及需要加熱到200~300℃,故,使得採用ITO層作為透明導電層的觸摸屏的製備成本較高。此外,ITO層作為透明導電層具有機械性能不夠好、難以彎曲及阻值分佈不均勻等缺點。另,ITO在潮濕的空氣中透明度會逐漸下降。從而導致先前的電阻式觸摸屏及顯示裝置存在耐用性不夠好,靈敏度低、線性及準確性較差等缺點。 The preparation method of the prior resistive touch screen usually adopts an ion beam sputtering or evaporation process to deposit an ITO layer on the upper and lower substrates as a transparent conductive layer. In the process of preparation, a high vacuum environment is required and heating is required to 200~. At 300 ° C, the preparation of the touch screen using the ITO layer as the transparent conductive layer is relatively high. In addition, the ITO layer as a transparent conductive layer has disadvantages such as insufficient mechanical properties, difficulty in bending, and uneven distribution of resistance. In addition, ITO will gradually decrease in transparency in humid air. As a result, the prior resistive touch screen and the display device have disadvantages such as insufficient durability, low sensitivity, linearity, and poor accuracy.

有鑒於此,提供一種耐用性好,且靈敏度高、線性及準確性強的觸摸屏實為必要。 In view of this, it is necessary to provide a touch screen with good durability, high sensitivity, linearity and accuracy.

一種觸摸屏,包括:一第一電極板,該第一電極板包括一第一基體及一第一導電層,該第一導電層設置在該第 一基體的下表面;以及一第二電極板,該第二電極板與第一電極板間隔設置,該第二電極板包括一第二基體及一第二導電層,該第二導電層設置在該第二基體的上表面;其中,上述第一導電層和第二導電層均包括一奈米碳管複合材料層,該奈米碳管複合材料層包括一奈米碳管層和均勻滲入於該奈米碳管層中的高分子材料。 A touch screen includes: a first electrode plate, the first electrode plate includes a first substrate and a first conductive layer, wherein the first conductive layer is disposed at the first a lower surface of the substrate; and a second electrode plate spaced apart from the first electrode plate, the second electrode plate comprising a second substrate and a second conductive layer, the second conductive layer being disposed An upper surface of the second substrate; wherein the first conductive layer and the second conductive layer each comprise a carbon nanotube composite layer, the carbon nanotube composite layer comprises a carbon nanotube layer and uniformly infiltrated a polymer material in the carbon nanotube layer.

相較於先前技術,本技術方案實施例提供的採用奈米碳管複合材料層作為透明導電層的觸摸屏具有以下優點:其一,奈米碳管具有優異的力學特性,奈米碳管層設置於高分子材料形成的複合結構使得透明導電層具有很好的韌性和機械強度,故,可相應的提高觸摸屏的耐用性;其二,由於奈米碳管具有優異的導電性能,上述該奈米碳管層包括複數個均勻分佈的奈米碳管,故,採用上述奈米碳管複合材料層作透明導電層,可使得透明導電層具有均勻的阻值分佈,從而提高觸摸屏及使用該觸摸屏的顯示裝置的解析度和精確度。其三,由於高分子材料層至少部分滲入奈米碳管層中,使奈米碳管層與基體的結合牢固,增加了觸摸屏的使用壽命。 Compared with the prior art, the touch screen using the carbon nanotube composite material layer as the transparent conductive layer provided by the embodiments of the present technical solution has the following advantages: First, the carbon nanotube has excellent mechanical properties, and the carbon nanotube layer is disposed. The composite structure formed by the polymer material makes the transparent conductive layer have good toughness and mechanical strength, so that the durability of the touch screen can be correspondingly improved; secondly, because the carbon nanotube has excellent electrical conductivity, the above-mentioned nanometer The carbon tube layer comprises a plurality of uniformly distributed carbon nanotubes. Therefore, the above-mentioned carbon nanotube composite material layer is used as a transparent conductive layer, so that the transparent conductive layer has a uniform resistance distribution, thereby improving the touch screen and using the touch screen. The resolution and accuracy of the display device. Thirdly, since the polymer material layer at least partially penetrates into the carbon nanotube layer, the combination of the carbon nanotube layer and the substrate is firm, which increases the service life of the touch screen.

以下將結合附圖詳細說明本技術方案實施例提供的觸摸屏及其製備方法。 The touch screen provided by the embodiment of the present technical solution and a method for fabricating the same are described in detail below with reference to the accompanying drawings.

請參閱圖1及圖2,本技術方案實施例提供一種觸摸屏10,該觸摸屏10包括一第一電極板12,一第二電極板14以及設置在該第一電極板12與第二電極板14之間的複數個透明點狀隔離物16。 Referring to FIG. 1 and FIG. 2 , the embodiment of the present disclosure provides a touch screen 10 . The touch screen 10 includes a first electrode plate 12 , a second electrode plate 14 , and the first electrode plate 12 and the second electrode plate 14 . A plurality of transparent dot spacers 16 therebetween.

該第一電極板12包括一第一基體120,一第一導電層122以及兩個第一電極124。該第一基體120為平面結構,該第一導電層122與兩個第一電極124均設置在第一基體120的下表面。兩個第一電極124分別設置在第一導電層122沿第一方向的兩端並與第一導電層122電連接。該第二電極板14包括一第二基體140,一第二導電層142以及兩個第二電極144。該第二基體140為平面結構,該第二導電層142與兩個第二電極144均設置在第二基體140的上表面。兩個第二電極144分別設置在第二導電層142沿第二方向的兩端並與第二導電層142電連接。該第一方向垂直於該第二方向,即兩個第一電極124與兩個第二電極144正交設置。 The first electrode plate 12 includes a first substrate 120, a first conductive layer 122 and two first electrodes 124. The first substrate 120 is a planar structure, and the first conductive layer 122 and the two first electrodes 124 are disposed on the lower surface of the first substrate 120. The two first electrodes 124 are respectively disposed at both ends of the first conductive layer 122 in the first direction and are electrically connected to the first conductive layer 122. The second electrode plate 14 includes a second substrate 140, a second conductive layer 142 and two second electrodes 144. The second substrate 140 is a planar structure, and the second conductive layer 142 and the two second electrodes 144 are both disposed on the upper surface of the second substrate 140. The two second electrodes 144 are respectively disposed at both ends of the second conductive layer 142 in the second direction and are electrically connected to the second conductive layer 142. The first direction is perpendicular to the second direction, that is, the two first electrodes 124 are orthogonal to the two second electrodes 144.

該第一導電層122與第二導電層142均採用一奈米碳管複合材料層,請參見圖3,該奈米碳管複合材料層包括一奈米碳管層和均勻滲入於該奈米碳管層中的高分子材料。所述奈米碳管複合材料層的厚度不限,優選為0.5奈米-1毫米。所述高分子材料為一透明高分子材料,其包括聚苯乙烯、聚乙烯、聚碳酸酯、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、對苯二甲酸乙二醇酯(PET)、苯丙環丁烯(BCB)、聚環烯烴等。本實施例中,所述之高分子材料為PMMA。奈米碳管複合材料層中的高分子材料可使奈米碳管層與柔性基體結合牢固,同時,請參見圖4,由於高分子材料滲入奈米碳管層中,使奈米碳管層中的奈米碳管之間的短路現象消除,使奈米碳管層的電阻呈較好的線性關係。 The first conductive layer 122 and the second conductive layer 142 each adopt a carbon nanotube composite layer. Referring to FIG. 3, the carbon nanotube composite layer includes a carbon nanotube layer and uniformly infiltrates into the nanometer. a polymer material in the carbon tube layer. The thickness of the carbon nanotube composite layer is not limited, and is preferably from 0.5 nm to 1 mm. The polymer material is a transparent polymer material including polystyrene, polyethylene, polycarbonate, polymethyl methacrylate (PMMA), polycarbonate (PC), and ethylene terephthalate. (PET), phenylcyclobutene (BCB), polycycloolefin, and the like. In this embodiment, the polymer material is PMMA. The polymer material in the carbon nanotube composite layer enables the nano carbon tube layer to be firmly bonded to the flexible substrate. Meanwhile, as shown in Fig. 4, the carbon nanotube layer is formed by infiltration of the polymer material into the carbon nanotube layer. The short circuit between the carbon nanotubes in the middle is eliminated, so that the resistance of the carbon nanotube layer is in a good linear relationship.

該奈米碳管層為由有序的或無序的奈米碳管形成的具有均勻厚度的層狀結構,所述之奈米碳管在奈米碳管層中均勻分佈且相互接觸。奈米碳管層的厚度為0.5奈米-100微米。具體地,該奈米碳管層包括至少一層奈米碳管薄膜,該奈米碳管薄膜包括無序的奈米碳管薄膜或者有序的奈米碳管薄膜。無序的奈米碳管薄膜中,奈米碳管為無序或各向同性排列。有序的奈米碳管薄膜中,奈米碳管為沿同一方向擇優取向排列或沿不同方向擇優取向排列。所述之奈米碳管層中的奈米碳管包括單壁奈米碳管、雙壁奈米碳管和多壁奈米碳管中的一種或幾種。其中,單壁奈米碳管的直徑為0.5奈米~50奈米,雙壁奈米碳管的直徑為1.0奈米~50奈米,多壁奈米碳管的直徑為1.5奈米~50奈米。 The carbon nanotube layer is a layered structure having a uniform thickness formed of ordered or disordered carbon nanotubes which are uniformly distributed and in contact with each other in the carbon nanotube layer. The carbon nanotube layer has a thickness of from 0.5 nm to 100 μm. Specifically, the carbon nanotube layer comprises at least one layer of carbon nanotube film comprising a disordered carbon nanotube film or an ordered carbon nanotube film. In the disordered carbon nanotube film, the carbon nanotubes are disordered or isotropic. In the ordered carbon nanotube film, the carbon nanotubes are arranged in a preferred orientation along the same direction or in a preferred orientation in different directions. The carbon nanotubes in the carbon nanotube layer include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. Among them, the diameter of the single-walled carbon nanotubes is 0.5 nm to 50 nm, the diameter of the double-walled carbon nanotubes is 1.0 nm to 50 nm, and the diameter of the multi-walled carbon nanotubes is 1.5 nm to 50. Nano.

優選地,所述有序的奈米碳管薄膜包括至少一層從奈米碳管陣列中直接拉取獲得奈米碳管拉膜結構。具體地,請參見圖5,該奈米碳管拉膜結構進一步包括複數個奈米碳管,該奈米碳管首尾相連且沿奈米碳管薄膜的拉伸方向排列。所述奈米碳管均勻分佈,且平行於奈米碳管拉膜結構的表面。所述奈米碳管拉膜結構中的奈米碳管通過凡德瓦爾力連接,一方面,首尾相連的奈米碳管通過凡德瓦爾力首尾相接;另一方面,平行的奈米碳管部分亦通過凡德瓦爾力結合。該奈米碳管拉膜結構中的奈米碳管之間形成有均勻的間隙,該間隙的直徑為1奈米-10微米。高分子材料均勻填充於奈米碳管之間的間隙內。當所述之有序奈米碳管薄膜包括複數個奈米碳管拉膜結 構時,奈米碳管拉膜結構重疊設置,相鄰兩層奈米碳管拉膜結構中的奈米碳管的排列方向形成一夾角α,其中,α大於等於零度且小於等於90度(0 α 90°)。該奈米碳管薄拉膜結構的長度及寬度不限,可根據實際需求製備,該奈米碳管拉膜結構的厚度為0.5奈米~100微米。本實施例中,該第一導電層122與第二導電層142均採用單層的奈米碳管拉膜結構與PAMM形成的奈米碳管複合材料層,PAMM填充於奈米碳管拉膜結構中奈米碳管之間的間隙內,第一導電層122中奈米碳管沿上述第一方向定向排列,第二導電層142中奈米碳管沿上述第二方向定向排列。 Preferably, the ordered carbon nanotube film comprises at least one layer drawn directly from the carbon nanotube array to obtain a carbon nanotube film structure. Specifically, referring to FIG. 5, the carbon nanotube film structure further includes a plurality of carbon nanotubes connected end to end and arranged along the stretching direction of the carbon nanotube film. The carbon nanotubes are evenly distributed and parallel to the surface of the nanotube structure. The carbon nanotubes in the structure of the carbon nanotube film are connected by van der Waals force. On the one hand, the carbon nanotubes connected end to end are connected end to end by van der Waals force; on the other hand, the parallel nano carbon The pipe section is also combined by Van der Valli. A uniform gap is formed between the carbon nanotubes in the carbon nanotube film structure, and the gap has a diameter of 1 nm to 10 μm. The polymer material is uniformly filled in the gap between the carbon nanotubes. When the ordered carbon nanotube film comprises a plurality of carbon nanotube film knots In the structure, the carbon nanotube film structure is overlapped, and the arrangement direction of the carbon nanotubes in the adjacent two layers of carbon nanotube film structure forms an angle α, wherein α is greater than or equal to zero degrees and less than or equal to 90 degrees ( 0 α 90°). The length and width of the carbon nanotube thin film structure are not limited, and can be prepared according to actual needs, and the thickness of the nano carbon tube film structure is 0.5 nm to 100 μm. In this embodiment, the first conductive layer 122 and the second conductive layer 142 both adopt a single-layer carbon nanotube film structure and a carbon nanotube composite layer formed by PAMM, and the PAMM is filled in the carbon nanotube film. In the gap between the carbon nanotubes in the structure, the carbon nanotubes in the first conductive layer 122 are aligned along the first direction, and the carbon nanotubes in the second conductive layer 142 are aligned along the second direction.

所述觸摸屏10的第一基體120與第二基體140均為透明的薄膜或薄板。該第一基體120具有一定柔軟度,可由塑膠或樹脂等柔性材料形成。該第二基體140的材料可為玻璃、石英、金剛石等硬性材料。當用於柔性觸摸式液晶顯示幕300中時,該第二基體140的材料也可為塑膠或樹脂等柔性材料。具體地,該第一基體120及第二基體140所用的材料可為聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二醇酯(PET)等聚酯材料,以及聚醚碸(PES)、纖維素酯、聚氯乙烯(PVC)、苯並環丁烯(BCB)及丙烯酸樹脂等材料。該第一基體120和第二基體140的厚度為0.1毫米~1厘米。本實施例中,該第一基體120及第二基體140的材料均為PET,厚度均為2毫米。可以理解,形成所述第一基體120及第二基體140的材料並不限於上述列舉的材料,只要能使第一基體120及第二基體140 起到支撐的作用,並具有較好的透明度,且至少形成第一基體120的材料具有一定柔性,都在本發明保護的範圍內。 The first substrate 120 and the second substrate 140 of the touch screen 10 are both transparent films or sheets. The first base body 120 has a certain degree of softness and can be formed of a flexible material such as plastic or resin. The material of the second substrate 140 may be a hard material such as glass, quartz or diamond. When used in the flexible touch liquid crystal display panel 300, the material of the second substrate 140 may also be a flexible material such as plastic or resin. Specifically, the materials used for the first substrate 120 and the second substrate 140 may be polyesters such as polycarbonate (PC), polymethyl methacrylate (PMMA), and polyethylene terephthalate (PET). Materials, and materials such as polyether oxime (PES), cellulose ester, polyvinyl chloride (PVC), benzocyclobutene (BCB) and acrylic resin. The first base body 120 and the second base body 140 have a thickness of 0.1 mm to 1 cm. In this embodiment, the first base body 120 and the second base body 140 are made of PET and have a thickness of 2 mm. It can be understood that the materials forming the first base body 120 and the second base body 140 are not limited to the materials listed above, as long as the first base body 120 and the second base body 140 can be enabled. It acts as a support and has a good transparency, and at least the material forming the first substrate 120 has a certain flexibility, which is within the scope of the present invention.

所述觸摸屏10的第一電極124與第二電極144由導電材料形成,具體可選擇為金屬材料、導電聚合物材料或奈米碳管層。所述金屬層的材料可選擇為金、銀或銅等導電性好的金屬。所述導電聚合物層的材料可選擇為聚乙炔、聚對苯撐、聚苯胺、聚咪吩、聚毗咯、聚噻吩等。優選的,該奈米碳管層包括至少一奈米碳管拉膜結構。本實施例中,該第一電極124與第二電極144為導電的銀漿層。 The first electrode 124 and the second electrode 144 of the touch screen 10 are formed of a conductive material, and may be selected as a metal material, a conductive polymer material or a carbon nanotube layer. The material of the metal layer may be selected from a metal having good conductivity such as gold, silver or copper. The material of the conductive polymer layer may be selected from the group consisting of polyacetylene, polyparaphenylene, polyaniline, polyimibe, polypyrrole, polythiophene and the like. Preferably, the carbon nanotube layer comprises at least one carbon nanotube film structure. In this embodiment, the first electrode 124 and the second electrode 144 are conductive silver paste layers.

進一步地,在所述觸摸屏10中,該第二電極板14靠近第一電極板12的表面週邊設置有一絕緣層18。上述的第一電極板12設置在該絕緣層18上,且該第一電極板12的第一導電層122正對第二電極板14的第二導電層142設置。上述複數個點狀隔離物16設置在第二電極板14的第二導電層142上,且該複數個點狀隔離物16彼此間隔設置。第一電極板12與第二電極板14之間的距離為2~10微米。該絕緣層18與點狀隔離物16均可採用絕緣樹脂或其他絕緣材料製成,並且,該點狀隔離物16應為一透明材料製成。設置絕緣層18與點狀隔離物16可使得第一電極板14與第二電極板12電絕緣。可以理解,當觸摸屏10尺寸較小時,點狀隔離物16為可選擇的結構,只需確保第一電極板14與第二電極板12電絕緣即可。 Further, in the touch screen 10, an insulating layer 18 is disposed on the periphery of the surface of the second electrode plate 14 adjacent to the first electrode plate 12. The first electrode plate 12 is disposed on the insulating layer 18, and the first conductive layer 122 of the first electrode plate 12 is disposed opposite to the second conductive layer 142 of the second electrode plate 14. The plurality of dot spacers 16 are disposed on the second conductive layer 142 of the second electrode plate 14, and the plurality of dot spacers 16 are spaced apart from each other. The distance between the first electrode plate 12 and the second electrode plate 14 is 2 to 10 μm. The insulating layer 18 and the dot spacer 16 may be made of an insulating resin or other insulating material, and the dot spacer 16 should be made of a transparent material. Providing the insulating layer 18 and the dot spacers 16 may electrically insulate the first electrode plate 14 from the second electrode plate 12. It can be understood that when the touch screen 10 is small in size, the dot spacer 16 is an optional structure, and it is only necessary to ensure that the first electrode plate 14 is electrically insulated from the second electrode plate 12.

使用時,第一電極板12與第二電極板14分別通入5V電壓 ,使用者通過手指或筆按壓觸摸屏10第一電極板12進行操作時,第一電極板12中第一基體120發生彎曲,使得按壓處的第一導電層122與第二電極板14的第二電極層142形成一接觸點,在該接觸點形成導通,由於按壓處不同時,形成的接觸點不同,每個接觸點對應不同的電信號,進而可實現信號傳輸。 In use, the first electrode plate 12 and the second electrode plate 14 respectively pass a voltage of 5V. When the user presses the first electrode plate 12 of the touch screen 10 by a finger or a pen, the first base 120 in the first electrode plate 12 is bent, so that the first conductive layer 122 at the pressing portion and the second conductive layer 122 are pressed. The electrode layer 142 forms a contact point at which a conduction is formed. Since the pressing points are different, the formed contact points are different, and each contact point corresponds to a different electrical signal, thereby enabling signal transmission.

本技術方案實施例提供的採用奈米碳管複合材料層作為透明導電層的觸摸屏具有以下優點:其一,奈米碳管具有優異的力學特性,奈米碳管層設置於高分子材料形成的複合結構使得透明導電層具有很好的韌性和機械強度,故,可相應的提高觸摸屏的耐用性;其二,由於奈米碳管具有優異的導電性能,上述該奈米碳管層包括複數個均勻分佈的奈米碳管,故,採用上述奈米碳管複合材料層作透明導電層,可使得透明導電層具有均勻的阻值分佈,從而提高觸摸屏及使用該觸摸屏的顯示裝置的解析度和精確度。其三,由於高分子材料層至少部分滲入奈米碳管層中,使奈米碳管層與基體的結合牢固,增加了觸摸屏的使用壽命。 The touch screen using the carbon nanotube composite material layer as the transparent conductive layer provided by the embodiment of the present technical solution has the following advantages: First, the carbon nanotube has excellent mechanical properties, and the carbon nanotube layer is formed by the polymer material. The composite structure makes the transparent conductive layer have good toughness and mechanical strength, so that the durability of the touch screen can be correspondingly improved; secondly, since the carbon nanotube has excellent electrical conductivity, the above-mentioned carbon nanotube layer includes a plurality of Uniformly distributed carbon nanotubes, therefore, using the above-mentioned carbon nanotube composite material layer as a transparent conductive layer, the transparent conductive layer can have a uniform resistance distribution, thereby improving the resolution of the touch screen and the display device using the touch screen. Accuracy. Thirdly, since the polymer material layer at least partially penetrates into the carbon nanotube layer, the combination of the carbon nanotube layer and the substrate is firm, which increases the service life of the touch screen.

請參閱圖6,本技術方案實施例提供一種製備上述觸摸屏10的方法,其具體包括以下步驟: Referring to FIG. 6 , an embodiment of the present technical solution provides a method for preparing the touch screen 10 described above, which specifically includes the following steps:

步驟一:提供一第一基體。 Step 1: Provide a first substrate.

所述第一基體為柔性平面結構,厚度為0.1毫米~1厘米。該第一基體由塑膠,樹脂等柔性材料形成。具體地,所述第一基體的材料可為聚碳酸酯(PC)、聚甲基丙烯酸甲 酯(PMMA)、聚對苯二甲酸乙二醇酯(PET)等聚酯材料,以及聚醚碸(PES)、聚亞醯胺(PI)、纖維素酯、苯並環丁烯(BCB)、聚氯乙烯(PVC)及丙烯酸樹脂等材料。可以理解,形成所述第一基體的材料並不限於上述列舉的材料,只要確保所述柔性基體具有一定柔性及較好的透明度即可。 The first substrate is a flexible planar structure having a thickness of 0.1 mm to 1 cm. The first substrate is formed of a flexible material such as plastic or resin. Specifically, the material of the first substrate may be polycarbonate (PC), polymethyl methacrylate Polyester materials such as ester (PMMA), polyethylene terephthalate (PET), and polyether oxime (PES), polyamidamine (PI), cellulose ester, benzocyclobutene (BCB) , polyvinyl chloride (PVC) and acrylic materials. It is to be understood that the material forming the first substrate is not limited to the materials listed above, as long as the flexible substrate has a certain flexibility and a good transparency.

本技術方案實施例中,所述第一基體為一聚對苯二甲酸乙二醇酯(PET)薄膜(以下簡稱PET薄膜)。該PET薄膜的厚度為2毫米,寬度為20厘米,長度為30厘米。 In the embodiment of the technical solution, the first substrate is a polyethylene terephthalate (PET) film (hereinafter referred to as a PET film). The PET film has a thickness of 2 mm, a width of 20 cm, and a length of 30 cm.

步驟二、在第一基體的表面形成一奈米碳管複合材料層,制得第一電極板。 Step 2: forming a carbon nanotube composite layer on the surface of the first substrate to obtain a first electrode plate.

所述之在第一基體表面形成一奈米碳管複合材料層的方法包括以下步驟: The method for forming a carbon nanotube composite layer on the surface of the first substrate comprises the following steps:

(一)在第一基體的表面塗覆形成一層高分子材料溶液。 (1) coating a surface of the first substrate to form a polymer material solution.

採用刷子或其他工具沾取一定量的高分子材料溶液,均勻塗敷於柔性基體的表面或將柔性基體的表面浸沒於高分子材料溶液中直接沾取一定量的高分子材料溶液,形成一高分子材料溶液層。可以理解,所述在該柔性基體的表面塗敷高分子材料溶液的方式不限,只要可以在柔性基體的表面形成均勻的一層高分子材料溶液即可。 Use a brush or other tool to take a certain amount of polymer material solution, apply it evenly on the surface of the flexible substrate or immerse the surface of the flexible substrate in the polymer material solution to directly take a certain amount of polymer material solution to form a high Molecular material solution layer. It can be understood that the manner of coating the polymer material solution on the surface of the flexible substrate is not limited as long as a uniform polymer material solution can be formed on the surface of the flexible substrate.

所述之高分子材料溶液包括高分子材料溶於有機溶劑所形成的溶液,其具有一定的粘度,優選地,高分子材料溶液的粘度大於1Pa.s。所述之高分子材料在常溫下為固 態,且具有一定的透明度。所述有機溶劑包括乙醇、甲醇、丙酮、二氯乙烷或氯仿等。所述高分子材料包括聚苯乙烯、聚乙烯、聚碳酸酯、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、對苯二甲酸乙二醇酯(PET)、苯丙環丁烯(BCB)、聚環烯烴等。本實施例中,所述之高分子材料為PMMA,所述高分子材料溶液為PMMA溶於乙醇形成的溶液。 The polymer material solution comprises a solution formed by dissolving a polymer material in an organic solvent, which has a certain viscosity. Preferably, the viscosity of the polymer material solution is greater than 1 Pa.s. The polymer material is solid at normal temperature State, and has a certain degree of transparency. The organic solvent includes ethanol, methanol, acetone, dichloroethane or chloroform. The polymer material includes polystyrene, polyethylene, polycarbonate, polymethyl methacrylate (PMMA), polycarbonate (PC), ethylene terephthalate (PET), styrene ring Alkene (BCB), polycycloolefin, and the like. In this embodiment, the polymer material is PMMA, and the polymer material solution is a solution in which PMMA is dissolved in ethanol.

(二)製備一奈米碳管薄膜。 (2) Preparing a carbon nanotube film.

所述奈米碳管薄膜為有序奈米碳管薄膜或無序奈米碳管薄膜,該奈米碳管薄膜可通過碾壓方法、絮化方法、或直接從奈米碳管陣列中拉取獲得。優選地,本實施例中,該奈米碳管薄膜為一直接從奈米碳管陣列中拉取獲得的奈米碳管拉膜結構。所述奈米碳管拉膜結構的製備方法具體包括以下步驟: The carbon nanotube film is an ordered carbon nanotube film or a disordered carbon nanotube film, and the carbon nanotube film can be pulled by a rolling method, a flocculation method, or directly from a carbon nanotube array Get it. Preferably, in this embodiment, the carbon nanotube film is a carbon nanotube film structure obtained directly from the carbon nanotube array. The preparation method of the carbon nanotube film structure comprises the following steps:

首先,提供一奈米碳管陣列,優選地,該陣列為超順排奈米碳管陣列。 First, a carbon nanotube array is provided, preferably the array is a super-sequential carbon nanotube array.

本技術方案實施例提供的奈米碳管陣列為單壁奈米碳管陣列、雙壁奈米碳管陣列及多壁奈米碳管陣列中的一種或多種。本實施例中,該超順排奈米碳管陣列的製備方法採用化學氣相沈積法,其具體步驟包括:(a)提供一平整基底,該基底可選用P型或N型矽基底,或選用形成有氧化層的矽基底,本實施例優選為採用4英寸的矽基底;(b)在基底表面均勻形成一催化劑層,該催化劑層材料可選用鐵(Fe)、鈷(Co)、鎳(Ni)或其任意組合 的合金之一;(c)將上述形成有催化劑層的基底在700°C~900℃的空氣中退火約30分鐘~90分鐘;(d)將處理過的基底置於反應爐中,在保護氣體環境下加熱到500℃~740℃,然後通入碳源氣體反應約5~30分鐘,生長得到超順排奈米碳管陣列,其高度為50微米~5毫米。該超順排奈米碳管陣列為複數個彼此平行且垂直於基底生長的奈米碳管形成的純奈米碳管陣列。通過上述控制生長條件,該超順排奈米碳管陣列中基本不含有雜質,如無定型碳或殘留的催化劑金屬顆粒等。該奈米碳管陣列中的奈米碳管彼此通過凡德瓦爾力緊密接觸形成陣列。該奈米碳管陣列與上述基底面積基本相同。 The carbon nanotube array provided by the embodiments of the present technical solution is one or more of a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. In this embodiment, the method for preparing the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or The germanium substrate formed with the oxide layer is selected, and the present embodiment preferably uses a 4-inch germanium substrate; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be iron (Fe), cobalt (Co) or nickel. (Ni) or any combination thereof (c) annealing the substrate on which the catalyst layer is formed in air at 700 ° C to 900 ° C for about 30 minutes to 90 minutes; (d) placing the treated substrate in a reaction furnace for protection It is heated to 500 ° C ~ 740 ° C in a gaseous environment, and then reacted with a carbon source gas for about 5 to 30 minutes to grow a super-aligned carbon nanotube array with a height of 50 μm to 5 mm. The super-sequential carbon nanotube array is a plurality of pure carbon nanotube arrays formed of carbon nanotubes that are parallel to each other and perpendicular to the substrate. The super-sequential carbon nanotube array contains substantially no impurities such as amorphous carbon or residual catalyst metal particles, etc., by controlling the growth conditions described above. The carbon nanotubes in the array of carbon nanotubes are in close contact with each other to form an array by van der Waals force. The carbon nanotube array is substantially the same area as the above substrate.

本實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性質較活潑的碳氫化合物,本實施例優選的碳源氣為乙炔;保護氣體為氮氣或惰性氣體,本實施例優選的保護氣體為氬氣。 In this embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or methane. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment. It is argon.

可以理解,本實施例提供的奈米碳管陣列不限於上述製備方法。也可為石墨電極恒流電弧放電沈積法、雷射蒸發沈積法等。 It can be understood that the carbon nanotube array provided by the embodiment is not limited to the above preparation method. It can also be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, or the like.

其次,採用一拉伸工具從奈米碳管陣列中拉取獲得一奈米碳管拉膜結構。其具體包括以下步驟:(a)從上述奈米碳管陣列中選定部分奈米碳管,本實施例優選為採用具有一定寬度的膠帶接觸奈米碳管陣列以選定部分奈米碳管;(b)以一定速度沿基本垂直於奈米碳管陣列生長方向拉伸該部分奈米碳管,以形成一連續的奈米碳管拉膜結構。 Next, a carbon nanotube film structure was obtained by pulling from a carbon nanotube array using a stretching tool. Specifically, the method comprises the following steps: (a) selecting a portion of the carbon nanotubes from the carbon nanotube array; in this embodiment, it is preferred to contact the carbon nanotube array with a tape having a certain width to select a portion of the carbon nanotubes; b) stretching the portion of the carbon nanotubes at a rate substantially perpendicular to the growth direction of the nanotube array to form a continuous carbon nanotube film structure.

在上述拉伸過程中,該部分奈米碳管在拉力作用下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作用,該選定的部分奈米碳管中的奈米碳管分別與奈米碳管陣列中的其他奈米碳管首尾相連地連續地被拉出,從而形成一奈米碳管拉膜結構。所述奈米碳管拉膜結構的寬度和厚度與奈米碳管陣列的寬度和高度有關,本實施例中,奈米碳管拉膜結構的寬度為20厘米,厚度為0.5奈米~100微米。 During the above stretching process, the portion of the carbon nanotubes gradually disengages from the substrate in the stretching direction under the action of the tensile force, and the carbon nanotubes in the selected portion of the carbon nanotubes are respectively associated with the van der Waals force. The other carbon nanotubes in the carbon nanotube array are continuously pulled out end to end to form a carbon nanotube film structure. The width and thickness of the carbon nanotube film structure are related to the width and height of the carbon nanotube array. In this embodiment, the nano carbon tube film structure has a width of 20 cm and a thickness of 0.5 nm to 100. Micron.

(三)採用雷射處理上述奈米碳管薄膜。 (3) The above-mentioned carbon nanotube film is treated by laser treatment.

由於奈米碳管薄膜中的奈米碳管本身之間存在凡德瓦爾例,奈米碳管薄膜中的某些奈米碳管容易聚集形成奈米碳管束,該奈米碳管束直徑較大,影響了奈米碳管薄膜的導電性。為提高奈米碳管薄膜的透光性,以功率密度大於0.1×104瓦特/平方米的雷射照射該奈米碳管薄膜,除去奈米碳管薄膜中透光性較差奈米碳管束。採用雷射處理奈米碳管薄膜的步驟可在含氧環境中進行,優選地,在空氣環境進行。 Due to the van der Waals case between the carbon nanotubes in the carbon nanotube film, some of the carbon nanotubes in the carbon nanotube film are easily aggregated to form a carbon nanotube bundle, and the diameter of the carbon nanotube bundle is larger. , affecting the conductivity of the carbon nanotube film. In order to improve the light transmittance of the carbon nanotube film, the carbon nanotube film is irradiated with a laser having a power density of more than 0.1×10 4 watts/m 2 to remove the poorly transmissive carbon nanotube bundle in the carbon nanotube film. . The step of treating the carbon nanotube film by laser can be carried out in an oxygen-containing environment, preferably in an air environment.

採用雷射處理上述奈米碳管薄膜可通固定奈米碳管薄膜,然後移動雷射裝置照射該奈米碳管薄膜的方法實現或通過固定雷射裝置,移動奈米碳管薄膜使雷射照射該奈米碳管薄膜的方法實現。 The laser treatment of the above carbon nanotube film can be carried out by fixing the carbon nanotube film, and then moving the laser device to irradiate the carbon nanotube film or by fixing the laser device to move the carbon nanotube film to make the laser The method of irradiating the carbon nanotube film is achieved.

上述雷射照射奈米碳管薄膜的過程中,由於奈米碳管對雷射具有良好的吸收特性,而雷射為一具有較高能量的光,被奈米碳管薄膜吸收後會產生一定的熱量,使奈米 碳管薄膜中的奈米碳管升溫。奈米碳管薄膜中,奈米碳管薄膜中,直徑較大的奈米碳管束吸收的熱量較多,故,在奈米碳管束中的奈米碳管的溫度較高,當奈米碳管的溫度達到足夠高時(一般大於600℃),奈米碳管束被雷射燒掉。請參見圖7及圖8,相對於雷射處理前的奈米碳管薄膜。雷射處理後的奈米碳管薄膜的透光性有顯著的提高,其透光率大於70%。 In the process of irradiating the carbon nanotube film by the above laser, since the carbon nanotube has good absorption characteristics for the laser, and the laser is a light with higher energy, it is absorbed by the carbon nanotube film. Heat, make nano The carbon nanotubes in the carbon tube film are heated. In the carbon nanotube film, in the carbon nanotube film, the larger diameter carbon nanotube bundle absorbs more heat, so the temperature of the carbon nanotube in the carbon nanotube bundle is higher, when the nanocarbon When the temperature of the tube is sufficiently high (generally greater than 600 ° C), the carbon nanotube bundle is burned by the laser. Please refer to Figures 7 and 8, relative to the carbon nanotube film before laser treatment. The light transmittance of the carbon nanotube film after laser treatment is remarkably improved, and the light transmittance is more than 70%.

可以理解,採用雷射處理奈米碳管拉膜結構的目的為進一步提高奈米碳管拉膜結構的透明度,故本步驟為一可選擇的步驟。 It can be understood that the purpose of using the laser treatment of the carbon nanotube film structure is to further improve the transparency of the carbon nanotube film structure, so this step is an optional step.

(四)將上述至少一奈米碳管薄膜鋪設在所述柔性基體上的高分子材料溶液的表面,形成一奈米碳管層。 (4) laying the at least one carbon nanotube film on the surface of the polymer material solution on the flexible substrate to form a carbon nanotube layer.

至少一層奈米碳管薄膜可直接鋪設在高分子材料層的表面,複數個奈米碳管薄膜可平行無間隙的鋪設或重疊鋪設。當奈米碳管薄膜為一奈米碳管拉膜結構時,奈米碳管層包括至少兩層奈米碳管拉膜結構時,該奈米碳管層中相鄰的奈米碳管拉膜結構中的奈米碳管的排列方向形成一夾角α,其中,0° α 90°。本實施例中,所述奈米碳管層包括一層奈米碳管拉膜結構。 At least one layer of carbon nanotube film can be directly laid on the surface of the polymer material layer, and a plurality of carbon nanotube films can be laid in parallel or without overlapping. When the carbon nanotube film is a nano carbon tube film structure, when the carbon nanotube layer comprises at least two layers of carbon nanotube film structure, adjacent carbon nanotubes in the carbon nanotube layer are pulled The arrangement direction of the carbon nanotubes in the film structure forms an angle α, where 0° α 90°. In this embodiment, the carbon nanotube layer comprises a layer of carbon nanotube film structure.

奈米碳管層形成於高分子材料層上之後,即形成了一依次包括第一基體、高分子材料層和奈米碳管層的三明治結構。 After the carbon nanotube layer is formed on the polymer material layer, a sandwich structure including the first substrate, the polymer material layer, and the carbon nanotube layer in this order is formed.

(五)使高分子材料溶液滲入於奈米碳管層中,使高分子材料與奈米碳管層固化,形成一奈米碳管複合材料層 。 (5) infiltrating the polymer material solution into the carbon nanotube layer to solidify the polymer material and the carbon nanotube layer to form a carbon nanotube composite layer .

採用外力對奈米碳管層施加一定的壓力,如採用風刀以10米-20米/秒的風力吹奈米碳管層,進而奈米碳管層壓高分子材料層,使高分子材料層滲入於奈米碳管層中。所述時高分子材料溶液滲入奈米碳管層中的方法不僅限於上述採用風吹的方法,只要可使高分子材料溶液滲入奈米碳管層中即可。當高分子材料滲入奈米碳管層後,將上述結構加熱至一定溫度,使高分子材料溶液中的溶劑揮發,高分子材料與奈米碳管層複合並固化,從而在柔性基體的表面形成一奈米碳管複合材料層。所述對高分子材料溶液和奈米碳管層加熱的方法可為將上述結構直接放置於爐中加熱至一定溫度,或使用紫外固化的方式,即用一定能量的紫外光加熱高分子材料溶液和奈米碳管層組成的複合結構,使其達到一定溫度。所述之溫度與高分子材料溶液中的溶劑有關,溫度高於熔劑的揮發溫度,本實施例中,溫度為100℃。 Applying a certain pressure to the carbon nanotube layer by external force, such as using a wind knife to blow the carbon nanotube layer with a wind of 10 m-20 m/s, and then laminating the polymer material layer with the carbon nanotube to make the polymer material The layer penetrates into the carbon nanotube layer. The method of infiltrating the polymer material solution into the carbon nanotube layer is not limited to the above-described method using wind blowing, as long as the polymer material solution can be infiltrated into the carbon nanotube layer. After the polymer material penetrates into the carbon nanotube layer, the above structure is heated to a certain temperature to volatilize the solvent in the polymer material solution, and the polymer material is combined with the carbon nanotube layer and solidified to form on the surface of the flexible substrate. A carbon nanotube composite layer. The method for heating the polymer material solution and the carbon nanotube layer may be that the above structure is directly placed in a furnace and heated to a certain temperature, or ultraviolet curing is used, that is, the polymer material solution is heated by ultraviolet light of a certain energy. And a composite structure composed of carbon nanotube layers to reach a certain temperature. The temperature is related to the solvent in the polymer material solution, and the temperature is higher than the volatilization temperature of the flux. In the present embodiment, the temperature is 100 °C.

奈米碳管複合材料層中的高分子材料可使奈米碳管層與柔性基體結合牢固,同時,由於高分子材料滲入奈米碳管層中,使奈米碳管層中的奈米碳管之間的短路現象消除,使奈米碳管層的電阻呈較好的線性關係。 The polymer material in the carbon nanotube composite layer enables the nano carbon tube layer to be firmly bonded to the flexible substrate, and at the same time, the nano carbon in the carbon nanotube layer is formed by the penetration of the polymer material into the carbon nanotube layer. The short circuit between the tubes is eliminated, so that the resistance of the carbon nanotube layer is in a good linear relationship.

可以理解,所述第一電機板的製備方法中,在形成奈米碳管複合材料層後,進一步包括一間隔地形成兩個第一電極於上述奈米碳管複合材料層的表面或柔性基體的兩端的步驟。 It can be understood that, in the method for preparing the first motor board, after forming the carbon nanotube composite material layer, further comprising forming a surface or a flexible substrate of the two first electrodes on the carbon nanotube composite layer at intervals Steps at both ends.

所述兩個電極的材料為金屬、奈米碳管薄膜、導電的銀漿層或其他導電材料。本技術方案實施例中,所述兩個電極為導電的銀漿層。所述兩個電極的形成方法包括:絲網印刷、移印或噴塗等方式。本實施例中,分別將銀漿塗覆在上述奈米碳管複合材料層的表面或第一基體的兩端。然後,放入烘箱中烘烤10~60分鐘使銀漿固化,烘烤溫度為100℃~120℃,即可得到所述兩個電極。上述製備方法需確保所述兩個電極與所述奈米碳管層電連接。 The material of the two electrodes is a metal, a carbon nanotube film, a conductive silver paste layer or other conductive material. In the embodiment of the technical solution, the two electrodes are conductive silver paste layers. The method of forming the two electrodes includes: screen printing, pad printing or spraying. In this embodiment, silver paste is respectively coated on the surface of the above-mentioned carbon nanotube composite material layer or both ends of the first substrate. Then, it is baked in an oven for 10 to 60 minutes to solidify the silver paste, and the baking temperature is 100 ° C to 120 ° C to obtain the two electrodes. The above preparation method is to ensure that the two electrodes are electrically connected to the carbon nanotube layer.

步驟三、重複上述步驟,製備第二電極板。 Step 3. Repeat the above steps to prepare a second electrode plate.

所述第二電極板包括一第二基體,一第二奈米碳管層及兩個第二電極。 The second electrode plate includes a second substrate, a second carbon nanotube layer and two second electrodes.

步驟四、將第一電極板與第二電極板封裝,形成一觸摸屏。 Step 4: The first electrode plate and the second electrode plate are packaged to form a touch screen.

所述封裝第一電極板與第二電極板的方法包括以下步驟: The method of packaging the first electrode plate and the second electrode plate includes the following steps:

(一)形成一絕緣層於所述第二電極板形成有奈米碳管複合材料層的一側的週邊。 (1) forming an insulating layer on a side of one side of the second electrode plate on which the carbon nanotube composite material layer is formed.

所述絕緣層的形成步驟為:塗敷一絕緣層於所述第二電極板形成奈米碳管複合材料層的一側的週邊。所述絕緣層的材料包括透明樹脂或其他絕緣透明材料。 The insulating layer is formed by applying an insulating layer to the periphery of one side of the second electrode plate forming the carbon nanotube composite material layer. The material of the insulating layer includes a transparent resin or other insulating transparent material.

所述絕緣層可採用絕緣透明樹脂或其他絕緣透明材料製成。 The insulating layer may be made of an insulating transparent resin or other insulating transparent material.

(二)覆蓋第一電極板於所述絕緣層上,且使所述第一 電極板中的奈米碳管複合材料層和所述第二電極板中的奈米碳管複合材料層相對設置。第一電極板上的兩個第一電極與第二電極板上的兩個第二電極交叉設置。 (2) covering the first electrode plate on the insulating layer, and making the first The carbon nanotube composite layer in the electrode plate and the carbon nanotube composite layer in the second electrode plate are oppositely disposed. The two first electrodes on the first electrode plate are disposed to intersect with the two second electrodes on the second electrode plate.

(三)將第一電極板、第二電極板和絕緣層的周邊採用密封膠進行密封,形成一觸摸屏。本實施例,所述之密封膠為706B型號硫化矽橡膠。將該密封膠塗敷於第一電極板、第二電極板和絕緣層的邊緣,放置一天即可凝固。 (3) sealing the periphery of the first electrode plate, the second electrode plate and the insulating layer with a sealant to form a touch screen. In this embodiment, the sealant is a 706B type yttrium sulfide rubber. The sealant is applied to the edges of the first electrode plate, the second electrode plate, and the insulating layer, and solidified after one day of standing.

進一步地,需使所述第一導電層中的兩個電極和所述第二導電層中的兩個電極交叉設置。 Further, two electrodes of the first conductive layer and two of the second conductive layers are disposed to cross each other.

此外,所述製備方法可進一步包括形成複數個透明點狀隔離物於所述第一電極板和第二電極板之間的步驟。該透明點狀隔離物的形成方法為:將包含該複數個透明點狀隔離物的漿料塗敷在第二電極板或第一電極板上絕緣層之外的區域,烘乾後即形成所述透明點狀隔離物。所述絕緣層與所述透明點狀隔離物均可採用絕緣樹脂或其他絕緣材料製成。設置絕緣層與點狀隔離物可使得第一電極板與第二電極板電絕緣。可以理解,當觸摸屏尺寸較小時,點狀隔離物為可選擇的結構,只需確保第一電極板與第二電極板電絕緣即可。 Furthermore, the preparation method may further include the step of forming a plurality of transparent dot spacers between the first electrode plate and the second electrode plate. The transparent dot spacer is formed by coating a slurry containing the plurality of transparent dot spacers on a region other than the insulating layer of the second electrode plate or the first electrode plate, and drying the solution. A transparent dot spacer is described. The insulating layer and the transparent dot spacer may be made of an insulating resin or other insulating material. Providing the insulating layer and the dot spacers electrically insulates the first electrode plate from the second electrode plate. It can be understood that when the size of the touch screen is small, the dot spacer is an optional structure, and it is only necessary to ensure that the first electrode plate is electrically insulated from the second electrode plate.

本實施例中,所述之製備觸摸屏的方法中可通過一連續作業裝置實現電極板的製備。 In the embodiment, in the method for preparing a touch screen, the preparation of the electrode plate can be realized by a continuous operation device.

請參見圖9,本實施例中所述之連續作業裝置200包括一第一轉軸202、第二轉軸204、一第三轉軸206,一廣口 容器208、一載物台210、一管式爐212、一牽引裝置214、一吹風裝置216、一刮擦裝置230、一雷射器234及一電源(圖未示)。所述第一轉軸202、第二轉軸204和一第三轉軸206間隔設置,其軸向位於同一方向。第三轉軸206與牽引裝置214設置於管式爐軸向的兩端。吹風裝置216設置與第三轉軸206與管式爐212之間。所述廣口容器208設置於第二轉軸204的下方,第二轉軸204部分位於廣口容器208中。所述刮擦裝置230靠近第二轉軸204設置,刮擦裝置230的一端與第二轉軸204保持一固定距離。第一轉軸202上纏繞由一柔性基體218,廣口容器208中盛有高分子材料溶液220。 Referring to FIG. 9, the continuous working device 200 described in this embodiment includes a first rotating shaft 202, a second rotating shaft 204, and a third rotating shaft 206. The container 208, a stage 210, a tube furnace 212, a traction device 214, a blowing device 216, a wiping device 230, a laser 234, and a power source (not shown). The first rotating shaft 202, the second rotating shaft 204 and a third rotating shaft 206 are spaced apart, and the axial directions thereof are in the same direction. The third rotating shaft 206 and the pulling device 214 are disposed at both ends of the axial direction of the tubular furnace. The blowing device 216 is disposed between the third rotating shaft 206 and the tube furnace 212. The wide mouth container 208 is disposed below the second rotating shaft 204, and the second rotating shaft 204 is partially located in the wide mouth container 208. The scraping device 230 is disposed adjacent to the second rotating shaft 204, and one end of the scraping device 230 is maintained at a fixed distance from the second rotating shaft 204. The first rotating shaft 202 is wound by a flexible substrate 218, and the wide-mouth container 208 contains a polymer material solution 220.

所述採用上述連續作業裝置製備第一電極板或第二電極板的方法具體包括以下步驟: The method for preparing a first electrode plate or a second electrode plate by using the above continuous working device specifically includes the following steps:

(一)將柔性基體218依次通過第二轉軸204、第三轉軸206並穿過管式爐與牽引裝置214相連連接,使柔性基體218的表面形成一層高分子材料層226。 (1) The flexible substrate 218 is sequentially connected to the third rotating shaft 204 and the third rotating shaft 206 and connected to the pulling device 214 through the tubular furnace to form a layer of polymer material 226 on the surface of the flexible substrate 218.

在此過程中,由於第二轉軸204部分位於廣口容器208中,廣口容器208中的高分子材料溶液220粘附於柔性基體218的表面,形成一層高分子材料層226。刮擦裝置230與第二轉軸204之間保持一定的距離,當高分子材料層226的厚度超過此距離時,被刮擦裝置230刮下,故,刮擦裝置230可使高分子溶液的厚度一定並保持均勻性。 In this process, since the second rotating shaft 204 is partially located in the wide-mouth container 208, the polymer material solution 220 in the wide-mouth container 208 is adhered to the surface of the flexible substrate 218 to form a layer of the polymer material 226. The scraping device 230 and the second rotating shaft 204 maintain a certain distance. When the thickness of the polymer material layer 226 exceeds the distance, the scraping device 230 scrapes off. Therefore, the scraping device 230 can make the thickness of the polymer solution. Be sure and maintain uniformity.

(二)固定一超順排奈米碳管陣列222於載物台210上,從該超順排奈米碳管陣列222中拉出一連續的奈米碳管拉 膜結構224,將奈米碳管拉膜結構224的一端粘附於柔性基體218表面上的高分子材料層226上。在奈米碳管薄膜224從奈米碳管陣列222中拉出之後,未與高分子材料層226接觸時,可採用雷射器234發出的雷射照射該奈米碳管薄膜224,提高奈米碳管薄膜224的透明度。其照射方式和具體參數如前文所述。 (2) Fixing a super-sequential carbon nanotube array 222 on the stage 210, and pulling a continuous carbon nanotube from the super-aligned carbon nanotube array 222 The film structure 224 adheres one end of the carbon nanotube film structure 224 to the polymer material layer 226 on the surface of the flexible substrate 218. After the carbon nanotube film 224 is pulled out from the carbon nanotube array 222, when it is not in contact with the polymer material layer 226, the carbon nanotube film 224 can be irradiated with a laser emitted from the laser 234 to enhance the nanotube film 224. The transparency of the carbon nanotube film 224. The irradiation method and specific parameters are as described above.

(三)打開電源,使牽引裝置214以一定的速度沿平行於管式爐212軸向的方向牽引柔性基體218、高分子材料層226和奈米碳管薄膜224,當奈米碳管薄膜224到達吹風裝置216下部時,吹風裝置216吹出的風對奈米碳管薄膜224施加一定的壓力,使奈米碳管薄膜224陷入高分子材料層226,即高分子材料滲入到碳納奈米管薄膜224中,然後經過管式爐212,管式爐212內部的高溫使滲入至奈米碳管薄膜224的高分子材料固化,在柔性基體218的表面形成奈米碳管複合材料層228。 (3) Turning on the power source so that the traction device 214 pulls the flexible substrate 218, the polymer material layer 226, and the carbon nanotube film 224 in a direction parallel to the axial direction of the tube furnace 212 at a certain speed, when the carbon nanotube film 224 When the lower portion of the blowing device 216 is reached, the wind blown by the blowing device 216 applies a certain pressure to the carbon nanotube film 224, so that the carbon nanotube film 224 is immersed in the polymer material layer 226, that is, the polymer material penetrates into the carbon nanotube. The film 224 is then passed through the tube furnace 212, and the high temperature inside the tube furnace 212 solidifies the polymer material infiltrated into the carbon nanotube film 224, and the carbon nanotube composite material layer 228 is formed on the surface of the flexible substrate 218.

(四)將形成有奈米碳管複合材料層228的柔性基體218切割,形成電極板。 (4) The flexible substrate 218 having the carbon nanotube composite material layer 228 formed is cut to form an electrode plate.

進一步地,在奈米碳管複合材料層228的表面間隔設置兩個電極,即可形成複數個第一電極板或第二電極板。 Further, two electrodes are disposed on the surface of the carbon nanotube composite material layer 228 to form a plurality of first electrode plates or second electrode plates.

採用上述步驟在基體上塗敷高分子材料溶液,從而在基體的表面形成奈米碳管複合材料層,可實現連續化的生產,提高生產效率,節約操作時間,進一步節約成本。 By adopting the above steps, the polymer material solution is coated on the substrate to form a carbon nanotube composite material layer on the surface of the substrate, which can realize continuous production, improve production efficiency, save operation time, and further save cost.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above is only a preferred embodiment of the present invention. It is not possible to limit the scope of patent application in this case. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

10‧‧‧觸摸屏 10‧‧‧ touch screen

12‧‧‧第一電極板 12‧‧‧First electrode plate

14‧‧‧第二電極板 14‧‧‧Second electrode plate

16‧‧‧點狀隔離物 16‧‧‧ point spacers

18‧‧‧絕緣層 18‧‧‧Insulation

120‧‧‧第一基體 120‧‧‧First substrate

122‧‧‧第一導電層 122‧‧‧First conductive layer

124‧‧‧第一電極 124‧‧‧First electrode

140‧‧‧第二基體 140‧‧‧Second substrate

142‧‧‧第二導電層 142‧‧‧Second conductive layer

144‧‧‧第二電極 144‧‧‧second electrode

200‧‧‧連續作業裝置 200‧‧‧Continuous operating device

202‧‧‧第一轉軸 202‧‧‧First shaft

204‧‧‧第二轉軸 204‧‧‧second shaft

206‧‧‧第三轉軸 206‧‧‧ Third shaft

208‧‧‧廣口容器 208‧‧‧ wide mouth container

210‧‧‧載物台 210‧‧‧stage

212‧‧‧管式爐 212‧‧‧ tube furnace

214‧‧‧牽引裝置 214‧‧‧ traction device

216‧‧‧吹風裝置 216‧‧‧Blowing device

218‧‧‧柔性基体 218‧‧‧Flexible substrate

220‧‧‧高分子材料溶液 220‧‧‧ polymer material solution

222‧‧‧奈米碳管陣列 222‧‧‧Nano Carbon Tube Array

224‧‧‧奈米碳管薄膜 224‧‧‧Nano Carbon Tube Film

226‧‧‧高分子材料層 226‧‧‧ polymer material layer

228‧‧‧奈米碳管複合材料層 228‧‧‧Nano Carbon Tube Composite Layer

230‧‧‧刮擦裝置 230‧‧‧Scratch device

232‧‧‧雷射器 232‧‧‧Laser

圖1係本技術方案實施例提供的觸摸屏的立體結構示意圖。 FIG. 1 is a schematic perspective structural view of a touch screen provided by an embodiment of the present technical solution.

圖2係本技術方案實施例提供的觸摸屏的側視結構示意圖。 FIG. 2 is a schematic side view showing the structure of a touch screen provided by an embodiment of the present technical solution.

圖3係本技術方案實施例提供的奈米碳管複合材料層的掃描電鏡照片。 FIG. 3 is a scanning electron micrograph of a carbon nanotube composite layer provided by an embodiment of the present technical solution.

圖4係本技術方案實施例提供的奈米碳管複合材料層的電阻線性圖。 4 is a resistance linear diagram of a carbon nanotube composite layer provided by an embodiment of the present technical solution.

圖5係本技術方案實施例提供的奈米碳管薄膜的掃描電鏡照片。 FIG. 5 is a scanning electron micrograph of a carbon nanotube film provided by an embodiment of the present technical solution.

圖6係本技術方案實施例提供的觸摸屏的製備方法的流程圖。 FIG. 6 is a flowchart of a method for preparing a touch screen provided by an embodiment of the present technical solution.

圖7係本技術方案實施例所提供的雷射處理前的奈米碳管薄膜的掃描電鏡照片。 FIG. 7 is a scanning electron micrograph of a carbon nanotube film before laser treatment provided by an embodiment of the present technical solution.

圖8係本技術方案實施例所提供的雷射處理後的奈米碳管薄膜的掃描電鏡照片。 FIG. 8 is a scanning electron micrograph of a laser treated carbon nanotube film provided by an embodiment of the present technical solution.

圖9係本技術方案實施例提供的連續製備第一電極板或第二電極板的流程示意圖。 FIG. 9 is a schematic flow chart of continuously preparing a first electrode plate or a second electrode plate according to an embodiment of the present technical solution.

10‧‧‧觸摸屏 10‧‧‧ touch screen

12‧‧‧第一電極板 12‧‧‧First electrode plate

14‧‧‧第二電極板 14‧‧‧Second electrode plate

16‧‧‧點狀隔離物 16‧‧‧ point spacers

18‧‧‧絕緣層 18‧‧‧Insulation

120‧‧‧第一基體 120‧‧‧First substrate

122‧‧‧第一導電層 122‧‧‧First conductive layer

124‧‧‧第一電極 124‧‧‧First electrode

140‧‧‧第二基體 140‧‧‧Second substrate

142‧‧‧第二導電層 142‧‧‧Second conductive layer

144‧‧‧第二電極 144‧‧‧second electrode

Claims (18)

一種觸摸屏的製備方法,其包括以下步驟:提供一第一基體;形成一奈米碳管複合材料層於第一基體的表面,制得第一電極板,所述奈米碳管複合材料層包括一奈米碳管層及滲透於該奈米碳管層中的高分子材料;重複上述步驟,製備第二電極板;封裝第一電極板與第二電極板,形成一觸摸屏。 A method for preparing a touch screen, comprising the steps of: providing a first substrate; forming a carbon nanotube composite layer on a surface of the first substrate to obtain a first electrode plate, wherein the carbon nanotube composite layer comprises a carbon nanotube layer and a polymer material penetrating the carbon nanotube layer; repeating the above steps to prepare a second electrode plate; and packaging the first electrode plate and the second electrode plate to form a touch screen. 如申請專利範圍第1項所述之觸摸屏的製備方法,其中,所述之形成一奈米碳管複合材料層於第一基體的表面的方法包括以下步驟:在第一基體的表面塗覆一層高分子材料溶液層;製備一奈米碳管薄膜;採用雷射處理上述奈米碳管薄膜,提高奈米碳管薄膜的透明度;將上述至少一奈米碳管薄膜鋪設在所述第一基體上的高分子材料溶液的表面,形成一奈米碳管層;使高分子材料層滲入奈米碳管層中,固化高分子材料,形成該奈米碳管複合材料層。 The method for preparing a touch panel according to claim 1, wherein the method for forming a carbon nanotube composite layer on a surface of the first substrate comprises the step of: coating a surface of the first substrate a polymer material solution layer; preparing a carbon nanotube film; treating the carbon nanotube film by laser to improve transparency of the carbon nanotube film; and laying the at least one carbon nanotube film on the first substrate On the surface of the polymer material solution, a carbon nanotube layer is formed; the polymer material layer is infiltrated into the carbon nanotube layer, and the polymer material is solidified to form the carbon nanotube composite material layer. 如申請專利範圍第2項所述之觸摸屏的製備方法,其中,所述雷射的功率密度大於0.1×104瓦特/平方米。 The method for preparing a touch panel according to claim 2, wherein the laser has a power density greater than 0.1×10 4 watts/square meter. 如申請專利範圍第2項所述之觸摸屏的製備方法,其中,所述之將至少一層奈米碳管薄膜鋪設在所述第一基體上的高分子材料溶液的表面的步驟為:將一層奈米碳管薄膜直接鋪設於高分子材料溶液的表面或將複數個奈米碳管薄膜 平行無間隙或重疊鋪設於高分子材料溶液的表面。 The method for preparing a touch panel according to claim 2, wherein the step of laying at least one layer of the carbon nanotube film on the surface of the polymer material solution on the first substrate is: The carbon nanotube film is directly laid on the surface of the polymer material solution or a plurality of carbon nanotube films Parallel without gaps or overlapping on the surface of the polymer material solution. 如申請專利範圍第2項所述之觸摸屏的製備方法,其中,所述之奈米碳管薄膜包括一奈米碳管拉膜結構,該奈米碳管拉膜結構中的奈米碳管沿同一方向擇優取向排列。 The method for preparing a touch panel according to claim 2, wherein the carbon nanotube film comprises a carbon nanotube film structure, and the carbon nanotubes in the carbon nanotube film structure The same direction is preferred. 如申請專利範圍第5項所述之觸摸屏的製備方法,其中,製備該奈米碳管拉膜結構的方法包括以下步驟:提供一奈米碳管陣列;從上述奈米碳管陣列中選定部分奈米碳管;以一定速度沿基本垂直於奈米碳管陣列生長方向拉伸該部分奈米碳管,以形成一連續的奈米碳管拉膜結構。 The method for preparing a touch panel according to claim 5, wherein the method for preparing the carbon nanotube film structure comprises the steps of: providing a carbon nanotube array; and selecting a portion from the carbon nanotube array. The carbon nanotubes are stretched at a certain speed along a growth direction substantially perpendicular to the growth direction of the carbon nanotube array to form a continuous carbon nanotube film structure. 如申請專利範圍第2項所述之觸摸屏的製備方法,其中,所述使高分子材料層滲入奈米碳管層中的方法為採用風刀以10-20米/秒的風力吹奈米碳管層,進而使奈米碳管層壓高分子材料層,使高分子材料層滲入奈米碳管層中。 The method for preparing a touch panel according to claim 2, wherein the method for infiltrating the polymer material layer into the carbon nanotube layer is to blow the nanocarbon with a wind knife at a wind speed of 10-20 m/sec. The tube layer further comprises a layer of a polymer material laminated on the carbon nanotube, and the polymer material layer is infiltrated into the carbon nanotube layer. 如申請專利範圍第2項所述之觸摸屏的製備方法,其中,所述之固化高分子材料的方法包括將高分子材料溶液加熱至一定溫度。 The method for preparing a touch panel according to claim 2, wherein the method for curing the polymer material comprises heating the polymer material solution to a certain temperature. 如申請專利範圍第2項所述之觸摸屏的製備方法,其中,所述之固化高分子材料溶液的方法為將高分子溶液放置於爐中加熱或採用一定能量的紫外光照射高分子材料溶液。 The method for preparing a touch screen according to claim 2, wherein the method for curing the polymer material solution is to place the polymer solution in a furnace to heat or irradiate the polymer material solution with ultraviolet light of a certain energy. 如申請專利範圍第1項所述之觸摸屏的製備方法,其中,所述之製備第一電極板或第二電極板的方法可採用一連續作業裝置連續完成。 The method for preparing a touch panel according to claim 1, wherein the method for preparing the first electrode plate or the second electrode plate can be continuously performed by using a continuous operation device. 如申請專利範圍第10項所述之觸摸屏的製備方法,其中,所述之連續作業裝置包括一第一轉軸、一第二轉軸、一第三轉軸,一廣口容器、一載物台、一管式爐、一牽引裝置、一吹風裝置、一刮擦裝置、一雷射器及一電源。 The method for preparing a touch screen according to claim 10, wherein the continuous working device comprises a first rotating shaft, a second rotating shaft, a third rotating shaft, a wide mouth container, a loading platform, and a A tubular furnace, a traction device, a blowing device, a scraping device, a laser device and a power source. 如申請專利範圍第11項所述之觸摸屏的製備方法,其中,所述之第一轉軸、第二轉軸和第三轉軸間隔設置,其軸向位於同一方向。 The method for manufacturing a touch panel according to claim 11, wherein the first rotating shaft, the second rotating shaft and the third rotating shaft are spaced apart from each other, and the axial directions thereof are in the same direction. 如申請專利範圍第11項所述之觸摸屏的製備方法,其中,所述之第三轉軸與牽引裝置設置於管式爐軸向的兩端。 The method for preparing a touch panel according to claim 11, wherein the third rotating shaft and the pulling device are disposed at both ends of the axial direction of the tubular furnace. 如申請專利範圍第11項所述之觸摸屏的製備方法,其中,所述之吹風裝置設置於第三轉軸與管式爐之間。 The method for preparing a touch panel according to claim 11, wherein the blowing device is disposed between the third rotating shaft and the tubular furnace. 如申請專利範圍第11項所述之觸摸屏的製備方法,其中,所述之廣口容器設置於第二轉軸的下方,第二轉軸部分位於廣口容器中。 The method for preparing a touch panel according to claim 11, wherein the wide-mouth container is disposed below the second rotating shaft, and the second rotating shaft portion is located in the wide-mouth container. 如申請專利範圍第11項所述之觸摸屏的製備方法,其中,所述之刮擦裝置靠近第二轉軸設置,刮擦裝置的一端與第二轉軸保持一固定距離。 The method for preparing a touch screen according to claim 11, wherein the scraping device is disposed adjacent to the second rotating shaft, and one end of the scraping device is maintained at a fixed distance from the second rotating shaft. 如申請專利範圍第11項所述之觸摸屏的製備方法,其中,所述之第一轉軸上纏繞一柔性基體,廣口容器中盛有高分子材料溶液。 The method for preparing a touch panel according to claim 11, wherein the first rotating shaft is wound with a flexible substrate, and the wide-mouth container contains a polymer material solution. 如申請專利範圍第17項所述之觸摸屏的製備方法,其中,所述之採用連續作業裝置製備電極板的方法包括以下步驟:將柔性基體依次通過第二轉軸、第三轉軸並穿過管式爐與牽引裝置相連接,使柔性基體的表面形成一層高分子材層;固定一超順排奈米碳管陣列於載物臺上,從該超順排奈米碳管陣列中拉出一連續的奈米碳管拉膜結構,將奈米碳管拉膜結構的一端粘附於柔性基體表面上的高分子材料層上; 打開電源,使牽引裝置沿平行於管式爐軸向的方向牽引柔性基體、高分子材料層和奈米碳管薄膜,風刀使高分子材料滲入到奈米碳管薄膜中,經管式爐固化高分子材料,在柔性基體的表面形成奈米碳管複合材料層;將形成有複合材料層的柔性基體切割後即得到電極板。 The method for preparing a touch panel according to claim 17, wherein the method for preparing an electrode plate by using a continuous working device comprises the steps of: sequentially passing a flexible substrate through a second rotating shaft, a third rotating shaft, and passing through the tubular type. The furnace is connected with the traction device to form a layer of polymer material on the surface of the flexible substrate; a super-sequential carbon nanotube array is fixed on the stage, and a continuous pull is drawn from the array of the super-sequential carbon nanotubes The carbon nanotube film structure, the end of the carbon nanotube film structure is adhered to the polymer material layer on the surface of the flexible substrate; Turn on the power supply, so that the traction device pulls the flexible substrate, the polymer material layer and the carbon nanotube film in the direction parallel to the axial direction of the tube furnace, and the air knife infiltrates the polymer material into the carbon nanotube film and solidifies through the tube furnace. The polymer material forms a carbon nanotube composite layer on the surface of the flexible substrate; the electrode substrate is obtained by cutting the flexible substrate on which the composite layer is formed.
TW97126325A 2008-07-11 2008-07-11 Method for making touch panel TWI403928B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97126325A TWI403928B (en) 2008-07-11 2008-07-11 Method for making touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97126325A TWI403928B (en) 2008-07-11 2008-07-11 Method for making touch panel

Publications (2)

Publication Number Publication Date
TW201003488A TW201003488A (en) 2010-01-16
TWI403928B true TWI403928B (en) 2013-08-01

Family

ID=44825588

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97126325A TWI403928B (en) 2008-07-11 2008-07-11 Method for making touch panel

Country Status (1)

Country Link
TW (1) TWI403928B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102087555B (en) 2009-12-03 2013-01-30 北京富纳特创新科技有限公司 Touch screen
CN102086035B (en) 2009-12-03 2013-06-19 北京富纳特创新科技有限公司 Carbon-nano-tube film and preparation method thereof
TWI494643B (en) * 2010-01-22 2015-08-01 Beijing Funate Innovation Tech Touch panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030201985A1 (en) * 2002-04-30 2003-10-30 Seiki Katakami Touch panel and method of making the same
WO2004114105A2 (en) * 2003-06-14 2004-12-29 Ronald Peter Binstead Improvements in touch technology
US20060274048A1 (en) * 2005-06-02 2006-12-07 Eastman Kodak Company Touchscreen with conductive layer comprising carbon nanotubes
US20060274049A1 (en) * 2005-06-02 2006-12-07 Eastman Kodak Company Multi-layer conductor with carbon nanotubes
US20070165004A1 (en) * 2006-01-17 2007-07-19 World Properties, Inc. Capacitive touch sensor with integral EL backlight

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030201985A1 (en) * 2002-04-30 2003-10-30 Seiki Katakami Touch panel and method of making the same
WO2004114105A2 (en) * 2003-06-14 2004-12-29 Ronald Peter Binstead Improvements in touch technology
US20060274048A1 (en) * 2005-06-02 2006-12-07 Eastman Kodak Company Touchscreen with conductive layer comprising carbon nanotubes
US20060274049A1 (en) * 2005-06-02 2006-12-07 Eastman Kodak Company Multi-layer conductor with carbon nanotubes
US20070165004A1 (en) * 2006-01-17 2007-07-19 World Properties, Inc. Capacitive touch sensor with integral EL backlight

Also Published As

Publication number Publication date
TW201003488A (en) 2010-01-16

Similar Documents

Publication Publication Date Title
TWI364860B (en) Touch panel, method for making the same, and displaying device adopting the same
JP4965549B2 (en) Touch panel and manufacturing method thereof, display using touch panel
TWI354921B (en) Touch panel and displaying device using the same
TWI357167B (en) Touch panel, method for making the same, and displ
CN101464759B (en) Production method of touch screen
JP4944167B2 (en) Manufacturing method of touch panel
CN102109917B (en) Touch screen and preparation method thereof
TWI416380B (en) Touch panel
TW200926471A (en) Touch panel and displaying device using the same
TWI355105B (en) Touchable control device
JP5437716B2 (en) Touch panel
TWI411944B (en) Method for making touch panel
TWI403928B (en) Method for making touch panel
TWI386831B (en) Touch panel and displaying device using the same
TWI423083B (en) Touch panel and displaying device using the same
TWI423106B (en) Method for making liquid crystal display with touch panel
TWI380079B (en) Method for making liquid crystal display with touch panel
TWI408575B (en) Touch panel and displaying device using the same
TWI436957B (en) Electron element
TWI482324B (en) Touch panel and displaying device using the same
TWI374302B (en) Touch panel
TWI423084B (en) Touch panel and displaying device using the same
TWI360903B (en) Method for making touch panel
TWI360768B (en) Touch panel
TWI494643B (en) Touch panel