TW200929636A - Touch panel and displaying device using the same - Google Patents

Touch panel and displaying device using the same Download PDF

Info

Publication number
TW200929636A
TW200929636A TW96149380A TW96149380A TW200929636A TW 200929636 A TW200929636 A TW 200929636A TW 96149380 A TW96149380 A TW 96149380A TW 96149380 A TW96149380 A TW 96149380A TW 200929636 A TW200929636 A TW 200929636A
Authority
TW
Taiwan
Prior art keywords
touch screen
carbon nanotube
display device
conductive layer
electrodes
Prior art date
Application number
TW96149380A
Other languages
Chinese (zh)
Other versions
TWI366930B (en
Inventor
Kai-Li Jiang
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW096149380A priority Critical patent/TWI366930B/en
Publication of TW200929636A publication Critical patent/TW200929636A/en
Application granted granted Critical
Publication of TWI366930B publication Critical patent/TWI366930B/en

Links

Abstract

The present invention relates to a touch panel. The touch panel includes a base, a transparent conductive layer, two first electrodes and two second electrodes. The transparent conductive layer is disposed on a surface of the base. The transparent conductive layer includes a plurality of carbon nanotube yarns. The carbon nanotube yarns are respectively arranged along a first direction and a second direction parallel to each other in a same direction. The first direction and the second direction are not parallel. The two first electrodes are separately disposed on two ends of the carbon nanotube yarn arranged along the first direction at a certain distance and electrically connected to the carbon nanotube yarns. The two second electrodes are separately disposed on two ends of the carbon nanotube yarn arranged along the second direction at a certain distance and electrically connected to the carbon nanotube yarns. Further, the present invention also relates to a displaying device. The displaying device includes a displaying unit and a touch panel.

Description

200929636 .九、發明說明: .【發明所屬之技術領域】 本發明涉及一種觸摸屏及顯示裝置,尤其涉及一種采用奈 米碳管作透明導電層的觸摸屏及使用該觸摸屏的_示骏置。不 【先前技術】 "° 近年來,伴隨著移動電話與觸摸導航系統等各種電子設備 的高性能化和多樣化的發展,在液晶等顯示設備的前面安裝透 光性的觸摸屏的電子設備逐步增加。這樣的電子毁锴的利用者 ©通過觸摸屏,一邊對位于觸摸屏背面的顯示設備的顯示内容進 行視覺確認,一邊利用手指或筆等方式按壓觸模屏來進行操 作。故,可以操作電子設備的各種功能。 按照觸摸屏的工作原理和傳輸介質的不同,先前技術中的 觸摸屏分爲四種類型,分別爲電阻式、電容式、紅外線式以及 表面聲波式。其中電容式觸摸屏因準確度較高、抗幹擾能力强 應用較爲廣泛。 先前技術中的電容式觸摸屏(請參見“連續薄獏電容式觸 ®摸屏的研究”,李樹本等,光電子技術,v〇1 6 962(1995))包括一 玻璃基板’ 一透明導電層,以及多個金屬電極。在該電容式觸 摸屏中’玻璃基板的材料爲納飼玻璃。透明導電層爲例如銦錫 氧化物(ITO)或銻錫氧化物(AT0)等透明材料。電極爲通過 印製具有低電阻的導電金屬(例如銀)形成。電極間隔設置在 透明導電層的各個角處。此外,透明導電層上塗覆有防護層。 該防護層由液體玻璃材料通過硬化或緻密化工藝,並進行熱處 理後’硬化形成。 當手指等觸摸物觸摸在觸摸屏表面上時,由于人體電場, 200929636 手指等觸摸物和觸摸屏中的透明導電層之間形成一個辆合電 容。對于高頻電流來說,電容爲直接導體,手指等觸摸物的觸 摸將從接觸點吸走一個很小的電流。這個電流分別從觸摸屏上 的電極中流出,並且流經這四個電極的電流與手指到四角的距 離成正比,觸摸屏控製器通過對這四個電流比例的精確計算, 得出觸摸點的位置。 故,透明導電層對于觸摸屏爲一必需的部件,先前技術中 透明導電層通常採用ITO層,然,ITO層作爲透明導電層具有 ❹機械和化學耐用性不够好等缺點。進一步地,採用ITO層作透 明導電層存在電阻阻值分布不均勻的現象,導致先前技術中的 電容式觸摸屏存在觸摸屏的分辨率低、精確度不高等問題。 有鑒于此,確有必要提供一種分辨率高、精確度高及耐用 的觸摸屏,以及使用該觸摸屏的顯示裝置。 【發明内容】 一種觸摸屏,該觸摸屏包括一基體;一透明導電層,該透 明導電層設置于所述基體的一表面;以及兩個第一電極和兩個 ®第二電極。其中,所述透明導電層包括多個奈米碳管長線分別 沿第一方向和第二方向平行設置,且第一方向與第二方向交 叉。所述沿第一方向設置的奈米碳管長線的兩端分別與兩個第 一電極電連接,所述沿第二方向設置的奈米碳管長線的兩端分 別與兩個第二電極電連接。 一種顯示裝置,其包括一觸摸屏,該觸摸屏包括一基體; 一透明導電層,該透明導電層設置于上述基體的一表面;兩個 第一電極和兩個第二電極;以及一顯示設備,該顯示設備正對 且靠近觸摸屏的基體設置。其中,所述透明導電層包括多個奈 8 200929636 米琰管長線分別沿第一方向和第二方向平行設置,且第〜 與第二方向交叉。所述沿第一方向設置的 〜方向 :別與兩個第一電極電連接,所述沿第二方向設置:奈 長線的兩端分別與兩個第二電極電連接。 、反官 Ο 與先别技術相比較’本技術方案提供的觸摸屏及兹 具有以下優點:其一由于透明導電層中的多個奈米 目互交織或重叠且交叉設置,因此,所述透明導電層具有^、、’ 的力學性能,從而使得上述的透明導電層具有較好的機械3 和韌性,故,採用上述的奈米碳管長線作透明導電層,可以广 應的提高觸摸屏的耐用性,進而提高了使用該觸摸屏的顯 置的耐用性。其二,上述透明導電層中的多個奈米碳管長線^ 行且間隔設置,從而使得透明導電層具有均勻的阻值分布和透 光性,從而提高觸摸屏及使用該觸摸屏的顯示裝置的分辨率和 精確度。 【實施方式】 以下將結合附圖對本技術方案作進一步的詳細說明。 請參閱圖1、圖2及圖3’觸摸屏20包括一基體22、一透 明導電層24、一防護層26、兩個第一電極28和兩個第二電極 29。所述基體22具有一第一表面221以及與第一表面221相對 的第二表面222。所述透明導電層24設置在基體22的第一表面 221上。所述透明導電層24包括多個奈米碳管長線240分別沿 第〜方向L1和第二方向L2平行設置。且第一方向L1不同于 第二方向L2,即第一方向L1與第二方向L2交又。可以理解, 沿第一方向L1和第二方向L2設置的奈米碳管長線240可無間 9 200929636 隙地接觸設置或間隔一定距離設置。本實施例中,所述多個奈 米碳管長線240分別沿第〆方向L1和第二方向L2間隔設置, 且間隔距離爲5奈米〜1毫米。 所述沿第一方向L1設置的奈米碳管長線240的兩端分別與 兩個第一電極28電連接,所述沿第二方.向L2設置的奈米碳管 長線240的兩端分別與兩個第^一電極29電連接,用以在透明導 電層24上形成等電位面。防護層26可直接設置在透明導電層 24、兩個第一電極28以及兩個第二電極29上。 其中,所述基體22爲一曲面型或平面型的結構。該基體μ 由玻璃、石英、金剛石或塑料等硬性材料或柔性材料形成。所 述基體22主要起支撑的作用。 所=明導電層24包括相互交又的多個奈米碳管長線;考 一 ^ ^長線都包括多個平行的首尾相連的奈米碳管束㈣ 由多個首尾相連的奈米碳管束組成的絞線結構。 ❿ 米碳管束之間通過凡德瓦爾力緊密結合,該奈米碳 t中包括多辦行的奈米碳管。上述的奈米碳管長線的 爲〇.5奈未〜1〇〇微米。 木米地’、由于奈米碳管長線包衫辦行的首尾相連的 H反!⑯成的束狀結構或*多個首尾相連的奈米碳管束植 =:::,故,具有一定的勃性’可以彎折。因此本技術 ==的透明導電層可爲平面結構也可爲曲面結構,從 而本2方案提供的觸摸屏20也可爲曲面結構或平面結構。 而乂;:奸透明導電層24中的奈米碳管長線相互交叉,從 4了夕㈣狀均-的網孔’進而使得透明導電層24且有均 200929636 •句的阻值分布和透光躲,提高了觸摸㈣的 .所述奈米碳管長線的尺寸可根據實際需求準確率。 中採用4英寸的基底生長超順排奈米碳管=。本實施例 ,的直徑可爲0·5奈米·微米,其長度不限。=米碳管長 S長線中的奈米碳管可以為單壁奈米碳管、2,奈米碳 壁奈米碳管。該單壁奈米碳管的直徑爲〇5奈^〜^太碳管或多 壁奈米碳管的直徑爲1.0奈米〜50夺米.哕多厝太不米;該雙 ❹爲U奈米〜50奈米。 p卡,該夕壁奈米碳管的直徑 步驟本技術方案實施例透明導電層24的製備方法主要包括以下 陣列ίΓ ·提供—奈米碳f陣列形成于—基底,優選地,該 早歹!爲超順排奈米碳管陣列。 列2技術方案實_提供的奈米碳管_爲單壁奈米碳管陣 該太:壁Ϊ米碳管陣列及多壁奈米碳管陣列中的一種或几種。 =不米碳管陣列的製備方法採用化學氣相沈積法,其具體步驟 (a)提供一平整基底,該基底可選用p型或N型矽基底, 用形成有氧化層的矽基底,本實施例優選爲採用4英寸的 f基底,(b)在基底表面均勻形成一催化劑層,該催化劑層材 料可選用鐵(Fe)、鈷(Co)、鎳(Ni)或其任意組合的合金之 ’(c)將上述形成有催化劑層的基底在7〇〇它〜900°C的空氣中 退火約30分鐘〜90分鐘;(d)將處理過的基底置于反應爐中, 在保瘦氣體環境下加熱到500。(:〜740°C,然後通入碳源氣體反 應約5分鐘〜30分鐘,生長得到奈米碳管陣列,其高度爲1〇〇 微米左右。該奈米碳管陣列爲多個彼此平行且垂直于基底生長 11 200929636 .的奈米碳管形成的純奈米碳管陣列。該奈米碳管陣列與上述基 .底面積基本相同。通過上述控制生長條件,該超順排奈米碳管 陣列中基本不含有雜質,如無定型碳或殘留的催化劑金屬顆粒 等。 本實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性質較 活潑的碳氫化合物,本實施例優選的碳源氣爲乙炔;保護氣體 爲氮氣或惰性氣體,本實施例優選的保護氣體爲氬氣。 可以理解,本技術方案實施例提供的奈米碳管陣列不限于 ®上述製備方法,也可爲石墨電極恒流電弧放電沈積法、鐳射蒸 發沈積法等等。 步驟二:採用一拉伸工具從奈米碳管陣列中拉取奈米碳管 獲得一奈米礙管薄膜或一奈米礙管絲。 該奈米碳管薄膜或者奈米碳管絲的製備具體包括以下步 驟:(a)從上述奈米碳管陣列中選定一定寬度的多個奈米碳管 片斷,本實施例優選爲採用具有一定寬度的膠帶接觸奈米碳管 0陣列以選定一定寬度的多個奈米碳管束;(b)以一定速度沿基 本垂直于奈米碳管陣列生長方向拉伸多個該奈米碳管束,以形 成一連續的奈米碳管薄膜或者奈米碳管絲。 在上述拉伸過程中,該多個奈米碳管束在拉力作用下沿拉 伸方向逐漸脫離基底的同時,由于凡德瓦爾力作用,該選定的 多個奈米碳管束分別與其他奈米碳管束首尾相連地連續地被拉 出,從而形成一奈米碳管薄膜或者一奈米碳管絲。該奈米碳管 薄膜或者奈米碳管絲包括多個平行的奈米碳管束。該奈米碳管 薄膜或者奈米碳管絲中奈米碳管的排列方向基本平行于奈米碳 12 200929636 -官薄膜或者奈米碳管絲的拉伸方向。 過使用有機溶劑或者施加機械外力處理該奈米 ^ 4膜或者奈米碳管絲得到-奈米碳管長線24〇。 上述步驟二製備的奈米碳管薄膜或者奈 機溶劑處理得到—太Ε Λ ^ 厌ι'、糸可使用有 過試管將有物;=:長二二其^ _奈米峻管薄膜或者::二:::::米碳管絲表面浸 ❹ 機溶劑,如乙醇、機溶劑爲揮發性有 優選採用乙醇。兮,本實施例中 潤處理後,在揮管薄膜或者奈米碳管絲經有機溶劑浸 在揮發有機溶義表面張力的作用下,奈米碳势 米碳管束,因此,該太^ 斷會部分聚集成奈 ❹ 管長線240。該太平厌官薄膜或奈米碳管絲收縮成奈米碳 有良好的機械强;長線240表面體積比小,無枯性,且具 上,‘====+觀領域。 施加機械外力處 "、s4膜或者不米後管絲也可通過 為由多個首尾相于連^米碳管長線240。該奈米碳管長線 理過程包括:描供不米破管束組成的絞線結構。其具體處 管絲的纺紗轴。將該可以枯住奈米碳管薄膜或者奈米碳 管絲結合後,將#%=的尾部與奈米碳管薄膜或者奈米石炭 者奈米料絲^:?、以旋轉的方式旋轉該奈米碳管薄臈或 軸的旋轉方式不限,可官長線。可以理解,上述纺紗 相結合。 以正轉,也可以反轉,或者正轉和反轉 V 乂驟製備的奈米碳管陣列也可通過施加機械外力處 13 200929636 ❹ .;里奈米碳管長線240。該奈米碳管長請為由多個首尾 連的奈米碳管束組·麟結構。其具體處理過程包括:提 ==部可以枯住奈米碳管陣列的纺紗軸。將該紡紗軸的尾 碳管陣列結合後,奈米物始纏繞在軸的周圍。將 :、、方:=旋轉的方式旋出並向遠離奈米碳管陣列的方向運 2二碳管陣列相對于該、軸移動時,奈米碳管長線 二’其它的奈米碳管可以纏繞在奈米碳管長線_ 加奈米碳管長線24G的長度。可以理解,上述纺炒 it 不限,可以正轉,也可以反轉,或者正轉和反轉 列中i =解’也可心用—&伸卫具從步驟⑴的奈米碳管陣 J中直接拉取奈米碳管獲得—奈米碳管長線240。 明導四製備多根上述的奈米碳管長線240,並形成所述透 ⑩ 法其中’採用多根上述的奈米碳管長線製備透明導電層的方 方以下兩種。其一,取多根上述的奈米碳管長、線,沿第一 多° L1間隔且平行地設置在基體22的第—表面瓜上;另取 置,上述的奈米碳管長線240,沿第二方向L2間隔且平行地設 向l基體22的第一表面221上。其中,第一方向L1與第二方 碳i2具有—交又角度α’ο<ί^90度。其二,取多根上述的奈米 =s長線240相互交織,並使得上述的多根奈米碳管長線24〇 刀别沿第一方向L1和第二方向L2間隔且平行設置。 觸可以理解,所述透明導電層24和基體22的形狀可以根據 果屏2〇的觸摸區域的形狀進行選擇。例如觸摸屏2〇的觸摸 14 200929636 ,區域可爲具有一長度的長線形觸镇區 ,形觸摸區域等。本實施例中,觸镇二角形觸摸區域及矩 區域。 、屏的觸摸區域爲矩形觸摸 〇 對于矩形觸摸區域,透明導電層 爲矩形。爲了在上述的透明導電層24和基體22的形狀也可 需在該透明導電層24中的沿第〜 上开)成均勻的電阻網絡, 米碳管長線240的兩端連接兩個第^ 14平行且間隔設置的奈 平行且間隔設置的奈米碳管長線24〇電極28 ’在沿第二方向L2 29。可以理解,上述的兩個第〜 的兩端連接兩個第二電極 电極2S a 可《本實施 2.8 例中,基體22爲玻璃基板,所述兩個第一電--------- 電極29爲由銀或銅等低電阻的導電金屬鍍層或者金屬箔片組成 設置方式不限,只需確保與透明導電層24 H固^二電極29的 的條狀電極。 請參閱圖3,本實施例中,戶斤述兩個第電極28爲兩個條 狀電極,且設置在沿第一方向U平行直間隔設置的奈米碳管長 ❹線240的兩端;所述兩個第二電極29也爲兩個條狀電極’且設 置在沿第二方向L2平行且間隖譟置的奈米妷官長線24〇的兩 端。所述第-電極28和第二電择29玎以採用溅射、電鍍、化 學鍍等沈積方法直接形成在透明導電廣24 另外,也可用銀 膠等導電粘結劑將上述的第一電極28和第一電極29粘結在透 明導電層24上。 <以理解,所述兩個第-電換28和兩個第〜電極29亦可 設予透明導電層24與基體22 ^戒設置在基體22的—個表面 上,只要能使上述的兩個第-電换28和兩個第二電極29與透 15 200929636 明導電層24上之間形成電連接即可。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a touch screen and a display device, and more particularly to a touch screen using a carbon nanotube as a transparent conductive layer and a display device using the touch screen. [Previous technology] "° In recent years, with the development of high performance and diversification of various electronic devices such as mobile phones and touch navigation systems, electronic devices in which a translucent touch panel is mounted in front of liquid crystal display devices are gradually increase. The user of such an electronic smear uses the touch screen to visually confirm the display content of the display device located on the back surface of the touch panel, and presses the touch panel by a finger or a pen to operate. Therefore, various functions of the electronic device can be operated. According to the working principle of the touch screen and the transmission medium, the touch screens in the prior art are divided into four types, namely, resistive, capacitive, infrared, and surface acoustic wave. Among them, the capacitive touch screen is widely used due to its high accuracy and strong anti-interference ability. Capacitive touch screens of the prior art (see "Study of Continuous Thin Tantalum Touch Touch Screens", Li Shuben et al., Optoelectronics, v. 1 6 962 (1995)) including a glass substrate 'a transparent conductive layer, and Multiple metal electrodes. In the capacitive touch panel, the material of the glass substrate is a nano-feed glass. The transparent conductive layer is a transparent material such as indium tin oxide (ITO) or antimony tin oxide (AT0). The electrode is formed by printing a conductive metal (e.g., silver) having a low electrical resistance. The electrode spacing is disposed at each corner of the transparent conductive layer. Further, the transparent conductive layer is coated with a protective layer. The protective layer is formed by a hardening or densification process of the liquid glass material and subjected to heat treatment and then hardened. When a touch object such as a finger touches the surface of the touch screen, due to the human body electric field, 200929636 forms a combined capacitance between the touch object such as a finger and the transparent conductive layer in the touch screen. For high-frequency currents, the capacitor is a direct conductor, and the touch of a finger or the like picks up a small current from the contact point. This current flows out of the electrodes on the touch screen, respectively, and the current flowing through the four electrodes is proportional to the distance from the finger to the four corners. The touch screen controller calculates the position of the touch point by accurately calculating the ratio of the four currents. Therefore, the transparent conductive layer is an essential component for the touch screen. In the prior art, the transparent conductive layer usually adopts an ITO layer. However, the ITO layer as a transparent conductive layer has disadvantages such as insufficient mechanical and chemical durability. Further, the use of the ITO layer as the transparent conductive layer has a phenomenon in which the resistance value distribution is uneven, resulting in the problem that the capacitive touch screen of the prior art has low resolution and low precision of the touch screen. In view of this, it is indeed necessary to provide a touch screen having high resolution, high precision, and durability, and a display device using the touch screen. SUMMARY OF THE INVENTION A touch screen includes a substrate, a transparent conductive layer disposed on a surface of the substrate, and two first electrodes and two ® second electrodes. Wherein, the transparent conductive layer comprises a plurality of carbon nanotube long lines respectively arranged in parallel in the first direction and the second direction, and the first direction intersects the second direction. The two ends of the long carbon nanotubes disposed along the first direction are electrically connected to the two first electrodes, respectively, and the two ends of the long carbon nanotubes disposed along the second direction are respectively electrically connected to the two second electrodes connection. A display device comprising a touch screen, the touch screen comprising a substrate; a transparent conductive layer disposed on a surface of the substrate; two first electrodes and two second electrodes; and a display device The display device is facing and close to the base of the touch screen. Wherein, the transparent conductive layer comprises a plurality of nanometers; and the second and second directions intersect with each other in the first direction and the second direction. The ~ direction disposed along the first direction is not electrically connected to the two first electrodes, and the second direction is disposed such that both ends of the long line are electrically connected to the two second electrodes, respectively. The anti-burst is compared with the prior art. The touch screen provided by the technical solution has the following advantages: one is because the plurality of nano-eyes in the transparent conductive layer are interlaced or overlapped and cross-connected, so the transparent conductive The layer has the mechanical properties of ^, , ', so that the above transparent conductive layer has better mechanical 3 and toughness. Therefore, using the above-mentioned nano carbon tube long line as a transparent conductive layer can comprehensively improve the durability of the touch screen. , thereby increasing the durability of the display using the touch screen. Secondly, a plurality of carbon nanotubes in the transparent conductive layer are arranged in a long line and spaced apart, so that the transparent conductive layer has a uniform resistance distribution and light transmittance, thereby improving the resolution of the touch screen and the display device using the touch screen. Rate and accuracy. [Embodiment] Hereinafter, the technical solution will be further described in detail with reference to the accompanying drawings. Referring to Figures 1, 2 and 3, the touch screen 20 includes a substrate 22, a transparent conductive layer 24, a protective layer 26, two first electrodes 28 and two second electrodes 29. The base 22 has a first surface 221 and a second surface 222 opposite the first surface 221. The transparent conductive layer 24 is disposed on the first surface 221 of the substrate 22. The transparent conductive layer 24 includes a plurality of carbon nanotube long wires 240 disposed in parallel in the first direction L1 and the second direction L2, respectively. And the first direction L1 is different from the second direction L2, that is, the first direction L1 and the second direction L2 intersect. It can be understood that the long carbon nanotubes 240 disposed along the first direction L1 and the second direction L2 can be set in a gap or set at a certain distance. In this embodiment, the plurality of carbon nanotube long wires 240 are respectively disposed along the second direction L1 and the second direction L2, and the separation distance is 5 nm to 1 mm. The two ends of the long carbon tube 240 disposed along the first direction L1 are electrically connected to the two first electrodes 28 respectively, and the two ends of the long carbon tube 240 disposed along the second side to the L2 are respectively The two first electrodes 29 are electrically connected to form an equipotential surface on the transparent conductive layer 24. The protective layer 26 can be disposed directly on the transparent conductive layer 24, the two first electrodes 28, and the two second electrodes 29. The base 22 is a curved or planar structure. The substrate μ is formed of a hard material such as glass, quartz, diamond or plastic or a flexible material. The base 22 serves primarily as a support. The conductive layer 24 includes a plurality of long carbon nanotubes that intersect each other; the long lines of the test include a plurality of parallel carbon nanotube bundles connected end to end (4) composed of a plurality of carbon nanotube bundles connected end to end. Stranded wire structure. The carbon nanotube bundles are closely combined by van der Waals force, and the nanocarbon t includes more carbon nanotubes. The long line of the above carbon nanotubes is 〇.5奈〜〜1〇〇micron. Mumi Di', due to the end of the carbon nanotube long-line shirt, the H-reverse! 16-shaped bundle structure or * multiple end-to-end carbon nanotube bundles =:::, therefore, has a certain Boss' can be bent. Therefore, the transparent conductive layer of the present technology == can be a planar structure or a curved structure, and the touch screen 20 provided by the second embodiment can also be a curved structure or a planar structure. And 乂;: the long carbon nanotubes in the transparent conductive layer 24 cross each other, from the 4th (four)-like mesh - and then the transparent conductive layer 24 and have the resistance distribution and light transmission of 200929636 Hiding, improved touch (four). The size of the long carbon nanotube line can be based on actual demand accuracy. The use of a 4-inch substrate to grow super-sequential carbon nanotubes =. In this embodiment, the diameter may be 0·5 nm·micrometer, and the length thereof is not limited. = m carbon tube length The carbon nanotubes in the S long line can be single-walled carbon nanotubes, 2, nano-carbon nanotubes. The diameter of the single-walled carbon nanotube is 〇5奈^~^ The carbon tube or the multi-walled carbon tube has a diameter of 1.0 nm to 50 m. The 哕多厝太不米; Meters ~ 50 nm. The p-card, the diameter of the smectic carbon nanotubes step of the present technical solution The preparation method of the transparent conductive layer 24 mainly comprises the following arrays: providing - a nano carbon f array is formed on the substrate, preferably, the early 歹! It is a super-shunned carbon nanotube array. Column 2 technical solution _ provides a carbon nanotube _ is a single-walled carbon nanotube array. This: one or more of the wall-walled carbon tube array and the multi-walled carbon nanotube array. The method for preparing the carbon nanotube array adopts a chemical vapor deposition method, and the specific step (a) provides a flat substrate. The substrate may be a p-type or N-type germanium substrate, and the germanium substrate formed with the oxide layer is used in the present embodiment. Preferably, a 4-inch f-substrate is used, and (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be selected from an alloy of iron (Fe), cobalt (Co), nickel (Ni) or any combination thereof. (c) annealing the substrate on which the catalyst layer is formed in air at ~900 ° C for about 30 minutes to 90 minutes; (d) placing the treated substrate in a reaction furnace, in a lean atmosphere Heat down to 500. (: ~ 740 ° C, then pass through the carbon source gas reaction for about 5 minutes ~ 30 minutes, grow to obtain a carbon nanotube array, the height is about 1 〇〇 micron. The carbon nanotube array is a plurality of parallel and An array of pure carbon nanotubes formed by a carbon nanotube perpendicular to the substrate growth 11 200929636 . The carbon nanotube array is substantially the same as the base area described above. The super-shoring carbon nanotube is controlled by the above controlled growth conditions. The array contains substantially no impurities, such as amorphous carbon or residual catalyst metal particles, etc. In this embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or methane, and the preferred carbon source in this embodiment. The gas is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment is argon. It is understood that the carbon nanotube array provided by the embodiments of the present technical solution is not limited to the above preparation method, and may also be a graphite electrode. Constant current arc discharge deposition method, laser evaporation deposition method, etc. Step 2: Using a stretching tool to pull a carbon nanotube from the carbon nanotube array to obtain a nano tube film or a layer The preparation of the carbon nanotube film or the nano carbon tube wire comprises the following steps: (a) selecting a plurality of carbon nanotube segments of a certain width from the array of carbon nanotubes, which is preferred in this embodiment. In order to contact the array of carbon nanotubes 0 with a tape having a certain width to select a plurality of carbon nanotube bundles of a certain width; (b) stretching a plurality of the nanowires at a certain speed along a growth direction substantially perpendicular to the growth of the carbon nanotube array a carbon tube bundle to form a continuous carbon nanotube film or a carbon nanotube wire. During the stretching process, the plurality of carbon nanotube bundles are gradually separated from the substrate in the stretching direction under the action of tension, By the action of Devalli, the selected plurality of carbon nanotube bundles are continuously pulled out end to end with other carbon nanotube bundles to form a carbon nanotube film or a nanocarbon tube filament. The tube film or the carbon nanotube wire comprises a plurality of parallel carbon nanotube bundles. The arrangement of the carbon nanotubes in the carbon nanotube film or the carbon nanotube filament is substantially parallel to the nano carbon 12 200929636 - Carbon nanotube Stretching direction of the wire. The nanotube film or the carbon nanotube wire is treated with an organic solvent or a mechanical external force to obtain a long carbon nanotube of 24 nm. The carbon nanotube film or the nematic tube prepared in the above step 2 Solvent treatment can be obtained - too Ε Λ ^ 厌ι', 糸 can be used in a test tube will have something; =: long two two ^ ^ _ nanojun tube film or:: two::::: rice carbon tube surface dip It is preferred to use ethanol as the solvent of the solvent, such as ethanol or organic solvent. In the present embodiment, after the treatment in the embodiment, the surface tension of the vapor film or the carbon nanotube wire is immersed in the organic solvent to the surface tension of the volatile organic solution. Underneath, the carbon nanotubes of the carbon nanotubes, therefore, will be partially integrated into the long line 240 of the naphthalene tube. The Taiping anomalous film or nano carbon tube wire shrinks into nano carbon with good mechanical strength; long line 240 The surface volume ratio is small, no dryness, and has a '====+ field of view. The application of mechanical external force ", s4 film or not after the pipe can also pass through a plurality of first and last phase of the continuous carbon tube 240. The long process of the carbon nanotubes includes: a twisted wire structure composed of bundles of non-meter broken tubes. It is specifically the spinning shaft of the wire. After the carbon nanotube film or the carbon nanotube wire can be combined, the tail of the #%= and the carbon nanotube film or the nano-carbonaceous nanowire can be rotated in a rotating manner. The carbon nanotubes or the shaft can be rotated in any way. It will be understood that the above spinning is combined. The carbon nanotube array prepared by forward rotation or reverse rotation, or forward rotation and reverse rotation V can also be applied by applying mechanical external force 13 200929636 ; .; Rinmi carbon nanotube long line 240. The length of the carbon nanotubes is a combination of a number of carbon nanotube bundles and a lining structure. The specific processing process includes: lifting the == section can withstand the spinning axis of the carbon nanotube array. After the carbon nanotube array of the spinning shaft is combined, the nanoparticle is wound around the shaft. Rotate the :, , , = = rotation and move the 2 carbon nanotube array away from the carbon nanotube array in relation to the axis. The carbon nanotube long line II' other carbon nanotubes can Wrap the long line of carbon nanotubes _ kanami carbon tube long line 24G length. It can be understood that the above-mentioned spinning and weighing is not limited, and can be reversed or reversed, or forward and reversed in the column i = solution 'also can be used -& extension of the nano carbon array from step (1) J directly draws the carbon nanotubes to obtain the long carbon nanotube 240. A plurality of the above-mentioned carbon nanotube long wires 240 are prepared by the light guide four, and the above two methods of forming the transparent conductive layer using a plurality of the above-mentioned nano carbon nanotube long wires are formed. First, a plurality of the above-mentioned carbon nanotube lengths and wires are disposed on the first surface melon of the substrate 22 at intervals of the first multiple L1 and in parallel; and the above-mentioned carbon nanotube long wires 240 are along The second direction L2 is spaced and parallel to the first surface 221 of the base body 22. Wherein, the first direction L1 and the second square carbon i2 have an intersection angle α'ο < ί^90 degrees. Secondly, a plurality of the above-mentioned nano-s long wires 240 are interlaced, and the plurality of carbon nanotube long wires 24 are spaced and arranged in parallel in the first direction L1 and the second direction L2. It can be understood that the shapes of the transparent conductive layer 24 and the base 22 can be selected according to the shape of the touch area of the screen. For example, the touch screen 2 〇 touch 14 200929636 , the area may be a long line touch zone with a length, a touch area, and the like. In this embodiment, the two-dimensional touch area and the moment area are touched. The touch area of the screen is a rectangular touch 〇 For a rectangular touch area, the transparent conductive layer is a rectangle. In order to form a uniform resistance network in the shape of the transparent conductive layer 24 and the substrate 22 in the transparent conductive layer 24, the two ends of the long carbon wire 240 are connected to each other. Parallel and spaced apart nanotube parallel and spaced carbon nanotube long wires 24 〇 electrode 28' are in the second direction L2 29. It can be understood that the two second ends of the above two ends are connected to the two second electrode electrodes 2S a. In the present embodiment, the base body 22 is a glass substrate, and the two first electric batteries are used. The electrode 29 is not limited by a low-resistance conductive metal plating layer such as silver or copper or a metal foil, and it is only necessary to secure the strip electrode of the second electrode 29 with the transparent conductive layer 24H. Referring to FIG. 3, in this embodiment, the two first electrodes 28 are two strip electrodes, and are disposed at two ends of the long carbon nanotube line 240 disposed in parallel along the first direction U; The two second electrodes 29 are also two strip electrodes 'and are disposed at both ends of the nanowires 24 〇 which are parallel and interlaced in the second direction L2. The first electrode 28 and the second electrode 29 are directly formed on the transparent conductive layer by sputtering, electroplating, electroless plating or the like. Alternatively, the first electrode 28 may be formed by a conductive adhesive such as silver paste. The first electrode 29 is bonded to the transparent conductive layer 24. <Understanding, the two first-electrode exchanges 28 and the two second electrodes 29 may be disposed on the surface of the base 22 of the transparent conductive layer 24 and the base 22, as long as the above two It is sufficient that the first-electrical exchange 28 and the two second electrodes 29 form an electrical connection with the conductive layer 24 on the ground.

進一步地,爲了延I 在接觸點錢日將U 導電層24的使料命和限㈣合 和兩個第-電極28及^^間的電容,可以在透明導電層% 層26,防護層26可由氮第-電極29之上設置-透明的防護 s旨膜或丙烯酸樹脂等形成 氧化梦、本並壤丁烯(BCB)、聚 明導電層24起保護作用;該防護層26具有-定的硬度,對透 ❹ 從而使得防護層26具有以;以二解,還可通過特殊的工藝處理’ 1 乂下功此,例如减小炫光、降低反射等。 在本實施例中’防護層26爲-二氧切層,該防護層26 的硬度達纟ΠΗ (H爲洛氏硬度試驗巾,卸除主試驗力後,在初 試驗力下壓痕殘留的深度)。可以理解,防護層%的硬度和厚 度可以根據〶要進行選擇。所述防錢%可以通過導電銀膠直 接粘結在透明導電層24上。 此外,爲了减小由顯示設備產生的電磁干擾,避免從觸摈 屏20發出的仏號産生錯誤,還可在基體22的第二表面222上 ❺设置一屏蔽層25。該屏蔽層25可由銦錫氧化物(ιτο)薄膜、 銻錫氧化物(ΑΤΟ )薄臈、鎳金薄膜、銀薄膜或奈米碳管層等 透明導電材料形成。所述的奈米碳管薄膜可以為定向排列的或 其它結構的奈米破管薄膜。本實施例中,該屏蔽層25的具體結 構可與透明導電層24相同。該奈米礙管薄膜作爲電接地點,起 到屏蔽的作用,從而使得觸摸屏20能在無干擾的環境中工作。 請參閱圖4及圖2,本技術方案實施例提供一顯示裝置 100,該顯示裝置100包括一觸摸屏2〇,一顯示設備3〇0該顯 示設備30正對且靠近觸摸屏20的基體第二表面222設置。進 16 200929636 .一步地,上述的顯示設備30與觸摸屏20間隔一預定距離設置 _或集成設置。 顯示設備30可以爲液晶顯示器、場發射顯示器、電衆顯示 器、電致發光顯示器、真空螢光顯示器及陰極射線管等顯示設 備中的一種。 請參閱圖5及圖2,進一步地,當顯示設備30與觸摸屏20 間隔一定距離設置時,可在觸摸屏20的屏蔽層25遠離基體22 的一個表面上設置一鈍化層104’該鈍化層104可由氮化矽、氧 ❹化矽、苯並環丁烯、聚酯膜或丙烯酸樹脂。該鈍化層104與顯 示設備30的正面間隔一間隙106設置。具體地,在上述的鈍化 層104與顯示設備30之間設置兩個支撑體1〇8。該鈍化層1〇4 作爲介電層使用,所述鈍化層104與間隙106可保護顯示設備 30不致于由于外力過大而損壞。 當顯示設備30與觸摸屏20集成設置時,可將上述的支撑 體108直接除去,而將鈍化層1〇4直接設置在顯示設備30上。 ❹即’上述的鈍化層104與顯示設備30之間無間隙地接觸設置。 另外’上述的顯示裝置100進一步包括一觸摸屏控制器 40、一顯示設備控制器60及一中央處理器50。其中,觸摸屏控 制器40、中央處理器5〇及顯示設備控制器6〇三者通過電路相 互連接’觸摸屏控制器40連接電極28,顯示設備控制器60連 接顯不設備30。 本實施例觸摸屏20及顯示裝置100在應用時的原理如下: 觸摸屏20在應用時可直接設置在顯示設備3〇的顯示面上。觸 摸屏控制器40根據手指等觸摸物7〇觸摸的圖標或菜單位置來 17 200929636 .定位選擇信息輸人,並將該信息傳遞給中央處 .理器50通過顯示器控制器60控制顯示設備3〇顯示Μ。中央處 具體地,在使用時,透明導電層24上施力,不。 壓通過兩個第一電極28和兩個第二電極29施力預定電壓。電 24上’從而在該透明導電層24上形成等電位電層 覺確認在觸摸屏2〇後面設置的顯示設備3〇的顯八用者一逢視 手指或筆等觸摸物70按壓或接近觸摸屏2〇的防讀—邊通過 作時,觸摸物70與透明導電層24之間彤成一耦人“26進行操 高頻電流來說,電容為直接導體’亍^純接于 部分電流。這個電流分別從觸摸屏2〇上的電極中流出= 控制器40通過對這四個電流比例的精確計算 觸摸屏 置盘之後’觸摸屏控制器4〇將數字化的觸摸位置數據傳 中央處理器50接受上述的觸摸位置數據並 執盯。最後’中央處㈣5㈣_摸位絲 ❹ 制器從而在顯示設備30上顯示接觸物7〇發出的觸摸^控 本技術方案實施例提供的顯示裝置1〇〇具有以下優點…盆 ::^置:中的多個奈米碳管長線相互_ 重且且父又&置’因此’所述透明導電層24具有較好的力學性 :,:而:吏得上述的透明導電層24具有較好的機械强度和細 性,故,採用上述的奈米碳管長線·作透明導電層,可 應的提南觸摸屏20的耐用性,進而提高了使用該觸摸屏的 顯不裝置的耐用性。其二,上述透明導電層2〇中的多個太 未碳官長線240平行且間隔設置,從而使得透明導電層μ直: 均句的阻值分布和透光性,從而提高觸摸屏2〇及使用曰該觸= 18 200929636 20的顯示裝置100的分辨率和精確度。 综上所述,本發明確已符合發明專利之要件,遂依法提出 專利中請。惟,以上所述者僅為本發明之較佳實施例 ,自不能 以此限製本案之申請專利範圍。舉凡熟悉本案技藝之人士援依 本發明之精神所作之等效修飾或變化,皆應涵蓋于以下申請專 利範圍内。 【圖式簡單說明】 Ο 為本技術方案實施例_摸屏的結構示意圖 2為沿圖1所示的線仏1!的剖視圖。 = 明導電層的的結構: 圖,示裝置的結構示意i 【主要元:ί技術方案實施例的•示裝置的工作原理: 一胥凡件符號說明】 意圖 〇 意圖 ❹ 顯示裂置 鈍化層 間隙 1〇〇 1〇4 支撑體 觸摸屏 基體 1〇6 1〇8 20 第一表面 第一表面 透明導電層 奈米碳管長線 屏蔽層 22 221 222 24 24〇 25 19 200929636 ,防護層 26 .第一電極 28 第二電極 29 顯示設備 30 觸摸屏控製器 40 中央處理器 50 顯示設備控製器 60 觸摸物 70 第一方向 L1 第二方向 L2 20Further, in order to extend the I and the capacitance of the U conductive layer 24 and the capacitance between the two first electrodes 28 and ^^ at the contact point, the transparent conductive layer % layer 26, the protective layer 26 The oxidized dream, the butyl bromide (BCB), and the polycrystalline conductive layer 24 may be protected by a transparent protective s film or an acrylic resin provided on the nitrogen first electrode 29; the protective layer 26 has a certain The hardness, the penetration, so that the protective layer 26 has a two solution, can also be treated by a special process, such as reducing glare, reducing reflection, and the like. In the present embodiment, the 'protective layer 26 is a dioxo prior layer, and the hardness of the protective layer 26 is up to 纟ΠΗ (H is a Rockwell hardness test towel, and after the main test force is removed, the indentation remains under the initial test force. depth). It can be understood that the hardness and thickness of the protective layer % can be selected according to the main points. The % anti-money can be directly bonded to the transparent conductive layer 24 by a conductive silver paste. In addition, in order to reduce electromagnetic interference generated by the display device and to avoid errors in the nickname emitted from the touch screen 20, a shield layer 25 may be disposed on the second surface 222 of the substrate 22. The shield layer 25 may be formed of a transparent conductive material such as an indium tin oxide film, a bismuth tin oxide film, a nickel gold film, a silver film or a carbon nanotube layer. The carbon nanotube film may be an oriented tube or other structure of a nanotube film. In this embodiment, the specific structure of the shielding layer 25 can be the same as that of the transparent conductive layer 24. The nanotube film acts as an electrical grounding point to act as a shield, allowing the touch screen 20 to operate in a non-interfering environment. Referring to FIG. 4 and FIG. 2 , the embodiment of the present invention provides a display device 100. The display device 100 includes a touch screen 2 , and a display device 3 0 is adjacent to the second surface of the substrate of the touch screen 20 . 222 settings. Progress 16 200929636 . In one step, the display device 30 described above is spaced from the touch screen 20 by a predetermined distance setting _ or integrated setting. The display device 30 may be one of a display device such as a liquid crystal display, a field emission display, a battery display, an electroluminescence display, a vacuum fluorescent display, and a cathode ray tube. Referring to FIG. 5 and FIG. 2 , further, when the display device 30 is disposed at a distance from the touch screen 20 , a passivation layer 104 ′ may be disposed on a surface of the shielding layer 25 of the touch screen 20 away from the substrate 22 . Tantalum nitride, bismuth oxide, benzocyclobutene, polyester film or acrylic resin. The passivation layer 104 is spaced from the front side of the display device 30 by a gap 106. Specifically, two support bodies 1〇8 are provided between the above-described passivation layer 104 and the display device 30. The passivation layer 1〇4 is used as a dielectric layer, and the passivation layer 104 and the gap 106 can protect the display device 30 from damage due to excessive external force. When the display device 30 is integrated with the touch screen 20, the above-described support 108 can be directly removed, and the passivation layer 1〇4 can be directly disposed on the display device 30. That is, the passivation layer 104 described above is placed in contact with the display device 30 without a gap. Further, the above display device 100 further includes a touch screen controller 40, a display device controller 60, and a central processing unit 50. The touch screen controller 40, the central processing unit 5, and the display device controller 6 are connected to each other through a circuit. The touch screen controller 40 is connected to the electrode 28, and the display device controller 60 is connected to the display device 30. The principle of the touch screen 20 and the display device 100 in this embodiment is as follows: The touch screen 20 can be directly disposed on the display surface of the display device 3 when applied. The touch screen controller 40 inputs the selection information according to the icon or menu position touched by the touch object 7 手指 17 200929636 . The information is transmitted to the central office. The processor 50 controls the display device 3 to display through the display controller 60. Hey. Specifically, at the time of use, the transparent conductive layer 24 is applied with force, no. The pressure is applied through the two first electrodes 28 and the two second electrodes 29 to apply a predetermined voltage. The electric device 24 is formed to form an equipotential electric layer on the transparent conductive layer 24 to confirm that the display device 3 disposed behind the touch screen 2 is used by the touch object 70 such as a finger or a pen to press or approach the touch screen 2防 防 防 — 边 边 边 边 边 边 边 边 边 边 边 边 边 边 边 边 边 边 边 边 边 边 边 边 边 边 边 边 边 边 边 边 边 防 防 防 防 防 防 防 防 防 防 防 防Flowing out from the electrodes on the touch screen 2〇 = controller 40 receives the above touch position data by the touch screen controller 4 〇 passing the digitized touch position data transmission center processor 50 after accurately calculating the ratio of the four currents. And the final display of the display device 1 provided by the embodiment of the present invention has the following advantages: : ^ Placement: The plurality of carbon nanotubes in the long line are mutually _ heavy and the parent & set 'therefore' the transparent conductive layer 24 has better mechanical properties:, and: the above transparent conductive layer 24 The mechanical strength and fineness are better. Therefore, the use of the above-mentioned nano carbon tube long-line as a transparent conductive layer can provide the durability of the touch screen 20, thereby improving the durability of the display device using the touch screen. Secondly, a plurality of the too small carbon long lines 240 in the transparent conductive layer 2 are parallel and spaced apart, so that the transparent conductive layer is straight: the resistance distribution and the light transmittance of the uniform sentence, thereby improving the touch screen 2 and using曰The touch resolution = 18 200929636 20 The resolution and accuracy of the display device 100. In summary, the present invention has indeed met the requirements of the invention patent, and the patent is filed according to law. However, the above is only the present invention. The preferred embodiment of the present invention is not intended to limit the scope of the patent application. The equivalent modifications or variations made by those skilled in the art to the spirit of the present invention are intended to be included in the following claims. Brief Description of the Invention Ο Embodiment of the Technical Solution _ Structure of the touch screen 2 is a cross-sectional view along the line 仏 1 ! shown in Figure 1. = Structure of the conductive layer: Figure, structure of the device至元: The working principle of the embodiment of the technical solution: The description of the symbol of the workpiece: Intention 〇 Intention ❹ Display cracking passivation layer gap 1〇〇1〇4 Support body touch screen substrate 1〇6 1〇8 20 First surface first surface transparent conductive layer carbon nanotube long wire shielding layer 22 221 222 24 24〇25 19 200929636 , protective layer 26 . First electrode 28 second electrode 29 display device 30 touch screen controller 40 central processing unit 50 display Device controller 60 touch object 70 first direction L1 second direction L2 20

Claims (1)

200929636 1. φ 2. 3. ❹ 4· 5. 、申請專利範圍 一種觸摸屏,其包括: I基體;-透明導電層,該透明導㈣設置于所述基 -的-表面;以及兩個第一電極和兩個第二電極,其 于’所述透明導電層包括多個奈米碳管長線; " 彳向和第二方向平行設置’且第一方向盥第 =向交又,所述沿第—方向設置的奈米碳管長線的 ,別與兩個第-電極電連接,所述沿第二方向設 ,奈米碳管長線的兩端分別與兩個第二電極;連 範圍第1項所述的觸摸屏,其中,所述第 一方向和第二方向具有—交 小于等于90度。 父又角度《大于〇度且 ^申請專利範圍第1項所述的觸摸屏,其令,所述太 未石反官長線的直徑爲0.5奈米〜1〇〇微米。 ' 如申請專利範圍第i項所述的觸 個奈米碳管長線分別:-中所述夕 置,且間隔距離爲5奈丄毫方:和第二方向間隔設 =請專利範圍第4項所述的觸摸屏,其中,所述每 包括多個平行的 碳管束組成的束狀結構或由多個連的不未 管束組成的絞線結構。 毛 的奈米碳 如申請專㈣圍第5項所述的觸摸屏, 比 鄰的奈米碳管束之間通過凡德瓦爾力緊密結合Γ 一 21 6. 200929636 I ❹ 奈米碳管束包括多個平行的奈米碳管。 如申請專利範圍第6項所述的觸摸屏,其中, 米碳管包括單壁奈米碳管、雙壁奈米碳管及多壁太: 碳管中的—種或几種,所述單壁奈采碳管的直;: 〇.5奈米,奈米’雙壁奈米碳管的直…:爲 奈米,多壁奈米碳管的直徑爲15奈米〜5〇夺米 如申請專利範圍第!項所述的觸摸屏,其中所述 一電極和第二電極爲金屬鍍層或者金屬箱片。 ==範圍第1項所述的觸摸屏,其中,所述兩 卫和兩個第二電極間隔地設置在透明導雷 層返離基體的表面。 導電 10.如申請專利範圍第1 摸屏進-步包括一防二觸摸屏’其中,所述觸 防瘦層,該防護層設置于第一電 n 、由透明導電層遠離基體的表面。.防範圍第10項所述的觸摸屏,其中,所述 ==爲氮切、氧切、苯並環丁烯、聚醋 膜或丙烯酸樹脂中的一種。 12. 如申請專利範圍第1 描s A 固弟1項所述的觸摸屏,其中,所述π 撝屏進一步包括一屏齡 遠離透明導電層的2層’該屏蔽層設置于上述基1 ^ 法 衣面’且所述屏蔽層爲銦錫氧化4 -厣:錫氧化物薄骐、鎳金薄膜、銀薄膜或奈米《 官層中的一種。 13. —種顯示裝置,包括·· 一觸麟,該_屏包括m明導電層,i 7. 8. 9. 22 200929636 透明導電層設置于上述基體的一表面;及兩個第一電 極和兩個第二電極;一顯示設備,該顯示設備正對且 靠近觸摸屏的基體遠離透明導電層的一表面設置, 其改良在于,所述透明導電層包括多個奈米碳管長線 ,別沿第一方向和第二方向平行設置,且第一方向與 第一方向交叉,所述沿第一方向設置的奈米碳管長線 的兩分別與兩個第一電極電連接,所述沿第二方向 14. 15. 0 16. 17. 18. 5又置的奈米碳管長線的兩端分別與兩個第二電極電 連接。 如申4專利範圍第13項所述的顯示裝置,其中,所 述顯不設備爲液晶顯示器、場發射顯示器、電漿顯示 器、電致發光顯示器、真空螢光顯示器及陰極射線管 中的一種。 如申明專利範圍第13項所述的顯示裝置,i中,所 述顯示設備與觸摸屏間隔設置、 如申請專利範圍第U項所料顯示裝置,其中,所 置進一步包括一純化層’該純化層設置于觸 摸屏和,.,具不设備之間,與觸摸屏 . 設備間隔設置。 i /、顯不 如申請專利範圍第;! TS ^^ 16項所逸的顯示襞置,i 述鈍化層的材料爲氮 酯膜或丙烯酸樹脂。 歸 如申請專利範圍第1 7 TS ^、+、& 、 17項所达的顯示裝置,其中, 述顯示裝置進一步命紅一雜姑R ' 括一觸摸屏控制器、一顯示設 23 200929636200929636 1. φ 2. 3. ❹ 4· 5. Patent application: A touch screen comprising: an I substrate; a transparent conductive layer, the transparent guide (four) being disposed on the base-surface; and two first An electrode and two second electrodes, wherein the transparent conductive layer comprises a plurality of carbon nanotube long lines; " the 彳 direction is arranged in parallel with the second direction and the first direction 盥The first direction of the carbon nanotube long line is not electrically connected to the two first electrodes, the second direction is set, the two ends of the long carbon nanotube line are respectively connected with the two second electrodes; The touch screen of the item, wherein the first direction and the second direction have an intersection of less than or equal to 90 degrees. The parent has a perspective of "a touch screen as described in claim 1 of the patent application, wherein the diameter of the long axis is 0.5 nm to 1 μm. ' If the long line of the carbon nanotubes mentioned in item i of the patent application scope is: - in the middle of the day, and the separation distance is 5 nanometers: the distance between the second direction and the second direction = please patent item 4 The touch screen, wherein the each comprises a bundle structure composed of a plurality of parallel carbon tube bundles or a strand structure composed of a plurality of connected bundles. The nano-carbon of the hair is applied as the touch screen described in item 5 of the special (4), and the adjacent carbon nanotube bundle is closely combined with the van der Waals force. 21 21. 200929636 I ❹ Nano carbon nanotube bundle includes multiple parallel Carbon nanotubes. The touch screen of claim 6, wherein the carbon nanotube comprises a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled: one or more of the carbon tubes, the single wall Nai Cai carbon pipe straight;: 〇.5 nm, nano 'double-walled carbon nanotubes straight...: for nano, multi-walled carbon nanotubes with a diameter of 15 nm ~ 5 〇 米 米 apply Patent scope! The touch screen of the item, wherein the one electrode and the second electrode are metal plating or metal box. The touch screen of claim 1, wherein the two guards and the two second electrodes are spaced apart from each other at a surface of the transparent guide layer that is returned to the substrate. Conductive 10. As in the patent application, the first touch screen includes an anti-two touch screen, wherein the anti-skin layer is disposed on the surface of the first electric n from the transparent conductive layer away from the substrate. The touch panel of claim 10, wherein the == is one of nitrogen cut, oxygen cut, benzocyclobutene, polyester film or acrylic resin. 12. The touch screen of claim 1, wherein the π 撝 screen further comprises a layer of two screens away from the transparent conductive layer. The shielding layer is disposed on the base 1 ^ The shielding layer is one of indium tin oxide 4 - antimony: tin oxide thin crucible, nickel gold thin film, silver thin film or nano layer. 13. A display device comprising: a touch panel comprising: a conductive layer, i 7. 8. 9. 22 200929636 a transparent conductive layer disposed on a surface of the substrate; and two first electrodes and Two second electrodes; a display device, the display device is disposed adjacent to a surface of the touch screen away from a surface of the transparent conductive layer, and the improvement is that the transparent conductive layer comprises a plurality of carbon nanotube long lines, One direction and the second direction are arranged in parallel, and the first direction intersects with the first direction, and the two long lines of the carbon nanotubes disposed along the first direction are electrically connected to the two first electrodes, respectively, in the second direction 14. 15. 0 16. 17. 18. 5 The two ends of the long carbon nanotubes are electrically connected to the two second electrodes. The display device according to claim 13, wherein the display device is one of a liquid crystal display, a field emission display, a plasma display, an electroluminescence display, a vacuum fluorescent display, and a cathode ray tube. In the display device of claim 13, wherein the display device is spaced apart from the touch screen, as shown in the U.S. patent application, wherein the device further comprises a purification layer 'the purification layer Set on the touch screen and,., with no device between, with the touch screen. Device spacing settings. i /, is not as good as the scope of the patent application; ! TS ^ ^ 16 is the display device, the material of the passivation layer is a nitrogen ester film or acrylic resin. For example, the display device of the patent scope 1 7 TS ^, +, & , 17 items, wherein the display device is further red-aided, a miscellaneous R' includes a touch screen controller, and a display device 23 200929636 Ο 控制器及一中央處理器,其中,觸摸屏控制器、中央 處理器及顯示設備控制器三者通過電路相互連接,觸 摸屏控制器連接觸摸屏的電極,顯示設備控制器連接 顯示設備。 24The controller and a central processing unit, wherein the touch screen controller, the central processing unit and the display device controller are connected to each other through a circuit, the touch screen controller is connected to the electrodes of the touch screen, and the display device controller is connected to the display device. twenty four
TW096149380A 2007-12-21 2007-12-21 Touch panel and displaying device using the same TWI366930B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096149380A TWI366930B (en) 2007-12-21 2007-12-21 Touch panel and displaying device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096149380A TWI366930B (en) 2007-12-21 2007-12-21 Touch panel and displaying device using the same

Publications (2)

Publication Number Publication Date
TW200929636A true TW200929636A (en) 2009-07-01
TWI366930B TWI366930B (en) 2012-06-21

Family

ID=44864571

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096149380A TWI366930B (en) 2007-12-21 2007-12-21 Touch panel and displaying device using the same

Country Status (1)

Country Link
TW (1) TWI366930B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI391323B (en) * 2009-09-09 2013-04-01 Hon Hai Prec Ind Co Ltd Mehtod for manufacturing carbon nanotube linear structure
US8444947B2 (en) 2009-08-28 2013-05-21 Tsinghua University Method for making carbon nanotube wire structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8444947B2 (en) 2009-08-28 2013-05-21 Tsinghua University Method for making carbon nanotube wire structure
TWI391323B (en) * 2009-09-09 2013-04-01 Hon Hai Prec Ind Co Ltd Mehtod for manufacturing carbon nanotube linear structure

Also Published As

Publication number Publication date
TWI366930B (en) 2012-06-21

Similar Documents

Publication Publication Date Title
TWI354921B (en) Touch panel and displaying device using the same
CN101458598B (en) Touch screen and display device
CN101464765B (en) Touch screen and display equipment
CN101470560B (en) Touch screen and display equipment
TWI364860B (en) Touch panel, method for making the same, and displaying device adopting the same
CN101458603B (en) Touch screen and display device
CN101464764B (en) Touch screen and display equipment
CN101470565A (en) Touch screen and display equipment
TW200926471A (en) Touch panel and displaying device using the same
CN101458604B (en) Touch screen and display device
CN101464766B (en) Touch screen and display equipment
TWI386831B (en) Touch panel and displaying device using the same
TW200929649A (en) Touchable control device
TWI423083B (en) Touch panel and displaying device using the same
TWI408575B (en) Touch panel and displaying device using the same
TW200929636A (en) Touch panel and displaying device using the same
TWI423084B (en) Touch panel and displaying device using the same
TWI436510B (en) Touch panel and displaying device using the same
CN101458605B (en) Touch screen and display device
TWI354920B (en) Touch panel and displaying device using the same
TWI362776B (en) Touch panel and displaying device using the same
TWI412962B (en) Touch panel and displaying device using the same
TWI356516B (en) Touch panel and displaying device using the same
TW200929633A (en) Touch panel and displaying device using the same
TWI355765B (en) Touch panel and displaying device using the same