CN101559239A - 镁基可降解植入体材料及其制备方法 - Google Patents

镁基可降解植入体材料及其制备方法 Download PDF

Info

Publication number
CN101559239A
CN101559239A CNA2009100156841A CN200910015684A CN101559239A CN 101559239 A CN101559239 A CN 101559239A CN A2009100156841 A CNA2009100156841 A CN A2009100156841A CN 200910015684 A CN200910015684 A CN 200910015684A CN 101559239 A CN101559239 A CN 101559239A
Authority
CN
China
Prior art keywords
implant material
magnesium
magnesium base
base degradable
arc oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2009100156841A
Other languages
English (en)
Inventor
陈传忠
王慧
王佃刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CNA2009100156841A priority Critical patent/CN101559239A/zh
Publication of CN101559239A publication Critical patent/CN101559239A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种镁基可降解植入体材料,属生物材料技术领域。该种植入体材料由镁锌锆合金基体和微弧氧化涂层组成,所述的微弧氧化涂层是用硅酸钠、氢氧化钾、氟化钾、可溶性磷酸盐、三乙醇胺溶于纯水所形成的电解液微弧氧化处理形成,每升电解液中含硅酸钠12~18g、氢氧化钾3~8g、氟化钾2~7g、可溶性磷酸盐5~20g、三乙醇胺5~10ml。该种植入体材料不仅显微硬度较高,耐腐蚀性能较好,且在模拟体液中浸泡后,表面有磷灰石沉积,表明该材料有一定的生物活性。

Description

镁基可降解植入体材料及其制备方法
技术领域
本发明涉及一种生物体植入材料,特别涉及一种镁基可降解植入体材料及其制备方法,属于生物材料技术领域。
背景技术
镁及镁合金有许多优越的物理和机械性能,例如低的密度、高的比强度和比刚度、高的比振动强度,弯曲韧性和易加工性,还有好的铸造和焊接性能,高的屏蔽电磁干扰和阻尼特性等特点。基于这些优越性能,镁及镁合金在很多领域内被应用。镁及镁合金也被医学领域认为是一种有前途的可降解生物材料,与其他传统的金属医用材料相比,镁及镁合金有一些明显的优点:(1)镁在地壳中储藏量极为丰富,在地壳表层储量居第六位,而我国是世界上镁资源最丰富的国家,储量居世界首位,这就使得镁合金的价格相对便宜;(2)镁及其合金的比强度约为1.74g/cm3,与人颅盖骨的密度非常接近(1.75g/cm3),分别仅为铝和钛合金(Ti-6Al-4V,4.47g/cm3)的62.5%和40%;(3)通过快速凝固技术而得到的镁合金其比强度很高,可达到480GPa/(g/cm3),几乎是Ti-6Al-4V(260GPa/(g/cm3))的两倍;(4)纯镁的弹性模量为45Gpa,与人骨的(40-57GPa)非常接近,而且只是Ti-6Al-4V(109-112Gpa)的一半。低的弹性模量有助于减少由于移植体出现而引起的骨组织的应力屏蔽效应。但是镁的化学活泼性使镁的抗腐蚀性能非常差,阻碍了镁及镁合金的更广泛应用。
表面处理可以有效改善镁合金的性能,镁合金的表面处理方法包括:化学转化法、镀镍、离子注入法、阳极氧化法和微弧氧化法。微弧氧化技术是近年来备受关注一种金属表面处理技术,通过脉冲电参数和无重金属元素加入的电解液的匹配调整,在阳极表面产生微区弧光放电现象,从而在Al、Mg、Ti等金属表面原位生长一层以基体金属氧化物为主的陶瓷层。研究表明,利于表面微弧氧化技术在镁合金表面进行微弧氧化涂层,能明显提高涂层的抗腐蚀性、硬度、耐磨性、热稳定性能。目前来看,大多数镁合金的表面微弧氧化的研究集中于AZ和AM系列镁合金上,而关于ZK系列镁合金的研究非常少,而且多用于工程材料,用于人体植入材料的几乎没有。
发明内容
本发明的目的是提供一种镁基可降解植入体材料,该种材料具有良好的耐蚀性和生物活性。
本发明的另一目的是提供该种镁基可降解植入体材料的制备方法。
本发明采取的技术方案为:一种镁基可降解植入体材料,其特征是,它由镁锌锆合金基体和微弧氧化涂层组成,所述的微弧氧化涂层是用硅酸钠、氢氧化钾、氟化钾、可溶性磷酸盐、三乙醇胺溶于纯水所形成的电解液微弧氧化处理形成,每升电解液中含硅酸钠12~18g、氢氧化钾3~8g、氟化钾2~7g、可溶性磷酸盐5~20g、三乙醇胺5~10ml。
所述的镁锌锆合金基体为ZK60或ZK61。
所述的镁锌锆合金基体优选ZK60。
所述的可溶性磷酸盐为六磷酸钠、磷酸钠或磷酸二氢钙。
所述的可溶性磷酸盐优选磷酸二氢钙。
所述的镁基可降解植入体材料的制备方法,其特征是,包括以下步骤:
1)选用镁锌锆合金作基体材料,将基体材料切块并预处理;
2)称取硅酸钠、氢氧化钾、氟化钾、可溶性磷酸盐、三乙醇胺溶于纯水中配制电解液,将试样接电源正极,悬于电解液中,电解槽接电源负极,在恒流条件或恒压条件下进行微弧氧化处理,恒流条件为:电流密度2~10A/dm2,氧化时间5~40min,频率600~1000Hz,占空比5%~10%;恒压条件为:电压300~500V,频率600~1000Hz,占空比5%~10%,氧化时间15~30min;
3)将步骤2)处理得到的样品用去离子水清洗,并在室温下烘干。
所述的镁基可降解植入体材料的制备方法,其中步骤2)所述的恒流条件优选:电流密度3.5A/dm2,氧化时间30min,频率600Hz,占空比10%;恒压条件优选:电压500V,频率600Hz,占空比10%,氧化时间15min。
本发明所述的镁基可降解生物体植入材料,不仅显微硬度较高,耐腐蚀性能较好,且在模拟体液中浸泡后,表面有磷灰石沉积,表明该材料有一定的生物活性,可以作为一种良好的生物体植入材料。
附图说明
图1两种镁合金在不同电压下微弧氧化层的厚度(频率:600Hz;占空比:10%)。
图2电压为400V时不同频率下的微弧氧化涂层图貌,(a)(b)600Hz;(c)(d)1000Hz(电压400V,占空比10%)。
图3两种ZK镁合金表面微弧氧化涂层的显微硬度随电压的变化(电压400V;频率600Hz;占空比10%)。
图4镁基可降解植入体材料3#ZK60和4#ZK60涂层的极化曲线:A为3#ZK60;B为4#ZK60。
图5镁基可降解植入体材料5#ZK60、6#ZK60、7#ZK60、8#ZK60涂层的极化曲线:A为5#ZK60;B为7#ZK60;C为8#ZK60;D为6#ZK60。
图6为镁基可降解植入体材料3#ZK60在模拟体液中浸泡6天后表面形貌(a)和能谱分析(b)。
图7为镁基可降解植入体材料3#ZK61在模拟体液中浸泡6天后表面形貌(a)和能谱分析(b)。
图8为镁基可降解植入体材料9#ZK60在模拟体液中浸泡6天后表面形貌(a)和能谱分析(b)。
图9为镁基可降解植入体材料5#ZK61在模拟体液中浸泡6天后表面形貌(a)和能谱分析(b)。
图10为镁基可降解植入体材料5#ZK60在模拟体液中浸泡6天后表面形貌(a)和能谱分析(b)。
图11为镁基可降解植入体材料4#ZK61在模拟体液中浸泡6天后表面形貌(a)和能谱分析(b)。
图12为镁基可降解植入体材料2#ZK60在模拟体液中浸泡6天后表面形貌(a)和能谱分析(b)。
图13为镁基可降解植入体材料1#ZK61在模拟体液中浸泡6天后表面形貌(a)和能谱分析(b)。
具体实施方式
以X#ZK60表示以ZK60为基体的镁基可降解植入体材料,以X#ZK61表示以ZK61为基体的镁基可降解植入体材料,如1#ZK60表示以ZK60为基体的镁锌合金生物体植入材料1#。恒流条件下涂层制备采用MAO-30型号微弧氧化设备,恒压条件下涂层制备采用7530/30-II型-65kW微弧氧化设备。
实施例1
镁基可降解植入体材料(1#ZK60)的制备:
1)选用基体材料为ZK60,切成8×10×12mm3长方体小块,在不同粗细的砂纸上打磨,最后一道砂纸为1000#,然后再在丙酮中超声波清洗,晾干;
2)称取硅酸钠、氢氧化钾、氟化钾、可溶性磷酸盐、三乙醇胺溶于纯水中配制电解液,电解液主要成分为:Na2SiO3 15g/L、KOH 5g/L、KF 3g/L、(NaPO3)6 5g/L,将试样接电源正极,悬于电解液中,电解槽接电源负极恒流条件下进行微弧氧化处理,恒流条件为:电流密度9.0A/dm2、氧化时间30min,频率600Hz,占空比10%;
3)将步骤2)处理得到的样品用去离子水清洗,并在室温下烘干。
实施例2
镁基可降解植入体材料(2#ZK60)的制备:
1)选用基体材料为ZK60,切成8×10×12mm3长方体小块,在不同粗细的砂纸上打磨,最后一道砂纸为1000#,然后再在丙酮中超声波清洗,晾干;
2)称取硅酸钠、氢氧化钾、氟化钾、可溶性磷酸盐、三乙醇胺溶于纯水中配制电解液,电解液主要成分为:Na2SiO3 15g/L、KOH 5g/L、KF 3g/L、(NaPO3)6 5g/L,将试样接电源正极,悬于电解液中,电解槽接电源负极恒流条件下进行微弧氧化处理,恒流条件为:电流密度3.5A/dm2、氧化时间30min,频率600Hz,占空比10%;
3)将步骤2)处理得到的样品用去离子水清洗,并在室温下烘干。
实施例3
镁基可降解植入体材料(1#ZK61)的制备:
1)选用基体材料为ZK61,切成8×10×12mm3长方体小块,在不同粗细的砂纸上打磨,最后一道砂纸为1000#,然后再在丙酮中超声波清洗,晾干;
2)称取硅酸钠、氢氧化钾、氟化钾、可溶性磷酸盐、三乙醇胺溶于纯水中配制电解液,电解液主要成分为:Na2SiO3 15g/L、KOH 5g/L、KF 3g/L、(NaPO3)6 5g/L,将试样接电源正极,悬于电解液中,电解槽接电源负极恒流条件下进行微弧氧化处理,恒流条件为:电流密度3.5A/dm2、氧化时间30min,频率600Hz,占空比10%;
3)将步骤2)处理得到的样品用去离子水清洗,并在室温下烘干。
实施例4
镁基可降解植入体材料(2#ZK61)的制备:
1)选用基体材料为ZK61,切成8×10×12mm3长方体小块,在不同粗细的砂纸上打磨,最后一道砂纸为1000#,然后再在丙酮中超声波清洗,晾干;
2)称取硅酸钠、氢氧化钾、氟化钾、可溶性磷酸盐、三乙醇胺溶于纯水中配制电解液,电解液主要成分为:Na2SiO3 15g/L、KOH 5g/L、KF 3g/L、(NaPO3)6 5g/L,将试样接电源正极,悬于电解液中,电解槽接电源负极恒流条件下进行微弧氧化处理,恒流条件为:电流密度5.5A/dm2、氧化时间30min,频率600Hz,占空比10%;
3)将步骤2)处理得到的样品用去离子水清洗,并在室温下烘干。
实施例5
镁基可降解植入体材料(3#ZK60)的制备:
1)选用基体材料为ZK60,切成8×10×12mm3长方体小块,在不同粗细的砂纸上打磨,最后一道砂纸为1000#,然后再在丙酮中超声波清洗,晾干;
2)称取硅酸钠、氢氧化钾、氟化钾、可溶性磷酸盐、三乙醇胺溶于纯水中配制电解液,电解液主要成分为:Na2SiO3 15g/L、KOH 5g/L、KF 3g/L、(NaPO3)6 5g/L,将试样接电源正极,悬于电解液中,电解槽接电源负极恒压条件下进行微弧氧化处理,恒流条件为:恒压条件为:电压400V、频率600HZ、占空比10%、氧化时间15min;
3)将步骤2)处理得到的样品用去离子水清洗,并在室温下烘干。
实施例6
镁基可降解植入体材料(4#ZK60)的制备:
制备方法同实施例5,不同的是步骤2)中频率1000HZ。
实施例7
镁基可降解植入体材料(3#ZK61)的制备:
制备方法同实施例5,不同的是步骤1)中选用基体材料为ZK61。
实施例8
镁基可降解植入体材料(5#ZK60)的制备:
1)选用基体材料为ZK60,切成8×10×12mm3长方体小块,在不同粗细的砂纸上打磨,最后一道砂纸为1000#,然后再在丙酮中超声波清洗,晾干;
2)称取硅酸钠、氢氧化钾、氟化钾、可溶性磷酸盐、三乙醇胺溶于纯水中配制电解液,电解液主要成分为:Na2SiO3 15g/L、KOH 5g/L、KF 3g/L、CaH2PO4 5g/L,将试样接电源正极,悬于电解液中,电解槽接电源负极恒压条件下进行微弧氧化处理,恒流条件为:恒压条件为:电压350V、频率600HZ、占空比10%、氧化时间15min;
3)将步骤2)处理得到的样品用去离子水清洗,并在室温下烘干。
实施例9
镁基可降解植入体材料(6#ZK60)的制备:
制备方法同实施例8,不同的是步骤2)中电压500V。
实施例10
镁基可降解植入体材料(7#ZK60)的制备:
制备方法同实施例8,不同的是步骤2)中电压400V。
实施例11
镁基可降解植入体材料(8#ZK60)的制备:
制备方法同实施例8,不同的是步骤2)中电压450V。
实施例12
镁基可降解植入体材料(4#ZK61)的制备:
制备方法同实施例8,不同的是步骤1)中选用基体材料为ZK61。
实施例13
镁基可降解植入体材料(9#ZK60)的制备:
1)选用基体材料为ZK60,切成8×10×12mm3长方体小块,在不同粗细的砂纸上打磨,最后一道砂纸为1000#,然后再在丙酮中超声波清洗,晾干;
2)称取硅酸钠、氢氧化钾、氟化钾、可溶性磷酸盐、三乙醇胺溶于纯水中配制电解液,电解液主要成分为:Na2SiO3 15g/L、KOH 5g/L、KF 3g/L、Na3PO4 18g/L,将试样接电源正极,悬于电解液中,电解槽接电源负极恒压条件下进行微弧氧化处理,恒流条件为:恒压条件为:电压400V、频率600HZ、占空比10%、氧化时间15min;
3)将步骤2)处理得到的样品用去离子水清洗,并在室温下烘干。
实施例14
镁基可降解植入体材料(10#ZK60)的制备:
制备方法同实施例13,不同的是步骤2)中占空比5%。
实施例15
镁基可降解植入体材料(5#ZK61)的制备:
制备方法同实施例13,不同的是步骤1)选用基体材料为ZK61。
实施例16
镁基可降解植入体材料的结构性能测试:
1)采用Mini Test600B FN2型涂镀层测厚仪测量微弧氧化后表面氧化膜层的厚度。由于镁合金及涂层是非磁性材料,且处理时间较短,初步估计其膜厚在100μm以下,故选用非磁性材料标准菜单并选用104μm标准检测膜,测量误差为1%。
恒流模式下,在ZK60和ZK61镁合金表面不同电流密度下的微弧氧化层厚度如表1所示。对两种基底来说,氧化层厚度都随电流密度的升高而增加。当电流密度为9.0A/dm2时,ZK60表面氧化层厚度为54.4μm,几乎是在3.5A/dm2情况下涂层厚度(12μm)的四倍多。
表1
Figure A20091001568400091
恒压模式下,当电解液主要成分为:Na2SiO3 15g/L、KOH 5g/L、KF 3g/L、CaH2PO4 5g/L时,如实施例8-11,以ZK60为基体的材料,500V下获得的涂层厚度为28.8μm,远高于450V下微弧氧化层的厚度(16μm),这说明在500V时有更剧烈的微弧氧化反应发生,有更多的熔融氧化物产生,从而导致厚度迅速升高。两种镁合金在不同电压下微弧氧化层的厚度如图1。
2)采用D/max-RC型(i=40mA,4°/min)X射线衍射仪分析微弧氧化涂层的相组成,衍射仪使用Cu-Kα线,工作电压为40kV。用JXA-840型扫描电子显微镜(SEM)观察微弧氧化涂层表面形貌,由于涂层属于绝缘体,所以在扫描观察前,对试样进行真空喷Pt金处理。使用Hv-1000显微硬度仪测量涂层的显微硬度,在表面选取5个不同的位置进行测量,取其平均值为涂层的硬度值。
恒流模式下,ZK60和ZK61镁合金表面在不同的电流密度下进行微弧氧化处理后得到的涂层的显微硬度如表2所示。可以看出,电流密度对于涂层硬度有明显的影响。增高电流密度使涂层的显微硬度也显著增高,几乎是低电流密度下得到涂层硬度的两倍多。
表2
Figure A20091001568400092
恒压模式下,当电压为400V时,在两种频率下得到的微弧氧化涂层的表面形貌在图2中显示。由图可看出,在600Hz和1000Hz下的氧化涂层都比较平整,没有大的突起存在,但是在高频条件下(1000Hz),微孔的分布更为均匀,大孔的数目更少,涂层形貌更好一些。
当电解液主要成分为:Na2SiO3 15g/L、KOH 5g/L、KF 3g/L、CaH2PO4 5g/L时,如实施例8或9,两种基底表面涂层的硬度值都随电压升高而持续增高,500V下得到的涂层的硬度(ZK60 180.50 HV0.5,ZK61 163.13 HV0.5)几乎是300V下形成的涂层硬度(ZK60 92.3 HV0.5 ZK6185.15 HV0.5)的两倍,可以推断电压变化对于涂层硬度有很大影响,两种ZK镁合金表面微弧氧化涂层的显微硬度随电压的变化如图3。
3)涂层的耐腐蚀性性能通过利用美国生产的普林斯顿电化学工作站进行电化学试验测得,测试过程采用标准三电极体系,以镁合金试样为研究电极,饱和甘汞电极为参比电极,辅助电极为铂片,面积1cm2,测定了微弧氧化涂层的动电位极化曲线,扫描速率为10mV/s,腐蚀介质为3.5%NaCl水溶液。
恒压模式下,镁基可降解植入体材料3#ZK60和镁基可降解植入体材料4#ZK60的涂层的极化曲线如图4所示,频率对于腐蚀电位几乎没有影响,但是对于腐蚀电流影响较大,如600Hz下氧化层的极化阻抗值为6.368×103Ωcm2,而1000Hz下涂层的极化阻抗值为2.731×103Ωcm2,前者几乎是1000Hz下腐蚀电流值的3倍,说明微弧氧化过程中频率升高,涂层的抗腐蚀性能下降。
恒压模式下,不同电压对材料耐蚀性的影响较大,镁基可降解植入体材料5#ZK60、6#ZK60、7#ZK60、8#ZK60,微弧氧化处理过程中的动极化曲线及其详细参数分别如图5和表3所示。当电压在350V时,微弧氧化涂层的极化阻抗值为1.933×103Ωcm2,电压升到400V时,Rp升为4.526×103Ωcm2,随后在450V时耐蚀性略微下降,但是当处理电压上升至500V后,腐蚀电位正移,腐蚀电流急剧减小,极化阻抗值也增大,由4.324×103Ωcm2升高至1.819×104Ωcm2,说明涂层的耐蚀性提高。用含磷酸二氢钙的电解液,制备方法同实施例15,得到的以ZK61为基体的镁基可降解植入体材料不同电压下微弧氧化涂层的极化曲线参数如表4。
表3  ZK60不同电压下微弧氧化涂层的极化曲线参数
 电压值(V)   Ecorr(V)   Icorr(A/cm2)   bc(V)   ba(V)   Rp(Ωcm2)
  350   -1.386   6.463×10-5   0.242   1.190   1.933×103
  400   -1.445   3.096×10-5   0.221   1.464   4.526×103
  450   -1.399   1.135×10-4   0.347   3.254   4.324×103
  500   -1.306   5.198×10-6   0.354   0.566   1.819×104
表4  ZK61不同电压下微弧氧化涂层的极化曲线参数:
 电压值(V)   Ecorr(V)   Icorr(A/cm2)   bc(V)   ba(V)   Rp(Ωcm2)
  300   -1.3191   1.061×10-6   0.203   0.290   2.409×104
  350   -1.384   1.911×10-5   0.290   0.323   2.129×103
  400   -1.398   8.156×10-6   0.217   0.552   6.727×103
  450   -1.278   2.823×10-5   0.853   1.872   2.455×104
  500   -1.246   6.544×10-7   0.277   0.518   9.535×104
实施例17
镁基可降解植入体材料的生物活性测试:
对于ZK镁合金在不同电解液中得到的微弧氧化涂层进行模拟体液(simulated body fluid,SBF)浸泡实验以评价涂层的生物活性。配制SBF溶液所需的化学药品及其质量如表5所示,所有药品均为分析纯。取1800ml去离子水置于2000ml的烧杯中,称取所需药品,按表5所列的顺序,在不断搅拌条件下,依次溶解于去离子水中,得无色透明溶液,最后再加入去离子水使溶液体积为2000ml,得SBF溶液。
表5  SBF溶液中的化学组成
Figure A20091001568400111
将镁基可降解植入体材料3#ZK60和3#ZK61在模拟体液中浸泡6天后,微弧氧化涂层的表面涂层表面形貌和能谱分析由图6和图7可得,浸泡后涂层主要含Ca、P、O、Mg、Zn等元素,由于原涂层中不含Ca元素,所以Ca元素来自于模拟体液中钙离子的沉积。并且,Ca和P元素的分布轨迹基本一致,为羟基磷灰石沉积,表明该涂层有生物活性。
将镁基可降解植入体材料9#ZK60和5#ZK61在模拟体液中浸泡6天后,涂层表面形貌和能谱分析,如图8和图9可得,表面有磷灰石沉积,表明该涂层有一定的生物活性。
将镁基可降解植入体材料5#ZK60和4#ZK61在模拟体液中浸泡6天后,涂层表面形貌和能谱分析,如图10和图11可得,与含磷酸钠或六磷酸钠的电解液相比,微弧氧化涂层表面的沉积物明显变多,掩盖了原有的多孔形貌。能谱分析结果表明沉积物中含大量的Ca、P元素,进一步证实磷灰石的成分。SBF浸泡试验表明在含磷酸二氢钙为磷添加剂的电解液中,ZK系列镁合金表面微弧氧化涂层更易于诱导磷灰石沉积在涂层表面。
将镁基可降解植入体材料2#ZK60和1#ZK61在模拟体液中浸泡6天后的表面形貌和能谱分析,如图12和图13。由能谱分析可得表面主要含Ca、P、O、Mg等元素组成,从形貌图上可以看到涂层表面有颗粒状物质沉积,为磷灰石沉积,表明该涂层有生物活性。

Claims (7)

1、一种镁基可降解植入体材料,其特征是,它由镁锌锆合金基体和微弧氧化涂层组成,所述的微弧氧化涂层是用硅酸钠、氢氧化钾、氟化钾、可溶性磷酸盐、三乙醇胺溶于纯水所形成的电解液微弧氧化处理形成,每升电解液中含硅酸钠12~18g、氢氧化钾3~8g、氟化钾2~7g、可溶性磷酸盐5~20g、三乙醇胺5~10ml。
2、按照权利要求1所述的一种镁基可降解植入体材料,其特征是,所述的镁锌锆合金基体为ZK60或ZK61。
3、按照权利要求2所述的一种镁基可降解植入体材料,其特征是,所述的镁锌锆合金基体优选ZK60。
4、按照权利要求1所述的一种镁基可降解植入体材料,其特征是,所述的可溶性磷酸盐为六磷酸钠、磷酸钠或磷酸二氢钙。
5、按照权利要求4所述的一种镁基可降解植入体材料,其特征是,所述的可溶性磷酸盐优选磷酸二氢钙。
6、按照权利要求1所述的镁基可降解植入体材料的制备方法,其特征是,包括以下步骤:
1)选用镁锌锆合金作基体材料,将基体材料切块并预处理;
2)称取硅酸钠、氢氧化钾、氟化钾、可溶性磷酸盐、三乙醇胺溶于纯水中配制电解液,将试样接电源正极,悬于电解液中,电解槽接电源负极,在恒流条件或恒压条件下进行微弧氧化处理,恒流条件为:电流密度2~10A/dm2,氧化时间5~40min,频率600~1000Hz,占空比5%~10%;恒压条件为:电压300~500V,频率600~1000Hz,占空比5%~10%,氧化时间15~30min;
3)将步骤2)处理得到的样品用去离子水清洗,并在室温下烘干。
7、按照权利要求6所述的镁基可降解植入体材料的制备方法,其特征是,步骤2)所述的恒流条件优选:电流密度3.5A/dm2,氧化时间30min,频率600Hz,占空比10%;恒压条件优选:电压500V,频率600Hz,占空比10%,氧化时间15min。
CNA2009100156841A 2009-05-27 2009-05-27 镁基可降解植入体材料及其制备方法 Pending CN101559239A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2009100156841A CN101559239A (zh) 2009-05-27 2009-05-27 镁基可降解植入体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2009100156841A CN101559239A (zh) 2009-05-27 2009-05-27 镁基可降解植入体材料及其制备方法

Publications (1)

Publication Number Publication Date
CN101559239A true CN101559239A (zh) 2009-10-21

Family

ID=41218330

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2009100156841A Pending CN101559239A (zh) 2009-05-27 2009-05-27 镁基可降解植入体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN101559239A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146562A (zh) * 2010-02-10 2011-08-10 中国科学院金属研究所 含硅酸盐涂层的可吸收医用镁基金属及其制备方法和应用
CN102220620A (zh) * 2011-08-02 2011-10-19 山东大学 一种镁合金表面富含钙磷相的生物陶瓷涂层的制备方法
CN102268712A (zh) * 2011-08-02 2011-12-07 山东大学 一种可降解镁合金植入体材料的制备方法
CN102345151A (zh) * 2011-10-08 2012-02-08 长安大学 镁及镁合金表面微弧氧化制备ZrO2复合陶瓷膜的方法
CN102586837A (zh) * 2011-01-13 2012-07-18 吉林师范大学 一种直接在镁合金表面制备Ca/P生物医用陶瓷膜的方法
CN106245094A (zh) * 2016-08-19 2016-12-21 山东大学 一种钙磷硅生物陶瓷涂层及其制备方法与应用
CN106283154A (zh) * 2016-08-19 2017-01-04 山东大学 一种两步制备镁合金表面硅钙磷生物陶瓷涂层的方法与应用
CN110219030A (zh) * 2018-03-02 2019-09-10 昆山汉鼎精密金属有限公司 以自来水为溶剂的微弧氧化电解液、方法及其产品
CN110241453A (zh) * 2019-04-25 2019-09-17 西南大学 一种缓释氟和铈的可降解锌合金骨钉及其制备方法
CN110541099A (zh) * 2019-07-02 2019-12-06 山东大学 镁合金表面可降解复合膜层及其制备方法与应用
CN111494706A (zh) * 2020-04-17 2020-08-07 中山职业技术学院 一种多孔改性无定形磷酸钙纳米粉体及其制备方法和应用
CN111809215A (zh) * 2020-06-12 2020-10-23 东莞理工学院 一种镁合金表面陶瓷膜制备方法
CN113774462A (zh) * 2021-10-22 2021-12-10 上海康德莱医疗器械股份有限公司 一种镁合金表面处理方法和处理后的镁合金

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146562A (zh) * 2010-02-10 2011-08-10 中国科学院金属研究所 含硅酸盐涂层的可吸收医用镁基金属及其制备方法和应用
CN102146562B (zh) * 2010-02-10 2012-08-29 中国科学院金属研究所 含硅酸盐涂层的可吸收医用镁基金属及其制备方法和应用
CN102586837A (zh) * 2011-01-13 2012-07-18 吉林师范大学 一种直接在镁合金表面制备Ca/P生物医用陶瓷膜的方法
CN102586837B (zh) * 2011-01-13 2014-05-14 吉林师范大学 一种直接在镁合金表面制备Ca/P生物医用陶瓷膜的方法
CN102220620A (zh) * 2011-08-02 2011-10-19 山东大学 一种镁合金表面富含钙磷相的生物陶瓷涂层的制备方法
CN102268712A (zh) * 2011-08-02 2011-12-07 山东大学 一种可降解镁合金植入体材料的制备方法
CN102220620B (zh) * 2011-08-02 2013-01-09 山东大学 一种镁合金表面富含钙磷相的生物陶瓷涂层的制备方法
CN102268712B (zh) * 2011-08-02 2013-08-28 山东大学 一种可降解镁合金植入体材料的制备方法
CN102345151A (zh) * 2011-10-08 2012-02-08 长安大学 镁及镁合金表面微弧氧化制备ZrO2复合陶瓷膜的方法
CN102345151B (zh) * 2011-10-08 2013-11-20 长安大学 镁及镁合金表面微弧氧化制备ZrO2复合陶瓷膜的方法
CN106245094A (zh) * 2016-08-19 2016-12-21 山东大学 一种钙磷硅生物陶瓷涂层及其制备方法与应用
CN106283154A (zh) * 2016-08-19 2017-01-04 山东大学 一种两步制备镁合金表面硅钙磷生物陶瓷涂层的方法与应用
CN106245094B (zh) * 2016-08-19 2018-07-03 山东大学 一种钙磷硅生物陶瓷涂层及其制备方法与应用
CN110219030A (zh) * 2018-03-02 2019-09-10 昆山汉鼎精密金属有限公司 以自来水为溶剂的微弧氧化电解液、方法及其产品
CN110241453A (zh) * 2019-04-25 2019-09-17 西南大学 一种缓释氟和铈的可降解锌合金骨钉及其制备方法
CN110541099A (zh) * 2019-07-02 2019-12-06 山东大学 镁合金表面可降解复合膜层及其制备方法与应用
CN110541099B (zh) * 2019-07-02 2021-04-06 山东大学 镁合金表面可降解复合膜层及其制备方法与应用
CN111494706A (zh) * 2020-04-17 2020-08-07 中山职业技术学院 一种多孔改性无定形磷酸钙纳米粉体及其制备方法和应用
CN111809215A (zh) * 2020-06-12 2020-10-23 东莞理工学院 一种镁合金表面陶瓷膜制备方法
CN111809215B (zh) * 2020-06-12 2021-08-24 东莞理工学院 一种镁合金表面陶瓷膜制备方法
CN113774462A (zh) * 2021-10-22 2021-12-10 上海康德莱医疗器械股份有限公司 一种镁合金表面处理方法和处理后的镁合金

Similar Documents

Publication Publication Date Title
CN101559239A (zh) 镁基可降解植入体材料及其制备方法
CN102268711B (zh) 一种在镁基材料表面制备生物复合涂层的方法
CN105420789B (zh) 纯镁或镁合金表面疏水复合生物活性涂层及其制备方法
Zhao et al. Preparation and properties of composite MAO/ECD coatings on magnesium alloy
Songur et al. The plasma electrolytic oxidation (PEO) coatings to enhance in-vitro corrosion resistance of Ti–29Nb–13Ta–4.6 Zr alloys: The combined effect of duty cycle and the deposition frequency
CN103194782A (zh) 利用微弧氧化-电泳沉积制备镁基陶瓷涂层的方法
CN103643274B (zh) 一种通过电沉积在钛表面制备氧化石墨烯层的方法及其应用
CN103908699B (zh) 一种钛合金表面的HA/TiO2层及其制备方法
CN101461964A (zh) 一种生物医用可降解镁合金的生物活性表面改性方法
CN101537208A (zh) 一种钛或钛合金表面生物活性涂层及其制备方法
Zhu et al. Investigation of corrosion resistance and formation mechanism of calcium-containing coatings on AZ31B magnesium alloy
CN101560685B (zh) 一种钛合金表面制备生物活性涂层的方法
CN104746073B (zh) 镁合金表面改性方法
CN108950649A (zh) 一种镁/镁合金表面微弧氧化水浴封孔复合涂层的制备方法
KR20200066867A (ko) 플라즈마 전해 산화법을 이용한 나노 메쉬 형 티타늄계 합금의 생체 활성 원소 코팅방법
CN108950651A (zh) 一种镁合金表面微弧电泳含ha生物复合膜层的制备方法
RU2445409C1 (ru) Способ получения антикоррозионных кальцийсодержащих покрытий на сплавах магния
CN104911674B (zh) 一种多孔金属材料表面的生物活性涂层及其制备方法
CN107059094A (zh) 一种微弧氧化涂层及其制备方法
CN102115901B (zh) 镁合金表面沉积Al2O3陶瓷涂层的方法
CN105420788A (zh) 一种纯镁或镁合金表面疏水微弧氧化涂层及其制备方法
Chakraborty et al. Development and relative comparison of polypyrrole-calcium phosphate composite coatings with differential concentration of chlorophyll functionalized polymer particle achieved through pulsed electro deposition
CN103498184B (zh) 一种生物医用镁合金微弧电泳改性方法
CN102304746A (zh) 聚吡咯磷酸钙/氧化镁生物陶瓷涂层及其制备方法
CN112169017A (zh) 一种羟基磷灰石纳米涂层及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20091021