CN101521230B - 半导体器件及其制造方法 - Google Patents

半导体器件及其制造方法 Download PDF

Info

Publication number
CN101521230B
CN101521230B CN200910007920.5A CN200910007920A CN101521230B CN 101521230 B CN101521230 B CN 101521230B CN 200910007920 A CN200910007920 A CN 200910007920A CN 101521230 B CN101521230 B CN 101521230B
Authority
CN
China
Prior art keywords
conduction type
under
region
drain region
source region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200910007920.5A
Other languages
English (en)
Other versions
CN101521230A (zh
Inventor
理崎智光
北岛裕一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ablic Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Publication of CN101521230A publication Critical patent/CN101521230A/zh
Application granted granted Critical
Publication of CN101521230B publication Critical patent/CN101521230B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7834Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明为半导体器件及其制造方法,在阱区中,不平整结构在栅极宽度方向上形成,并且栅电极在凹陷部分中以及在凸出部分的顶面上借助绝缘膜形成。上源区和下源区在栅电极在栅极长度方向上的一侧形成,并且上漏区和下漏区在其另一侧形成。通过以这种方式在源区和漏区中形成下源区和下漏区,当栅极长度变得更短时,可抑制沟道区的上部中产生的电流集中,并且可允许电流在整个沟道区中均匀流动,因此,由于阱区中形成的不平整结构而使有效栅极宽度更宽。相应地,降低了半导体器件的导通电阻,以便增强驱动性能。

Description

半导体器件及其制造方法
技术领域
本发明涉及半导体器件和制造半导体器件的方法,更具体来说,涉及使用了沟槽具有宽栅极宽度的金属氧化物半导体(MOS)晶体管。
背景技术
MOS晶体管是在电子技术核心的电子器件,因此,MOS晶体管的规模缩小和驱动性能增强是重要课题。作为增强MOS晶体管的驱动性能的方法,提供了涉及使栅极宽度更长、由此降低导通电阻的方法。但是,在使栅极宽度更长时,产生了MOS晶体管的占用面积变得更大的问题。
JP 2006-294645 A提出一种技术,其中,使栅极宽度更长,同时抑制具有横向MOS结构的MOS晶体管的占用面积的增加。在这种技术中,如图2A的透视图所示,凹陷部分(沟槽)11a在阱2中形成,并且栅电极3借助(via)栅绝缘膜4在凸出部分11b之上以及在凹陷部分11a之中形成。在阱2的表面部分,源区5a在栅电极3的一侧形成,并且漏区6a在其另一侧形成。
图2A的A-A截面图和B-E截图分别如图2B和图2C所示。如A-A截面图所示,栅电极3在凹陷部分11a中形成,因此与栅绝缘膜4接触的轮廓(outline)的长度成为栅极宽度。这样,根据这种技术,通过在具有凹陷部分11a和凸出部分11b的沟槽结构中形成栅部分,可使有效栅极宽度的长度比栅部分的表面上栅电极3的长度更长,由此可降低每个单位面积的导通电阻,而没有降低MOS晶体管的耐受电压。
在这种技术中,如图2A的透视图所示,沟槽在阱2中形成以便形成凹陷部分11a和凸出部分11b,并且栅电极3借助栅绝缘膜4在凸出部分11b的顶面之上以及在凹陷部分11a之中形成。在阱2的表面部分,源区5a在栅电极3的一侧形成,并且漏区6a在其另一侧形成。
图2B是图2A的A-A截面图,其中,通过将电压施加到栅电极3,沿凹陷部分11a和凸出部分11b形成沟道区9,并且可使栅极宽度比其中没有形成沟槽的一般MOS晶体管要长凹陷部分的侧表面的长度,由此可降低每个单位面积的导通电阻,而没有降低MOS晶体管的耐受电压。
但是,在图2A的结构中,产生当栅极长度L变得更短时无法获得预计驱动性能的问题。
图2C是图2A的B-B截面图。从图2B清楚地看到,图2C是通过切割与其中形成了沟道区9的沟槽的侧壁直接相邻的部分所得到的截面图。电流借助电流通路10流入在源极与漏极之间所形成的沟道区9,如图2C所示。位于沟道区9的上部的电流通路10比位于沟道区9的下部的电流通路10更短,并且当栅极长度L变得更短时,明显观察到这种差别。具体来说,当栅极长度L变得更短时,电流以集中方式流经位于沟道区9的上部的电流通路10。这引起电流很难流经位于下部分的电流通路10的现象。这样,无法有效地使用沟道区9,因此无法获得预计驱动性能。这可能是因为源区5a和漏区6a具有比沟槽更浅的深度。在可使源区5a和漏区6a的深度几乎等于沟槽深度时,上述电流集中甚至对于较短栅极长度L也没有出现,并且电流在整个沟道中均匀流动。但是,对于对其应用正常杂质注入的源区和漏区,甚至当很深地形成源区和漏区时,一般也很难以大于0.5μm的深度来形成它们。
通过杂质注入之后的热扩散,可将杂质扩散到较深水平。但是,扩散降低源区和漏区的浓度,并且引起寄生电阻的增加以及驱动性能的退化。另外,杂质不仅在深度方向而且还在横向扩散,因此有效长度L变得更短。为了获得目标有效长度L,必须使布局的长度L要大横向扩散的量,因此,装置的大小增加并且每个单位面积的驱动性能退化。
作为另一种方法,可使用特别大的注入能量来使杂质更深地扩散。与上述方法相似,在这种方法中,杂质的横向扩散也使每个单位面积的驱动性能退化。此外,增加的注入能量引起杂质渗入将要注入沟道的栅电极的风险。
发明内容
本发明的一个目的是增强具有沟槽结构的半导体器件的每个单位面积的驱动性能。
(1)为了实现上述目的,本发明提供一种半导体器件,包括:半导体衬底;第一导电类型阱区,在半导体衬底上形成并且具有在栅极宽度方向上在其中形成的不平整结构(irregularity);栅电极,借助绝缘膜在不平整结构中形成;第二导电类型上源区,在栅电极的一侧在不平整结构的(irregular)长度方向上、在第一导电类型阱区的上部附近形成;第二导电类型下源区,在第二导电类型上源区的下侧形成,制作成比第一导电类型阱区更浅;第二导电类型上漏区,在栅电极的另一侧在不平整结构的长度方向上、在第一导电类型阱区的上部附近形成;以及第二导电类型下漏区,在第二导电类型上漏区的下侧形成,以便制作成比第一导电类型阱区更浅。
(2)在上述半导体器件中,与栅电极相邻的第二导电类型上漏区和第二导电类型下漏区的区域设置成具有低杂质浓度。
(3)还提供一种制造半导体器件的方法,包括:在半导体衬底上形成第一导电类型下阱区;在第一导电类型下阱区的一部分中形成第二导电类型下源区和第二导电类型下漏区;在第一导电类型下阱区的衬底表面、第二导电类型下源区的衬底表面和第二导电类型下漏区的衬底表面形成半导体外延层;在半导体外延层上形成上阱区;通过蚀刻来形成用于形成不平整结构的沟槽;在不平整结构的整个表面形成绝缘膜,并且借助绝缘膜形成栅电极;以及在所形成的栅电极的两侧上执行离子注入,并且形成上源区和上漏区,以便与第二导电类型下源区和第二导电类型下漏区接触。
(4)此外,提供一种制造半导体器件的方法,包括:在半导体衬底上形成第一导电类型下阱区;在第一导电类型下阱区的一部分中形成第二导电类型低浓度下源区和第二导电类型低浓度下漏区;在第一导电类型下阱区的一部分中形成第二导电类型下源区和第二导电类型下漏区,所述第二导电类型下源区和第二导电类型下漏区具有比第二导电类型低浓度下源区和第二导电类型低浓度下漏区更高的杂质浓度;在第一导电类型下阱区的衬底表面、第二导电类型下源区的衬底表面和第二导电类型下漏区的衬底表面上形成半导体外延层;在半导体外延层上形成上阱区;通过蚀刻来形成用于形成不平整结构的沟槽;在不平整结构的整个表面上形成绝缘膜,并且借助绝缘膜形成栅电极;在栅电极的两侧执行离子注入,并且形成第二导电类型低浓度上区(upper region);并且在栅电极的源侧上以及在栅电极的漏侧的一部分上形成第二导电类型上源区和第二导电类型上漏区,所述第二导电类型上源区和第二导电类型上漏区具有比第二导电类型低浓度上区更高的杂质浓度。
根据本发明,半导体器件的驱动性能可通过形成比现有技术更深的源区和漏区得到增加。
附图说明
附图包括:
图1A至图1C是用于描述根据本发明的一个实施例的半导体器件的结构的视图;
图2A至图2C是用于描述常规半导体器件的视图;
图3A至图3F是用于描述一种制造图1A至图1C的半导体器件的方法的视图;
图4是用于描述根据修改方案1的半导体器件的结构的视图;以及
图5A至图5I是用于描述一种制造图4的半导体器件的方法的视图。
具体实施方式
(1)实施例概述
图1A至图1C示出根据本发明的一个实施例的半导体器件的结构。图1A是透视图,图1B是图1A的A-A截面图,以及图1C是图1A的B-B截面图。
在阱区2中,不平整结构(凹陷部分11a和凸出部分11b)在栅极宽度方向上形成,并且栅电极3在凹陷部分11a中以及在凸出部分11b顶面上借助绝缘膜4形成。上源区5a和下源区5b在栅电极3的一侧在栅极长度上方向形成,并且上漏区6a和下漏区6b在其另一侧形成。这样,通过在源区和漏区中形成下源区5b和下漏区6b,可抑制当长度L变得更短时图1C的沟道区9的上部中产生的电流集中,并且可允许电流在整个沟道区9中均匀流动,由此增强驱动性能。
(2)实施例细节
图1A至图1C是用于描述根据本发明的一个实施例的半导体器件的结构的视图。
本发明提供一种具有横向MOS结构的MOS晶体管,其中,阱区2在半导体衬底1上形成,此外,栅电极3、上源区5a、下源区5b、上漏区6a和下漏区6b在阱区2上形成。那些组件通过硅的局部氧化(LOCOS)7与半导体衬底1的其它区域电绝缘。阱区2形成为具有第一导电类型,而上源区5a、下源区5b、上漏区6a和下漏区6b形成为具有第二导电类型。当第一导电类型为p型时,第二导电类型为n型,而当第一导电类型为n型时,第二导电类型为p型。
在图1A至图1C中,第一导电类型为p型,而第二导电类型为n型,阱区2由p型半导体形成,以及源区5和漏区6由n型半导体形成。在图1A至图1C中,为了清楚地区分p型和n型,p型的阱区称作“p型阱区”。此外,在图1A至图1C中,在以下情况中也可进行类似描述:第一导电为n型而第二导电为p型,阱区2由n型半导体形成,而上源区5a、下源区5b、上漏区6a和下漏区6b由p型半导体形成。
多个沟槽,即凹陷部分11a在将要设置的阱区2中在栅极宽度方向上形成。由SiO2制成的绝缘膜4在凹陷部分11a的内表面侧和凸出部分11b的顶表面侧(即在栅电极在其上与阱区2相对的表面上)形成。由多晶硅等制成的栅电极3在凹陷部分11a的内表面以及在凸出部分11b的顶面借助绝缘膜4形成。包括那些凹陷部分11a、凸出部分11b、绝缘膜4和栅电极3的这种结构与图2A至图2C所示的常规示例相似。
在栅极长度方向上的栅电极3的侧表面区域中,在其一侧形成由n型半导体所形成的上源区5a和下源区5b。在其另一侧形成由n型半导体所形成的上漏区6a和下漏区6b。通过形成下源区5b和下漏区6b,与仅具有上源区5a和上漏区6a的结构的情况相比,使源区和漏区的深度更大。多个接触部8在上源区5a和上漏区6a中形成,由此可进行与外部电路的接合。图1A和图1C的符号“n+”表示n型的浓度很高(即,杂质高度集中)。在低浓度的情况下,使用符号“n-”。
如上所述,通过分别在源区和漏区中形成下源区5b和下漏区6b,可抑制当栅极长度L变得更短时图1C的沟道区9的上部中产生的电流集中,并且可允许电流在整个沟道区9中均匀流动,由此增强驱动性能。通过这种结构,可增强驱动性能,同时抑制本发明的半导体器件的占用面积的增加。
随后对制造图1A至图1C的半导体器件的方法进行描述。
为了制造图1A至图1C的半导体器件,如图3A所示,首先,第一导电类型下阱区2b在半导体衬底1上形成。此后,通过抗蚀剂等形成掩模,在任意部分执行下源极和下漏极的杂质注入12,以及在下阱区2b中形成第二导电类型杂质区13。然后,如图3B所示,在衬底表面上生长半导体外延层16,以及对半导体外延层16的表面执行上阱的杂质注入14,由此形成第一导电类型杂质区15。
如图3C所示,形成LOCOS 7,并且扩散下源极和下漏极的杂质区13以及上阱的杂质区15中的杂质,由此形成下源区5b、下漏区6b和上阱区2a。在这种情况下,使下源极和下漏极的杂质注入12的剂量远远大于上阱的杂质注入14的剂量,使得下源区5b和下漏区6b没有被上阱区2a压制(extinguished)。此外还调整上阱的杂质注入14的剂量,使得上阱区2a的浓度基本上等于下阱区2b的浓度。此外,还调整半导体外延层16的厚度,使得上阱区2a与下阱区2b接触。
如图3D所示,形成沟槽11a,此后形成栅绝缘膜4,并且在栅绝缘膜4上形成栅电极3。在这种情况下,形成栅电极3,以便填充沟槽11a。随后,如图3E所示,采用抗蚀剂蚀刻栅电极3,有选择地来形成掩模。最后,如图3F所示,执行上源极和上漏极的杂质注入18,以便通过自对准来形成第二导电类型的上源区5a和上漏区6a。
在这种情况下,外延层的厚度以及上源极和上漏极的杂质注入18的剂量和能量经过调整,使得上源区5a和上漏区6a分别与下源区5b和下漏区6b接触。
根据上述的这个实施例,可得到以下效果。
(1)栅电极3在凹陷部分11a中以及在凸出部分11b上形成,以便与不平整结构接触,它允许形成具有不平整结构的沟道9,并且使得有效栅极宽度更宽。
(2)通过在源区和漏区中形成下源区5b和下漏区6b,可抑制当栅极长度L变得更短时图1C的沟道区9的上部中产生的电流集中,并且可允许电流在整个沟道区9中均匀流动,这允许有效地使用沟道。
(3)使有效栅极宽度更大,因此降低导通电阻。相应地,可增强半导体器件1的驱动性能。
(4)可形成在一个芯片中具有高驱动性能的互补金属氧化物半导体(CMOS)结构。
注意,在图1A至图1C中,第一导电类型为p型,而第二导电类型为n型,由此得到n沟道MOS晶体管。当第一导电类型为n型而第二导电类型为p型时,MOS晶体管充当p沟道MOS晶体管。
(修改方案1)
在这个修改方案中,通过在漏区形成电场松弛(relaxation)区来增强半导体器件的耐受电压。
图4是用于描述根据这个修改方案的半导体器件的结构的视图。
在图1A至图1C的上述半导体器件的漏区6a和6b中,在与栅电极3相对一侧形成作为具有n型的低浓度的n-区的低浓度下漏区21和低浓度上漏区22。N+漏区6a和6b具有基本上等于图1A至图1C的漏区6a和6b的浓度的n型的高浓度,并且在n+漏区6a和6b上形成接触部8。另一方面,源侧上的结构与图1A至图1C相同。如上所述,当栅电极3与n+漏区6a、6b之间的区域具有n型的低浓度时,电场在这个区域松弛(relaxed),并且图4所示的半导体器件的耐受电压得到增强。
接下来描述制造图4的半导体器件的方法。图5A至图5I示出制造图4的半导体器件的方法,并且基本制造方法与示出制造图1A至图1C的半导体器件的方法的图3A至图3F中相同。图5A至图5I在以下方面与图3A至图3F不同:增加了图5A的低浓度下区(lowerlow-concentration region)21的杂质20的杂质注入19和图5G的低浓度上区22的杂质注入23,并且如图5H所示,形成抗蚀剂掩模17,使得低浓度上区22没有被上漏区6a压制。通过这种方法,形成低浓度漏区,因此增强图4的半导体器件的耐受电压。

Claims (4)

1.一种半导体器件,包括:
半导体衬底;
第一导电类型下阱区,设置在所述半导体衬底上;
第二导电类型下源区和第二导电类型下漏区,分别设置在所述第一导电类型下阱区的一部分中;
半导体外延层,设置在所述第一导电类型下阱区的衬底表面、所述第二导电类型下源区的衬底表面和所述第二导电类型下漏区的衬底表面上;
上阱区,设置在所述半导体外延层上;
用于形成不平整结构的、其深度比所述下源区和所述下漏区的深度更深的沟槽;
设置在所述不平整结构的整个表面上的绝缘膜,以及借助所述绝缘膜设置的栅电极;和
设置在所述栅电极的两侧上的上源区和上漏区,其中所述上源区和所述上漏区与所述第二导电类型下源区和所述第二导电类型下漏区接触。
2.如权利要求1所述的半导体器件,其中,与所述栅电极相邻的所述第二导电类型上漏区和所述第二导电类型下漏区的区域设置成具有低杂质浓度。
3.一种制造半导体器件的方法,包括:
在半导体衬底上形成第一导电类型下阱区;
在所述第一导电类型下阱区的一部分中形成第二导电类型下源区和第二导电类型下漏区;
在所述第一导电类型下阱区的衬底表面、所述第二导电类型下源区的衬底表面和所述第二导电类型下漏区的衬底表面上形成半导体外延层;
在所述半导体外延层上形成上阱区;
通过蚀刻形成用于形成不平整结构的、其深度比所述下源区和所述下漏区的深度更深的沟槽;
在所述不平整结构的整个表面上形成绝缘膜,并且借助所述绝缘膜形成栅电极;以及
在所形成的栅电极的两侧上进行离子注入,并且形成上源区和上漏区,以便使之与所述第二导电类型下源区和所述第二导电类型下漏区接触。
4.一种制造半导体器件的方法,包括:
在半导体衬底上形成第一导电类型下阱区;
在所述第一导电类型下阱区的一部分中形成第二导电类型低浓度下区;
在所述低浓度下区的一部分中形成第二导电类型下源区和第二导电类型下漏区,所述第二导电类型下源区和所述第二导电类型下漏区具有比所述低浓度下区更高的杂质浓度;
在所述第一导电类型下阱区的衬底表面、所述第二导电类型下源区的衬底表面和所述第二导电类型下漏区的衬底表面上形成半导体外延层;
在所述半导体外延层上形成上阱区;
通过蚀刻形成用于形成不平整结构的、其深度比所述下源区和所述下漏区的深度更深的沟槽;
在所述不平整结构的整个表面上形成绝缘膜,并且借助所述绝缘膜形成栅电极;
在所述栅电极的两侧上进行离子注入,并且形成第二导电类型低浓度上区,以便与所述低浓度下区接触;以及
在所述栅电极的源侧上以及在所述栅电极的漏侧的一部分上形成第二导电类型上源区和第二导电类型上漏区,以便分别与所述下源区以及与所述下漏区接触,所述第二导电类型上源区和所述第二导电类型上漏区具有比所述第二导电类型低浓度上区更高的杂质浓度。
CN200910007920.5A 2008-02-26 2009-02-26 半导体器件及其制造方法 Expired - Fee Related CN101521230B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008-044393 2008-02-26
JP2008044393 2008-02-26
JP2008044393A JP5442951B2 (ja) 2008-02-26 2008-02-26 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
CN101521230A CN101521230A (zh) 2009-09-02
CN101521230B true CN101521230B (zh) 2013-08-21

Family

ID=40997475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910007920.5A Expired - Fee Related CN101521230B (zh) 2008-02-26 2009-02-26 半导体器件及其制造方法

Country Status (5)

Country Link
US (2) US7888212B2 (zh)
JP (1) JP5442951B2 (zh)
KR (2) KR101618613B1 (zh)
CN (1) CN101521230B (zh)
TW (1) TWI472032B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5165954B2 (ja) * 2007-07-27 2013-03-21 セイコーインスツル株式会社 半導体装置
CN102198925B (zh) 2010-03-25 2015-03-04 张家港丽恒光微电子科技有限公司 Mems器件及其形成方法
JP6084357B2 (ja) * 2011-11-02 2017-02-22 ルネサスエレクトロニクス株式会社 半導体装置
JP5939846B2 (ja) * 2012-03-09 2016-06-22 エスアイアイ・セミコンダクタ株式会社 半導体装置の製造方法
FR2995139A1 (fr) * 2012-09-04 2014-03-07 St Microelectronics Sa Transistor mos

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03209760A (ja) * 1990-01-11 1991-09-12 Mitsubishi Electric Corp 半導体装置
JPH05168211A (ja) * 1991-12-11 1993-07-02 Okuma Mach Works Ltd 多極レゾルバー
EP0750794A1 (en) * 1995-01-17 1997-01-02 National Semiconductor Corporation Co-implantation of arsenic and phosphorus in extended drain region for improved performance of high voltage nmos device
JPH098291A (ja) * 1995-06-20 1997-01-10 Fujitsu Ltd 半導体装置
JP3405681B2 (ja) * 1997-07-31 2003-05-12 株式会社東芝 半導体装置
JPH11168211A (ja) * 1997-12-02 1999-06-22 Toyota Central Res & Dev Lab Inc 半導体装置
US6114205A (en) * 1998-10-30 2000-09-05 Sony Corporation Epitaxial channel vertical MOS transistor
JP3644438B2 (ja) * 2002-04-09 2005-04-27 株式会社デンソー 半導体装置及びその製造方法
GB0314392D0 (en) * 2003-06-20 2003-07-23 Koninkl Philips Electronics Nv Trench mos structure
JP2006019518A (ja) * 2004-07-01 2006-01-19 Seiko Instruments Inc 横型トレンチmosfet
JP4976658B2 (ja) 2005-04-05 2012-07-18 セイコーインスツル株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
KR101667499B1 (ko) 2016-10-28
JP2009206145A (ja) 2009-09-10
KR20090092232A (ko) 2009-08-31
US20090212375A1 (en) 2009-08-27
KR101618613B1 (ko) 2016-05-09
KR20160002642A (ko) 2016-01-08
TWI472032B (zh) 2015-02-01
TW200945586A (en) 2009-11-01
US7888212B2 (en) 2011-02-15
CN101521230A (zh) 2009-09-02
JP5442951B2 (ja) 2014-03-19
US8207575B2 (en) 2012-06-26
US20110156138A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
KR100363353B1 (ko) 반도체 장치 및 그 제조 방법
KR101473003B1 (ko) 반도체 장치 및 반도체 장치의 제조 방법
CN107546268A (zh) 半导体器件及制造其的方法
US20060001110A1 (en) Lateral trench MOSFET
JP2007049039A (ja) 半導体装置
CN101521230B (zh) 半导体器件及其制造方法
KR20190113595A (ko) 반도체 장치 및 그 제조 방법
JP2008103375A (ja) 半導体装置およびその製造方法
KR20100067567A (ko) 반도체 소자 및 이의 제조 방법
US8310004B2 (en) Semiconductor device and process for producing the same
KR20090063148A (ko) 반도체 장치 및 그 제조 방법
US7170134B2 (en) Semiconductor device
TWI500152B (zh) 橫向擴散金氧半導體元件及其製作方法
CN101355036A (zh) 沟道栅半导体器件及其制造方法
KR100587605B1 (ko) 고전압 트랜지스터 및 그 제조방법
KR100273688B1 (ko) 모스펫및그제조방법
KR101090049B1 (ko) 반도체 디바이스 및 그의 제조 방법
JP2021097109A (ja) 半導体装置
TWI527192B (zh) 半導體結構及其形成方法
KR100903467B1 (ko) 반도체 소자 및 그 제조 방법
JP2010010459A (ja) 半導体装置
JP2011014851A (ja) 半導体素子およびその製造方法
JP2011187814A (ja) 半導体装置の製造方法
KR20110078865A (ko) 반도체 소자 및 반도체 소자의 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160311

Address after: Chiba County, Japan

Patentee after: SEIKO INSTR INC

Address before: Chiba, Chiba, Japan

Patentee before: Seiko Instruments Inc.

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Chiba County, Japan

Patentee after: EPPs Lingke Co. Ltd.

Address before: Chiba County, Japan

Patentee before: SEIKO INSTR INC

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130821

Termination date: 20210226