CN101439861B - 一种硅酸铁镁的制备方法及其在可充镁电池正极材料中的应用 - Google Patents

一种硅酸铁镁的制备方法及其在可充镁电池正极材料中的应用 Download PDF

Info

Publication number
CN101439861B
CN101439861B CN2008102077996A CN200810207799A CN101439861B CN 101439861 B CN101439861 B CN 101439861B CN 2008102077996 A CN2008102077996 A CN 2008102077996A CN 200810207799 A CN200810207799 A CN 200810207799A CN 101439861 B CN101439861 B CN 101439861B
Authority
CN
China
Prior art keywords
magnesium
ferric metasilicate
preparation
rechargeable
anode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008102077996A
Other languages
English (en)
Other versions
CN101439861A (zh
Inventor
李云
努丽燕娜
杨军
王久林
徐欣欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN2008102077996A priority Critical patent/CN101439861B/zh
Publication of CN101439861A publication Critical patent/CN101439861A/zh
Application granted granted Critical
Publication of CN101439861B publication Critical patent/CN101439861B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种硅酸铁镁的制备方法及其在可充镁电池正极材料中的应用,该硅酸铁镁以纳米二氧化硅作为硅源,采用熔盐法获得,作为可充镁电池正极材料,表现出良好的电化学充放电行为,在0.25mol·L-1Mg(AlCl2BuEt)2/THF电解液中,0.2C放电速率下,放电平台达1.5V(vs.Mg/Mg2+),放电容量可达151.7mAh/g。在0.4mol·L-1[Mg2Cl3]+[AlPh2Cl2]-/THF中,0.4C放电速率下,放电平台达1.2V(vs.Mg/Mg2+),放电容量可达148.5mAh/g。

Description

一种硅酸铁镁的制备方法及其在可充镁电池正极材料中的应用
技术领域
本发明涉及一种无机材料的制备方法及其在电池正极材料中的应用,特别是硅酸铁镁的制备方法及其在可充镁电池正极材料中的应用。
背景技术
蓄电池在现代社会中的应用越来越重要和广泛,如从近年来已商业化的锂离子电池的广泛应用就可看出。随着环境污染的加剧和能源危机的日趋严重,迫切需要电动汽车的普及。现在使用的可充电池主要是Ni-Cd、铅酸、Ni-MH以及锂离子蓄电池。它们在应用于电动汽车方面显然都不太理想或不可行。前两种电池明显的缺点是含有有害元素Cd和Pb,严重污染环境。而锂离子电池用于小容量储电尚可,当容量大时,会由于锂特别的活泼性,存在安全问题;再者,锂价格相对较高,储量也不多。由于对电动汽车的渴求,就迫切需要能取代现有蓄电池的廉价、环境友好及大容量的可充电池的开发与应用。Aurbach等人的研究成果说明,可充镁电池能胜此任(Prototype systems for rechargeable magnesiumbatteries,Nature,2000,407:724)。
Mo的硫化物是最早用作Mg2+的嵌入材料,且用于Li+的嵌入物也有一些研究工作。其中,Mo3S4是目前较为理想的材料(Prototype systems for rechargeablemagnesium batteries,Nature,2000,407:724),在一系列非水电解质溶液中,镁离子都可以较快地进行插入/脱嵌电化学反应,理论放电容量可达到122mAh·g-1,实际放电容量为100mAh·g-1左右,放电电压平台有两个,分别在1.2V和1.0V(vs.Mg/Mg2+)左右。其它关于过渡金属硫化物作为可充镁电池的正极材料的研究也有一些。可以说,过渡金属硫化物是迄今为止所发现的能用于可充镁电池正极的最好材料。但硫化物本身存在一些缺点:氧化稳定性不太好以及材料的制备要求在无氧条件下进行等。钒的氧化物也可嵌入Mg2+,但需有水的存在,用于可充镁电池的正极不理想。四氧化三钴是首次所组装可充镁电池所用的氧化物正极材料,也有类似问题。
本课题组将改性溶胶-凝胶法获得的硅酸锰镁作为可充镁电池正极材料(一种可充镁电池正极材料及其制备方法,中国专利,公开号:CN101217194),取得了一定的效果,稳定放电平台达1.6V(vs.Mg/Mg2+),小电流充放电条件(C/100)下放电容量可达243.9mAh·g-1(理论容量的78%);采用熔盐方法合成了粒径小、颗粒分布均匀的可充镁电池正极材料硅酸锰镁(一种可充镁电池正极材料硅酸锰镁的制备方法,中国专利,申请号:200810040462.0),该材料稳定放电平台达1.6V和1.1V (vs.Mg/Mg2+),在C/20电流密度充放电条件下放电容量可达289.3mAh·g-1(理论容量的92%)。
发明内容
本发明的目的在于提出一种硅酸铁镁的制备方法,采用熔盐法获得,将其用作可充镁电池正极材料其特点在于在较大充放电电流下,仍能保持较高的充放电容量。
本发明一种硅酸铁镁的制备方法如下:
将6~12重量份的KCl或KCl和NaCl的混合物,其中KCl和NaCl的摩尔比为0.58∶0.42、1~1.9重量份的镁盐、2.8~8.7重量份的铁盐和1重量份的纯度大于等于99%且粒径范围为10~100纳米的纳米二氧化硅研磨10~60分钟至均匀后,在80~120℃下真空干燥12~48小时,然后在保护气体下先在300~600℃热处理1~3小时,再进一步在700~1000℃热处理5~8小时,最后自然冷却到室温,得到一种硅酸铁镁。
本发明使用的镁源为氧化镁、乙酸镁或草酸镁。
本发明使用的铁盐为草酸亚铁或碳酸亚铁。
本发明使用的保护气体为氩气或氮气。
本发明一种硅酸铁镁在可充镁电池正极材料中的应用方法如下,
在硅酸铁镁中加入6~18wt%的乙炔黑导电剂,4~16wt%的0.02g·mL-1聚偏氟乙烯/N-甲基吡咯烷酮溶液粘结剂,经充分搅拌均匀后,涂覆在铜箔上,放入60~80℃的烘箱中烘干后,用直径10~16毫米的冲头冲成极片,在压力为1~4兆帕的压力下压片后,放入100~130℃的真空烘箱中干燥3~10小时,然后转移到氩气手套箱中,以金属镁条为负极,Celgard 2700为隔膜,0.25mol·L-1Mg(AlCl2BuEt)2/THF或0.4mol·L-1[Mg2Cl3]+[AlPh2Cl2]-/THF为电解液,组装成可充镁电池。
本发明一种硅酸铁镁的制备方法及其在可充镁电池正极材料中的应用,具有如下特点:
1.本发明一种硅酸铁镁的制备方法,采用了熔盐作反应介质,由于提供了一个均相的高温反应环境,可加快反应速度、缩短反应周期、简化合成过程、降低合成成本、改善产物的晶体结构,而且还可以有效的控制粉体的粒度和形状,合成粒径小、颗粒分布均匀的纳米级的硅酸铁镁,作为可充镁电池正极材料,Mg2+扩散路径短,极化小,有利于提高产物的电化学活性。
2.本发明一种硅酸铁镁在可充镁电池正极材料中的应用,由于硅酸铁镁中含有较大的聚阴离子,可以给镁离子的迁移创造较大的空间;而且多氧聚阴离子强的诱导效应可以使得过渡金属铁氧化还原电对产生较高的电压平台。在0.25mol·L-1Mg(AlCl2BuEt)2/THF电解液中,0.2C放电速率下,放电平台达1.5V(vs.Mg/Mg2+),放电容量可达151.7mAh/g(理论容量的97.8%)。在0.4mol·L-1[Mg2Cl3]+[AlPh2Cl2]-/THF中,0.4C放电速率下,放电平台达1.2V(vs.Mg/Mg2+),放电容量可达148.5mAh/g(理论容量的95.7%)。通常使用Mo3S4在0.25mol·L-1Mg(AlCl2BuEt)2/THF电解液中,实际放电容量为100mAh·g-1左右,放电电压平台分别在1.2V和1.0V(vs.Mg/Mg2+)。
附图说明
图1为实施例1得到的一种硅酸铁镁的XRD谱图。
图2为实施例2得到的一种硅酸铁镁的XRD谱图。
图3为实施例4得到的一种硅酸铁镁的XRD谱图。
图4为实施例1得到的一种可充镁电池正极材料硅酸铁镁用0.25mol·L-1Mg(AlCl2BuEt)2/THF电解液装配成电池在0.2C条件下的充放电曲线。
图5为实施例1得到的一种可充镁电池正极材料硅酸铁镁用0.4mol·L-1[Mg2Cl3]+[AlPh2Cl2]-/THF电解液装配成电池在0.4C条件下的放电容量与循环次数的曲线。
具体实施方式
下面实施例是对本发明进一步说明,但不限制本发明的范围。
实施例1
将0.6g的KCl、0.0968g的MgO、0.4354g的FeC2O4·2H2O和0.1452g的SiO2研磨30分钟至均匀后,在100℃下真空干燥12小时,然后在氩气的保护气氛条件下先在350℃热处理2小时,进一步在900℃热处理6小时,最后自然冷却到室温,得到硅酸铁镁。
将上述制备的硅酸铁镁,在日本岛津公司生产的Rigaku D/MAX2200PC型X射线衍射仪上进行粉末X-射线衍射实验。实验条件如下:铜靶,X射线波长0.15406纳米,Ni滤光片;所用光管电压40kV,电流为20mA,扫描范围为15~75°,扫描速度4°·min-1
将上述制备的硅酸铁镁在美国热电公司生产的Iris Advangtage 1000型电感耦合等离子体发射光谱仪上进行金属元素检测,结果表明Mg和Fe的摩尔比为1∶1。
图1是实施例1得到的硅酸铁镁的XRD谱图,将其与标准谱图(JCPDS-ICSDNo:76-0853)对比,结果表明产物具有良好的晶体结构,不存在镁或铁的氧化物等杂质峰。
在实施例1制备的硅酸铁镁中加入12wt%的乙炔黑导电剂,10wt%的0.02g·mL-1聚偏氟乙烯/N-甲基吡咯烷酮溶液粘结剂,经充分搅拌均匀后,涂覆在铜箔上,放入80℃的烘箱中烘干后,用直径12.5毫米的冲头冲成极片,在压力为3兆帕的压力下压片后,放入120℃的真空烘箱中干燥8小时,然后转移到氩气手套箱中,以金属镁条为负极,Celgard 2700为隔膜,0.25mol·L-1Mg(AlCl2BuEt)2/THF为电解液,组装成可充镁电池,在LAND电池测试系统(武汉蓝电电子有限公司提供)上进行恒流充放电性能测试,充放电截止电压相对于Mg/Mg2+为0.5~2.1V。结果表明,如图4所示,在0.25mol·L-1Mg(AlCl2BuEt)2/THF电解液中,0.2C放电速率下,放电平台可以达到1.5V (vs.Mg/Mg2+)。其起始放电容量为85.6mAh/g,30次循环后放电容量可以达到151.7mAh/g。如图5所示,在0.4mol·L-1[Mg2Cl3]+[AlPh2Cl2]-/THF中,0.4C放电速率下,放电平台达1.2V(vs.Mg/Mg2+),起始放电容量为73.8mAh/g,40次循环后放电容量可达148.5mAh/g。
实施例2
将0.6g的KCl、0.0968g的MgO、0.4354g的FeC2O4·2H2O和0.1452g的SiO2研磨30分钟至均匀后,在100℃下真空干燥12小时,然后在氩气的保护气氛条件下先在350℃热处理2小时,进一步在1000℃热处理6小时,最后自然冷却到室温,得到硅酸铁镁。
将上述制备的硅酸铁镁在美国热电公司生产的Iris Advangtage 1000型电感耦合等离子体发射光谱仪上进行金属元素检测,结果表明Mg和Fe的摩尔比为1∶1。
将上述制备的硅酸铁镁,在日本岛津公司生产的Rigaku D/MAX2200PC型X射线衍射仪上进行粉末X-射线衍射实验。实验条件如下:铜靶,X射线波长0.15406纳米,Ni滤光片;所用光管电压40kV,电流为20mA,扫描范围为15~75°,扫描速度4°·min-1
图2为实施例2得到的硅酸铁镁的XRD谱图,将其与标准谱图(JCPDS-ICSDNo:76-0853)对比,结果表明产物具有好的晶体结构,不存在镁或铁的氧化物或合金等杂质峰。
实施例3
将0.6g的KCl、0.0968g的MgO、0.2878g的FeC2O4·2H2O和0.1202g的SiO2研磨30分钟至均匀后,在100℃下真空干燥12小时,然后在氩气的保护气氛条件下先在350℃热处理2小时,进一步在1000℃热处理6小时,最后自然冷却到室温,得到硅酸铁镁。
将上述制备的硅酸铁镁,在日本岛津公司生产的Rigaku D/MAX2200PC型X射线衍射仪上进行粉末X-射线衍射实验。实验条件如下:铜靶,X射线波长0.15406纳米,Ni滤光片;所用光管电压40kV,电流为20mA,扫描范围为15~75°,扫描速度4°·min-1
将上述制备的硅酸铁镁在美国热电公司生产的Iris Advangtage 1000型电感耦合等离子体发射光谱仪上进行金属元素检测,结果表明Mg和Fe的摩尔比为1.2∶0.8。
将实施例3得到的硅酸铁镁的XRD谱图与标准谱图(JCPDS-ICDD No:76-0853)对比,结果表明产物具有好的晶体结构,不存在镁或镁的氧化物等杂质峰。
实施例4
将0.348g的KCl、0.251g的NaCl、0.0968g的MgO、0.2878g的FeC2O4·2H2O和0.1202g的SiO2研磨30分钟至均匀后,在100℃下真空干燥12小时,然后在氩气的保护气氛条件下先在350℃热处理2小时,进一步在900℃热处理6小时,最后自然冷却到室温,得到硅酸铁镁。
将上述制备的硅酸铁镁在美国热电公司生产的Iris Advangtage 1000型电感耦合等离子体发射光谱仪上进行金属元素检测,结果表明Mg和Fe的摩尔比为1∶1。
将上述制备的硅酸铁镁,在日本岛津公司生产的Rigaku D/MAX2200PC型X射线衍射仪上进行粉末X-射线衍射实验。实验条件如下:铜靶,X射线波长0.15406纳米,Ni滤光片;所用光管电压40kV,电流为20mA,扫描范围为15~75°,扫描速度4°·min-1
图3为实施例4得到的硅酸铁镁的XRD谱图,将其与标准谱图(JCPDS-ICDDNo:76-0853)对比,结果表明产物具有好的晶体结构,不存在镁或镁的氧化物等杂质峰。

Claims (5)

1.一种硅酸铁镁的制备方法,其特征在于制备方法如下,
将6~12重量份的KCl或KCl和NaCl的混合熔盐,其中KCl和NaCl的摩尔比为0.58∶0.42、1~1.9重量份的镁盐、2.8~8.7重量份的铁盐和1重量份的纯度大于等于99%且粒径范围为10~100纳米的纳米二氧化硅研磨10~60分钟至均匀后,在80~120℃下真空干燥12~48小时,然后在保护气体条件下先在300~600℃热处理1~3小时,进一步在700~1000℃热处理5~8小时,最后自然冷却到室温,得到硅酸铁镁。
2.根据权利要求1所述的一种硅酸铁镁的制备方法,其特征是镁盐为氧化镁、乙酸镁或草酸镁。
3.根据权利要求1所述的一种硅酸铁镁的制备方法,其特征是铁盐为草酸亚铁或碳酸亚铁。
4.根据权利要求1所述的一种硅酸铁镁的制备方法,其特征是保护气体为氩气或氮气。
5.一种硅酸铁镁在可充镁电池正极材料中的应用,其特征在于应用方法如下,
在硅酸铁镁中加入6~18wt%的乙炔黑导电剂,4~16wt%的0.02g·mL-1聚偏氟乙烯/N-甲基吡咯烷酮溶液粘结剂,经充分搅拌均匀后,涂覆在铜箔上,放入60~80℃的烘箱中烘干后,用直径10~16毫米的冲头冲成极片,在压力为1~4兆帕的压力下压片后,放入100~130℃的真空烘箱中干燥3~10小时,然后转移到氩气手套箱中,以金属镁条为负极,Celgard 2700为隔膜,0.25mol·L-1Mg(AlCl2BuEt)2/THF或0.4mol·L-1[Mg2Cl3]+[AlPh2Cl2]-/THF为电解液,组装成可充镁电池。
CN2008102077996A 2008-12-25 2008-12-25 一种硅酸铁镁的制备方法及其在可充镁电池正极材料中的应用 Expired - Fee Related CN101439861B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008102077996A CN101439861B (zh) 2008-12-25 2008-12-25 一种硅酸铁镁的制备方法及其在可充镁电池正极材料中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008102077996A CN101439861B (zh) 2008-12-25 2008-12-25 一种硅酸铁镁的制备方法及其在可充镁电池正极材料中的应用

Publications (2)

Publication Number Publication Date
CN101439861A CN101439861A (zh) 2009-05-27
CN101439861B true CN101439861B (zh) 2012-03-21

Family

ID=40724502

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008102077996A Expired - Fee Related CN101439861B (zh) 2008-12-25 2008-12-25 一种硅酸铁镁的制备方法及其在可充镁电池正极材料中的应用

Country Status (1)

Country Link
CN (1) CN101439861B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924213B (zh) * 2010-09-07 2012-09-05 上海交通大学 一种硅酸钴镁在可充镁电池正极材料中的应用方法
CN102136573B (zh) * 2011-03-24 2013-05-01 上海交通大学 镁二次电池的修饰正极材料的制备方法
CN102723479A (zh) * 2011-03-30 2012-10-10 昭荣化学工业株式会社 镁二次电池用正极活性物质及镁二次电池
CN105932326A (zh) * 2016-06-20 2016-09-07 江苏瀚海芯云网络科技有限公司 一种镁电池的制备工艺
JP6782434B2 (ja) * 2016-12-07 2020-11-11 パナソニックIpマネジメント株式会社 固体電解質及びそれを用いた二次電池
CN109659536A (zh) * 2018-12-18 2019-04-19 中科廊坊过程工程研究院 一种镁离子电池正极材料及其制备方法和应用
CN109873156A (zh) * 2019-02-18 2019-06-11 上海交通大学 一种高容量镁二次电池硫化钴正极材料的制备方法及其电池组装
CN109950537A (zh) * 2019-03-26 2019-06-28 宁波职业技术学院 一种掺杂硅酸镍镁的镁离子电池正极材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320806A (zh) * 2008-07-10 2008-12-10 上海交通大学 一种可充镁电池正极材料硅酸锰镁的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320806A (zh) * 2008-07-10 2008-12-10 上海交通大学 一种可充镁电池正极材料硅酸锰镁的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.A.T.Redfern et al..Octahedral cation ordering in olivine at high temperature.II:an in situ neutron powder diffraction study on synthetic MgFeSiO4(Fa50).《Phys Chem Minerals》.2000,(第27期),第630-637页. *

Also Published As

Publication number Publication date
CN101439861A (zh) 2009-05-27

Similar Documents

Publication Publication Date Title
CN109216688B (zh) 一种三元锂电材料、其制备方法与锂离子电池
CN101439861B (zh) 一种硅酸铁镁的制备方法及其在可充镁电池正极材料中的应用
Ding et al. Recent advances in cathode prelithiation additives and their use in lithium–ion batteries
CN104795560B (zh) 一种富钠p2相层状氧化物材料及其制备方法和用途
CN110459736B (zh) 正极材料及含有该正极材料的正极极片和锂离子电池
CN102306779B (zh) 一种锂离子电池正极材料富锂型掺杂钼酸锂及其制备方法
CN100583511C (zh) 一种可充镁电池正极材料硅酸锰镁的制备方法
TW201126798A (en) Coated positive electrode materials for lithium ion batteries
CN109301207B (zh) 一种表层掺杂Ce3+且表层包覆CeO2的NCM三元正极材料及其制备方法
CN108807860B (zh) 阴极添加剂及其制备方法、阴极片及锂电池
CN107093739A (zh) 钾离子电池正极材料用钾锰氧化物及其制备方法
WO2022133926A1 (zh) 锂离子二次电池及其制备方法、电池模块、电池包和装置
CN109346710B (zh) 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用
JP2015201388A (ja) 非水系二次電池用正極活物質及びその製造方法
CN105810932A (zh) 一种钠离子电池用层状正极材料及其制备方法
CN103928680A (zh) 一种制备片状磷酸锰锂/石墨烯复合材料的喷雾干燥辅助合成方法
Dixit Cathode materials for lithium ion batteries (LIBs): a review on materials related aspects towards high energy density LIBs
CN102491410A (zh) 一种锂离子电池负极材料氧缺位钛酸锂的合成方法
JP6232931B2 (ja) 非水電解液二次電池用正極活物質の製造方法。
CN106450264A (zh) 一种碳包覆和离子掺杂双重改性的纳米钛酸锂复合材料的制备方法
CN111554977A (zh) 一种锂二次电池的制作方法
CN108493399A (zh) 锂电池正极材料及其制备方法和锂电池正极、锂电池
CN110563052B (zh) 一种碳和氧化镧共包覆改性镍锰酸锂正极材料的制备方法
CN106025266B (zh) 一种高倍率锂离子电池正极材料及其制备方法
CN108110254B (zh) 磷酸铁及磷酸铁复合材料作为负极在锂离子电池中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120321

Termination date: 20141225

EXPY Termination of patent right or utility model