CN101408276B - 流量检定系统和流量检定方法 - Google Patents

流量检定系统和流量检定方法 Download PDF

Info

Publication number
CN101408276B
CN101408276B CN2008102149250A CN200810214925A CN101408276B CN 101408276 B CN101408276 B CN 101408276B CN 2008102149250 A CN2008102149250 A CN 2008102149250A CN 200810214925 A CN200810214925 A CN 200810214925A CN 101408276 B CN101408276 B CN 101408276B
Authority
CN
China
Prior art keywords
flow
pressure
stop valve
gas
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008102149250A
Other languages
English (en)
Other versions
CN101408276A (zh
Inventor
中田明子
伊藤一寿
杉野彰仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Publication of CN101408276A publication Critical patent/CN101408276A/zh
Application granted granted Critical
Publication of CN101408276B publication Critical patent/CN101408276B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof

Abstract

流量检定系统和流量检定方法。该系统,适合刚在流量控制装置开始流量控制之后就通过检定气体管道系统中的流量检定流量特性,包括第一截止阀、安装在第一截止阀下游的流量控制装置和用于测量流量控制装置下游的压力的压力传感器,基于由压力传感器测量的压力进行流量检定。该系统还包括用于存储基准值的基准值存储装置,基准值通过对在正常的流量控制操作期间由压力传感器测量的压力值进行积分来计算,和异常检测装置,用于当工艺气体通过第一截止阀被供应到流量控制装置、在流量上被流量控制装置控制并被供应到压力传感器时,通过对由压力传感器测量的压力值进行积分计算压力积分值并将压力积分值与基准值进行比较来检测工艺气体的异常流量。

Description

流量检定系统和流量检定方法
相关申请的交叉引用
本申请基于2007年8月29日提交的在先日本专利申请No.2007-222582并且要求其优先权,其全部内容以引用的方式在此并入。
技术领域
本发明涉及检查安装在气体管道系统中的流量控制器的流量特性的流量检定系统和流量检定方法,该气体管道系统例如用在半导体制造设备中。
背景技术
例如,半导体制造设备的薄膜沉积和干法蚀刻装置使用诸如硅烷和磷化氢的所谓的特殊材料气体、诸如氯气的腐蚀性气体和诸如氢气的高可燃性气体。这些气体的流量由于下列理由而受到非常严格的控制:它们的流量对工艺是否成功、是否涉及用于移除安装在排气系统中的装置的成本和气体本身是否昂贵等等具有直接影响。由于在工艺中实际使用的气体量至多是500sccm左右,所以在管道中安装已知的质量流量控制器以便根据气体类型和工艺诀窍使流量最优化。在质量流量控制器中,通过调节外加电压来设定流量。
在工艺气体(process gas)中,由于它们的性质,沉积材料气体可以引起固体物质的沉淀,导致流量容量的改变。特别地,与其他组件相比,质量流量控制器更可能在其内部小管道中引起固体物质的沉淀,并且如果这种沉淀发生,流量容量将受到严重影响。流量能力的改变将不可避免地改变外加电压和实际流量之间的关系,并且在那种情况下,即使当流量的设定保持不变时,实际的流量也将改变,导致工艺稳定性的恶化。如果流量容量已经实际上改变了,则必须改变待施加电压的预设值,以便使气体流量保持适当。为此,必须检定质量流量控制器的流量。
基本上使用膜式流量计来检定质量流量控制器的流量。然而,在该方法中,必须移除管道的某一部分并且在测量工作之后,将其恢复成原来的样子并检查渗漏。这个过程很麻烦。作为它的一个解决方案,日本专利No.3367811提出了一种方法,其中在不移除任何管道的情况下检定流量。
图5示出气体系统100的构形,如日本专利No.3367811中所述的流量检定系统110被应用于气体系统100。
在气体系统100中,气体管路101A和101B会聚到与处理槽(processing tank)103相连的气体供应管路102中,基于压力传感器108测量的压力,流量检定系统110检定处于质量流量控制器105A和105B的控制下的工艺气体A和B的流量。
在气体管路101A和101B中,第一截止阀104A和104B、质量流量控制器105A和105B、以及第二截止阀106A和106B分别从上游按顺序设置。终段截止阀107设置在气体供应管路102中并且压力传感器108和排气管路109位于终段截止阀107的上游,压力传感器108与流量检定系统110相连以输出压力检测信号。终段的截止阀107的打开和关闭由流量检定系统110或与流量检定系统110相连的主机装置111控制。
在装配管道系统或替换质量流量控制器之后,流量检定系统110立即为每个质量流量控制器105A和105B指定压力变化的初始速率,如下所述。
例如,在为质量流量控制器105A指定压力变化的初始速率时,在气体管路101B的第二截止阀106B关闭的情况下,流量检定系统110首先打开气体管路101A的第一截止阀104A和第二截止阀106A以及气体供应管路102的终段截止阀107。使用与处理槽103相连的真空泵或类似装置(未示出)来减小质量流量控制器105A下游的压力。
之后,将终段截止阀107关闭以切断排气向处理槽103的流量。这时,第一和第二截止阀104A和106A打开,从而通过质量流量控制器105A控制工艺气体A的流量并将气体A引入质量流量控制器105A和终段截止阀107之间的管路部分。因此,由压力传感器108测量的压力逐渐增加。流量检定系统110以有规律的时间间隔对由压力传感器108测量的压力进行采样,并通过最小二乘法计算具有良好线性度的压力变化范围中的梯度。流量检定系统110将该梯度存储为初始值。
如果工艺气体A用于流量检定,则流量检定系统110用与上面相同的程序以有规律的时间间隔对由压力传感器108测量的压力进行采样,并通过最小二乘法计算具有良好线性度的压力变化范围中的梯度。将算出的梯度与初始值进行比较。如果算出的梯度没有表明相对于初始值的变化,则流量检定系统110确定质量流量控制器105A的流量特性没有改变(正常)。相反,如果算出的梯度表明了相对于初始值的变化,则它确定质量流量控制器105A的流量特性已经改变并且质量流量控制器105A出故障了。
然而,在传统的流量检定系统110中,刚在质量流量控制器105A开始工艺气体A的流量控制之后,压力依据流量不稳定地改变。因此,在质量流量控制器105A开始流量控制之后,传统的流量检定系统110要等待几秒,并且仅仅在流量稳定之后流量检定系统110才能计算用于流量检定的具有良好线性度的压力变化范围中的梯度。
在实际的薄膜沉积过程中,第一截止阀104A一打开和工艺气体A一被引入处理槽103中,薄膜沉积循环就开始。如果一个沉积循环需要5至6秒,则供应到晶片的工艺气体A最初(例如,在质量流量控制器105A的流量控制开始之后一秒)很大程度地影响沉积膜的质量。为此,存在对下述系统的强烈需求,其刚在质量流量控制器105A开始流量控制之后就开始流量检定,但传统的流量检定系统没有满足该需求。
发明内容
考虑到上面的情况做出本发明,并且本发明的目的是克服上面的问题以提供一种流量检定系统和一种流量检定方法,来刚在流量控制器开始流量控制之后就检定流量控制器的流量特性。
为了实现本发明的目的,提供了一种用于检定气体管道系统中的流量的流量检定系统,包括第一截止阀、安装在第一截止阀下游的流量控制装置和用于测量流量控制装置下游的压力的压力传感器,该流量检定系统适合基于由压力传感器测量的压力来检定流量(流量),流量检定系统包括用于存储基准值的基准值存储装置,该基准值通过对在流量控制装置的正常操作期间由压力传感器测量的压力值进行积分来计算,以及异常检测装置,其用于当工艺气体通过第一截止阀被供应到流量控制装置、在流量上被流量控制装置控制并且被供应到压力传感器时,通过对由压力传感器测量的压力值进行积分来计算压力积分值,并将压力积分值与基准值进行比较来检测工艺气体的异常流量。
根据本发明的另一方面,一种检定气体管道系统中的流量的流量检定方法包括第一截止阀、安装在第一截止阀下游的流量控制装置和用于测量流量控制装置下游的压力的压力传感器,该流量检定方法被布置成基于由压力传感器测量的压力来检定流量,该流量检定方法包括当工艺气体通过第一截止阀被供应到流量控制装置并且在流量上被流量控制装置控制时,对由压力传感器测量的压力值进行积分来计算压力积分值的积分压力值计算步骤,将在积分压力值计算步骤中计算的积分压力值与基准值进行比较的比较步骤,所述基准值通过对在流量控制装置的正常操作期间由压力传感器测量的压力值进行积分来计算,和基于比较步骤中的比较结果来检测流量中的异常的异常检测步骤。
附图说明
图1示出根据本发明实施例的气体供应系统的构形;
图2是图1所示的控制器的电气框图;
图3示出刚在图1的质量流量控制器的流量控制开始之后的输出流量和刚在质量流量控制器的流量控制开始之后由图1的压力传感器测量的压力随着时间的变化,横轴代表时间,左纵轴代表压力变化(△P)的量,右纵轴代表流量(Q)。
图4示出图3中的流量(Q)和通过图3所示的测量压力计算的积分压力值(∑p)之间的关系,横轴代表时间,左纵轴代表积分压力值(∑p),右纵轴代表流量(Q)。
图5示出流量检定系统应用于其上的传统气体系统的构形。
具体实施方式
现在将参考附图给出体现本发明的流量检定系统和流量检定方法的优选实施例的详细说明。
<气体供应系统的一般构形>
图1示出根据本发明的实施例的气体供应系统1的构形。
在气体供应系统1中,气体管路2A和2B会聚到与处理室4相连的气体供应管路3中,工艺气体A和B分别供应给该气体管路2A和2B。刚在质量流量控制器8A和8B开始流量控制之后,应用于气体供应系统1的流量检定系统16就使用通过对由压力传感器12测量的压力进行积分所计算的积分压力值,开始检定作为工艺气体A的流量控制装置的质量流量控制器8A的流量和作为工艺气体B的流量控制装置的质量流量控制器8B的流量。
处理室4是用于在半导体晶片上产生沉积的CVD装置、用于蚀刻半导体晶片的蚀刻装置或类似装置。用于CVD的工艺气体包括硅烷(SiH)、磷化氢(PH3)和六氟化钨(WF6),用于蚀刻的工艺气体包括氯气(Cl2)和溴化氢气体(HBr)。由真空泵5使处理室4降压并且由压力传感器6检测其内部压力。
在气体管路2A和2B中,第一截止阀7A和7B、质量流量控制器8A和8B和第二截止阀9A和9B分别从上游按顺序设置。排气管路11A(11B)在质量流量控制器8A(8B)和第二截止阀9A(9B)之间从气体管路2A分叉并且第三截止阀10A(10B)位于排出管路11A(11B)中,使得过量的工艺气体A(B)被排出而不通过处理室4。
第一至第三截止阀7A、7B、9A、9B、10A、10B是通过供应操作气体而打开和关闭的气动阀。质量流量控制器8A和8B根据外加电压分别控制工艺气体A和B的流量,在第二截止阀9A和9B的下游,气体管路2A和2B会聚到与处理室4相连的气体供应管路3中,压力传感器12和终段截止阀13从上游按顺序位于气体供应管路3中。
在该实施例中,流量检定系统16包括第一截止阀7A和7B、质量流量控制器8A和8B、第二截止阀9A和9B、压力传感器12、终段截止阀13和控制器14,其中控制器14控制基准值设定操作和流量检定操作。控制器14以某种方式与主机装置15相连以允许它们之间的通讯。在流量检定系统16中,用于压力传感器12进行压力检测的检测槽路T设置在通过连接第二截止阀9A和9B和终段截止阀13所限定的内部通道中。
主机装置15是微型计算机,其控制整个气体供应系统1并且包括公共领域中的装置,例如CPU、ROM和RAM。第一至第三截止阀7A、7B、9A、9B、10A和10B和终段截止阀13根据来自主机装置15的指令打开和关闭。质量流量控制器8A(8B)从主机装置15供应有外加电压并且当处理在进行中时,依据电压来控制工艺气体A(B)。压力传感器6将处理室4的压力测量值发送到主机装置15。真空泵5与主机装置15相连,使得其真空操作受到控制。
<控制器的电气框图>
图2是图1所示的控制器14的电气框图。
控制器14是微型计算机,其控制流量检定并且包括处于公共领域中的CPU21、ROM22、RAM23、HDD24、I/O接口25和通信接口26。
HDD24具有基准值存储装置27以存储基准值。这里,“基准值”是当在质量流量控制器8A和8B的流量特性的检定中作出关于异常的判定时用作标准的值。当控制器14被设定成稍后将描述的“基准值设定模式”时,“基准值”被存储在基准值存储装置27中。
I/O接口25与第一截止阀7A和7B、质量流量控制器8A和8B、第二截止阀9A和9B、第三截止阀10A和10B、压力传感器12、终段截止阀13和真空泵5相连,使得控制器14在流量检定的过程中控制这些流量控制装置的操作。I/O接口25还与基准值设定模式设定装置31、流量检定模式设定装置32、显示装置33和测量时间调节装置35相连。
基准值设定模式设定装置31设定“基准值设定模式”。
流量检定模式设定装置32设定“流量检定模式”,其中检定了质量流量控制器8A(8B)的流量特性。
显示装置33显示控制器14的操作状态。例如,显示装置33可以是显示信息的液晶板或闪烁以通知基准值设定模式或流量检定模式是开还是关并发出异常流量警告的LED。
测量时间调节装置35为每个气体管路2A和2B调节压力测量时间,在该压力测量时间期间,由压力传感器12测量流量检定所需的压力值。
通信接口26与主机装置15相连,通信接口26控制向主机装置15的数据传输和从主机装置15的数据接收。控制器14接收并监视来自主机装置15的将通过通信接口26发送给第一至第三截止阀7A、7B、9A、9B、10A和10B以及终段截止阀13的指令信号。
<积分压力值和流量之间的关系>
图3示出刚在质量流量控制器8A(图1)的流量控制开始之后输出流量和刚在质量流量控制器8A的流量控制开始之后压力传感器12(图1)测量的压力随着时间的变化。横轴代表时间,左纵轴代表压力变化(△P)的量,右纵轴代表流量(Q)。图4示出图3中的流量(Q)和图3中的积分压力值(∑p)之间的关系,横轴代表时间,左纵轴代表积分压力值(∑p),右纵轴代表流量(Q)。
图3和4都表明在一部分压力测量时间(例如,与薄膜沉积时间相等的5至6秒)内的流量(Q)、压力变化(△P)和积分压力值(∑p),即刚在向质量流量控制器8A供应电压和质量流量控制器8A开始流量控制之后的一秒内。
流量检定系统16使用通过对由压力传感器12测量的压力进行积分所计算的积分压力值来检定质量流量控制器8A和8B的流量。更具体地说,在流量检定中,流量检定系统16计算积分压力值,并将算出的积分压力值与存储在基准值存储装置27中的基准值进行比较,如果差值处于容许的范围内,则判定质量流量控制器的流量特性相对于正常的流量特性尚未改变(正常),如果差值不处于容许的范围内,则判定质量流量控制器的流量特性相对于初始的流量特性已经改变(异常)。这里,容许的范围意味着容许的相对于基准值的偏差范围。能依据所需的流量检定精度自由地指定容许的范围。换句话说,对于较低的流量检定精度,应该允许相对于基准值的较大偏差或应该增大容许的范围,而对于较高的流量检定精度,应该允许相对于基准值的较小偏差或应该减小容许的范围。
如图3中的压力变化X1至X5所表明的,依据相应的流量(i)至(v),压力不稳定地改变。不稳定的压力变化持续直到达到流量(i)至(v)为止;因而,当流量不稳定时,即刚在质量流量控制器8A开始流量控制之后,不可能基于压力梯度进行流量检定。
另一方面,通过对如压力变化X1至X5所表明的以有规律的时间间隔采样的压力值进行积分并将它们绘制出来来获得与压力变化X1至X5相应的在图4中示出的积分压力值Y1至Y5,积分压力值Y1至Y5随着流量容量(积分流量值)的变化而增加并且不随着流量(i)至(v)不稳定地改变而是几乎稳定地改变。
因而,通过将流量检定中的积分压力值与正常的积分压力值(基准值)进行比较,就能确定质量流量控制器8A和8B的流量特性相对于正常的流量特性如何改变了。
<常规操作的描述>
当不选择基准值设定模式或流量检定模式时,流量检定系统16允许气体供应系统1的常规操作。常规操作在这里是指在处理室4中在晶片上执行薄膜沉积或蚀刻晶片的处理或类似处理。
接下来,将通过把气体供应系统1以给定的流量向处理室4供应工艺气体A以在晶片上执行薄膜沉积的情况作为例子来描述常规操作。即使当工艺气体B用于薄膜沉积时,顺序也是相同的。
在气体供应系统1中,关闭气体管路2B中的第一和第二截止阀7B和9B以防止工艺气体A进入气体管路2B。然后,关闭气体管路2A中的第三截止阀10A以关闭排气管路11A,防止工艺气体A的排出。
然后,在气体供应系统1中,打开气体管路2A中的第一和第二截止阀7A和9A以及气体供应管路3中的终段截止阀13,并将流量受到质量流量控制器8A控制的工艺气体A供应到处理室4。由于工艺气体A从质量流量控制器8A流到处理室4的时间非常短或是几个毫秒,所以质量流量控制器8A的流量控制的开始时间和向处理室4供应工艺气体A的时间之间的滞后是可忽略的,因此,一向质量流量控制器8A供应电压和质量流量控制器8A的流量控制一开始,薄膜沉积或蚀刻处理就开始。
<流量检定方法>
在该实施例中,如下地进行流量检定:当通过第一截止阀7A(7B)已供应给质量流量控制器8A(8B)且其流量已受到质量流量控制器8A(8B)控制的工艺气体A(B)被发送到压力传感器12时,对由压力传感器12测量的压力进行积分来计算积分压力值(计算积分压力值的步骤),然后将积分压力值与“基准值”进行比较(比较步骤),然后基于比较结果来判定是否有任何流量异常(检查异常的步骤)。
<流量检定操作>
例如在启动半导体制造设备之前,使用者使用流量检定模式设定装置32来选择“流量检定模式”。通过这么做,控制器14相继地对安装在气体供应系统1中的质量流量控制器8A和8B进行流量检定。接下来,将描述检定质量流量控制器8A的流量的过程。检定质量流量控制器8B的流量的过程是相同的。
控制器14首先关闭气体管路2B中的第二截止阀9B,以防止工艺气体A进入气体管路2B,然后,控制器14打开气体管路2A中的第一截止阀7A和气体供应管路3中的终段截止阀13并关闭气体管路2A中的第二截止阀9A,因此,第二截止阀9A和9B下游的流路与处理室4相连并且通过启动真空泵5来对其抽真空并使其降压。
由压力传感器12检测第二截止阀9A和9B下游上的压力,当控制器14基于由压力传感器12获得的测量结果确认第二截止阀9A和9B下游的流路被降压到规定的压力水平时,它关闭终段截止阀13。在这种情况下,如图1中由虚线表明的检测槽路T被降压到规定的压力水平。
之后,控制器14将与执行处理时相同的电压供应给质量流量控制器8A,然后,控制器14打开第二截止阀9A,以将其流量受到质量流量控制器8A控制的工艺气体A引入到检测槽路T中。在作为参考时间(0秒)的向质量流量控制器8A的电压供应时间之后,当规定的压力测量时间(例如,3秒)已经过去时,关闭第二截止阀9A以结束测量操作。
控制器14以规律的时间间隔获得由压力传感器12测量的压力直到规定的压力测量时间过去为止。控制器14对从压力传感器12获得的压力值进行积分来计算积分压力值并将其存储在RAM23中,控制器14可以在每次它从压力传感器12获得压力值时计算积分压力值并将其存储在RAM23中,或可以对于在压力测量时间过去之后的获得压力值的每个时间(采样时间)计算积分压力值并将其存储在RAM23中。
控制器14从基准值存储装置27读取用于质量流量控制器8A的“基准值”并将其拷贝到RAM23中。然后,控制器14对于每个采样时间将算出的积分压力值与从基准值存储装置27读取的“基准值”进行比较并计算差值。可以在每次算出积分压力值时进行算出的积分压力值与从基准值存储装置27读取的“基准值”的比较或在算出压力测量时间内的所有积分压力值之后通过列成表格或绘图来进行上述比较。
如果算出的差值处于容许的范围内,则控制器14判定质量流量控制器8A的流量特性尚未改变,即,质量流量控制器8A正常。在这种情况下,控制器14向主机装置15发送OK信号。同时,控制器14在显示装置33上显示质量流量控制器8A正常,以便通知使用者不需要替换或修理质量流量控制器8A。
当从控制器14收到OK信号时,主机装置15不改变地向质量流量控制器8A供应外加电压,并执行常规操作。
另一方面,如果差值不处于容许的范围内,则控制器14判定质量流量控制器8A的流量特性已经改变或质量流量控制器8A出故障了。在这种情况下,控制器14向主机装置15发送异常检测信号。异常检测信号包括调节质量流量控制器8A的流量特性所需的信息,例如所算出的用于流量检定的积分压力值与“基准值”的比较结果和异常的流量数据。
同时,控制器14在显示装置33上显示质量流量控制器8A出故障了,以便通知使用者存在异常。
主机装置15分析从控制器14接收的异常检测信号并调节施加到质量流量控制器8A的电压,以便使质量流量控制器8A的流量特性与初始流量特性一致。在常规操作中,主机装置15向质量流量控制器8A供应调节后的电压以执行处理,例如薄膜沉积。
在从“流量检定模式”开始直到流量检定结束为止的时段内,控制器14在显示装置33上显示流量检定在进行中,这防止使用者在流量检定的过程中选择“基准值设定模式”或启动气体供应系统1的常规操作。
在上述过程中,压力测量时间被设定成3秒。然而,在质量流量控制器8A和8B之间或取决于气体管路长度、工艺气体(A,B)的比重和流量,由压力传感器12测量的压力的变化率可能不同。如果情况是这样,则希望使用测量时间调节装置35来依据气体管道结构和工艺气体(A,B)的性质来调节用于质量流量控制器8A和8B中的每一个的压力测量时间。由此,刚在质量流量控制器(8A,8B)开始流量控制之后直到压力上升梯度变得恒定为止,控制器14就能可靠地监视由压力传感器12检测的检测槽路T中的压力。
例如,由于气体管路2B比气体管路2A长,所以在质量流量控制器8B的流量检定中的压力变化率低于质量流量控制器8A的流量检定中的压力变化率。在这种情况下,用于质量流量控制器8B的流量检定的压力测量时间应该比质量流量控制器8A的流量检定的压力测量时间长,以使得压力变化监视时间较长。
此外,如果工艺气体A的比重大于工艺气体B的比重,则与工艺气体B相比,工艺气体A较不容易流动。在这种情况下,关于质量流量控制器8A的流量检定的压力测量时间应该比关于质量流量控制器8B的流量检定的压力测量时间长,以使得压力变化监视时间较长。
如果工艺气体A的流量低于工艺气体B的流量,则与工艺气体B的压力变化相比,工艺气体A的压力变化较低。在这种情况下,用于质量流量控制器8A的流量检定的压力测量时间应该比质量流量控制器8B的流量检定的压力测量时间长,以使得压力变化监视时间较长。
<基准值设定操作>
对于质量流量控制器8A和8B中的每一个,都在流量检定操作开始之前由控制器14计算用于流量检定的基准值并将其存储在基准值存储装置27中。下面描述计算并存储用于质量流量控制器8A的“基准值”的过程。计算并存储用于质量流量控制器8B的“基准值”的过程与用于质量流量控制器8A的相同。
在气体管道系统装配工作或质量流量控制器8A(8B)的替换的过程中,当将质量流量控制器8A(8B)安装在气体管路2A(2B)中时,使用者操作控制器14的基准值设定模式设定装置31,以将控制器14设定成“基准值设定模式”。
如在上面的流量检定操作中那样,当质量流量控制器8A控制工艺气体A的流量时,被设定成“基准值设定模式”的控制器14让压力传感器12测量检测槽路T中的压力,并通过对从压力传感器12获得的压力值进行积分来计算积分压力值。然后,控制器14将积分压力值存储在基准值存储装置27中,作为用于质量流量控制器8A的“基准值”。
这里,备选的方法是每次控制器14从压力传感器12获得压力值时,它就计算积分压力值并将这些积分压力值相继存储在基准值存储装置27中。
也可能是,在压力测量时间期间,控制器14将从压力传感器12获得的压力值暂时存储在RAM23中,并在压力测量时间过去之后,对于每个采样时间计算积分压力值并将这些积分压力值以列表或绘图的形式存储在基准值存储装置27中。
在从选择“基准值设定模式”时开始直到基准值设定完成为止的时段内,控制器14在显示装置33上显示基准值设定操作在进行中。观察显示装置33,使用者能了解控制器14没有准备好流量检定或气体供应系统1不能进行常规操作。
对于质量流量控制器8A和8B中的每一个,计算“基准值”并将“基准值”存储在基准值存储装置27中。这是因为取决于气体管路(2A,2B)的长度、工艺气体(A,B)的比重和流量,在质量流量控制器8A和8B之间,由压力传感器12测量的压力不同,并且在质量流量控制器8A和8B之间,积分压力值(基准值)也不同。
<具体例子>
让我们假定,当管道系统装配好时质量流量控制器8A展示了如图3中的流量(iv)所示的流量特性(正常操作)。当使用者将正常的质量流量控制器8A安装在气体管路2A中并选择“基准值设定模式”时,控制器14进行流量检定。在从控制器14向质量流量控制器8A供应外加电压并让质量流量控制器8A开始流量控制时直到压力测量时间(在这种情况下3秒)过去为止的时段内,它以规律的时间间隔从压力传感器12获得压力值。在这种情况下,压力波形由图3中的压力变化X4表示。
控制器14对于每个采样时间对如图3中的压力变化X4所示的压力值进行积分,并将算出的积分压力值存储在基准值存储装置27中作为基准值。基准值的一个例子是图4中的积分压力值Y4。
之后,当使用者选择控制器14的“流量检定模式”时,控制器14进行流量检定。在从控制器14向质量流量控制器8A供应外加电压并让质量流量控制器8A开始流量控制时直到压力测量时间(在这种情况下3秒)过去为止的时段内,它从压力传感器12获得压力值。在这种情况下,压力波形的一个例子是图3中的压力变化X5。
控制器14对于每个采样时间对如图3中的压力变化X5所示的压力值进行积分并计算积分压力值,算出的积分压力值以绘图的形式由图4中的积分压力值Y5表示。控制器14从基准值存储装置27读取图4中的积分压力值Y4作为基准值,并将算出的用于流量检定的积分压力值Y5与其进行比较。
图4中的积分压力值Y4和Y5之间的比较表明差值在由图中的A’所标记的区域中逐渐增加,其中差值增加的区域与流量检定中的流量(v)相对于正常流量(iv)的超调量相对应。
因而,通过积分压力值Y4和Y5之间的比较,即使从刚在质量流量控制器8A开始流量控制之后直到流量变得稳定为止的几秒内,也可能确定流量检定中的流量是否表明相对于正常流量水平的改变。
<效果>
如迄今为止所说明的,根据本实施例中的流量检定系统16和流量检定方法,在检定质量流量控制器8A的流量特性时,关闭气体管路2B中的第二截止阀9B和终段截止阀13并打开气体管路2A中的第一和第二截止阀7A和9A,以供应质量流量控制器8A上游的工艺气体A,并且将其流量受到质量流量控制器8A控制的工艺气体A供应给压力传感器12,压力传感器12测量质量流量控制器8A下游的压力。由于由压力传感器12测量的压力根据流量而改变(参见图3),所以对从压力传感器12获得的压力值进行积分以使压力波动平滑化(参见图4)。积分压力值的变化表明积分流量值的变化,然后,积分流量值的变化表明流量的变化(参见图4),这意味着能基于积分压力值来检定流量。
基准值存储装置27存储积分压力值作为基准值,其中通过在用于流量控制的质量流量控制器8A正常起作用时对由压力传感器12测量的压力进行积分来计算积分压力值。在检定质量流量控制器8A的流量时,将通过由压力传感器12测量的压力的积分计算出的积分压力值与存储在基准值存储装置27中的基准值进行比较,以调查积分压力值如何表明相对于基准的改变,换句话说,调查质量流量控制器8A的流量相对于正常的流量水平已经怎样地改变了,以检查质量流量控制器8A的流量特性中的任何异常。
因此,根据本实施例中的流量检定系统16和流量检定方法,可以在流量和压力不稳定的流量控制的初始阶段或刚在质量流量控制器8A开始流量控制之后检定质量流量控制器8A的流量特性。
在本实施例的流量检定系统16和流量检定方法中,小容量的检测槽路T设置在第二截止阀9A和9B与终段截止阀13之间并且通过由压力传感器12测量检测槽路T中的压力来进行流量检定,以使得由压力传感器12测量的压力在短时间内稳定,并从而缩短流量检定时间。
在本实施例的流量检定系统16中,当将质量流量控制器8A安装在气体管道系统中时,当使用基准值设定模式设定装置31选择“基准值设定模式”时,向安装在气体管道系统中的质量流量控制器8A供应工艺气体A并且通过对由压力传感器12测量的压力进行积分来计算基准值,并且将基准值存储在基准值存储装置27中。因此,根据本实施例的流量检定系统16,可以依据安装在气体管道系统中的质量流量控制器8A(8B)的使用情况来确定基准值,并可以改善流量检定精度。
在本实施例的流量检定系统16中,包括第一截止阀7A和7B和质量流量控制器8A和8B的两个气体管路2A和2B与压力传感器12相连。在流量检定中,压力传感器12为气体管路2A和2B中的每一个测量压力。取决于从气体管路(2A,2B)中的质量流量控制器(8A,8B)到压力传感器12的距离、流入气体管路(2A,2B)中的工艺气体(A,B)的比重和流量,由压力传感器12测量的压力在气体管路2A和2B之间可能不同。即使情况是这样,根据本实施例中的流量检定系统16,也可以通过使用测量时间调节装置35根据气体管道结构和工艺气体的性质为每个气体管路调节压力测量时间来适当地地监视气体管路2A和2B的每一个中的压力。
在不背离本发明的精神或其本质特性的情况下,本发明可以用其他的特定形式实施。
(1)在上面的实施例中,质量流量控制器8A和8B用作流量控制装置。可选地,可以使用能控制流量的任何物件,如质量流量压力计,而不是质量流量控制器8A和8B。
(2)在上面的实施例中,通过将第二截止阀9A和9B与终段截止阀13相连而限定的内部通道构成检测槽路T。可选地,可以将检测槽路T设置在第二截止阀9A和9B与终段截止阀13之间作为与管线分开的元件,并且将压力传感器12安装在检测槽路中。
(3)在上面的实施例中,终段截止阀13位于压力传感器12下游;然而,压力传感器12和终段截止阀13可以省略。如果它们被省略,则处理室4执行与检测槽路T相同的功能。在这种情况下,应该对由压力传感器6测量的处理室4中的压力进行积分,用于流量检定。
(4)在上面的实施例中,提供了两个气体管路2A和2B;然而,流量检定系统16可以应用于具有一个气体管路或三个或更多气体管路的气体供应系统。
(5)在上面的实施例中,当将质量流量控制器(8A,8B)安装在气体管路(2A,2B)中时,通过跟踪流量检定过程来计算积分压力值并将算出的积分压力值存储在基准值存储装置27中。可选地,可以预先将基准值存储在基准值存储装置27中。
(6)在上面的实施例中,在流量检定中,控制器14控制第一至第三截止阀7A、7B、9A、9B、10A、10B、质量流量控制器8A和8B和真空泵5的操作。可选地,主机装置15可以控制它们的操作。
(7)在上面的实施例中,使用者选择“基准值设定模式”和“流量检定模式”。一种备选的方法是当传感器检测到质量流量控制器(8A,8B)在气体管路(2A,2B)中或在类似场合上的安装时,自动启动“基准值设定模式”。同样,可以在启动半导体制造设备时自动启动“流量检定模式”。
(8)在上面的实施例中,在流量检定中,关闭终段截止阀13,使用压力传感器12来检测检测槽路T中的压力变化并计算积分压力值。一种备选的方法是,自流量控制开始之后在不关闭终段截止阀13的情况下,对已经由压力传感器12测量出的压力值进行积分并且将算出的积分压力值用于流量检定。在这种情况下,压力测量时间应该是检测槽路T中的压力变得稳定所需的时间。在这种情况下,同样希望使用测量时间调节装置35根据气体管路长度、工艺气体的比重和流量对每个气体管路确定压力测量时间。
尽管已经示出和描述了本发明的目前优选的实施例,但应该理解,本公开是为了说明性的目的,在不背离如所附的权利要求中阐明的本发明的范围的情况下,可以做出各种变化和修改。

Claims (10)

1.一种用于检定气体管道系统中的流量的流量检定系统,所述气体管道系统包括:第一截止阀;安装在所述第一截止阀下游的流量控制装置;和用于测量所述流量控制装置下游的压力的压力传感器,所述流量检定系统适合基于由所述压力传感器测量的压力来检定流量,
所述流量检定系统包括:
用于存储基准值的基准值存储装置,所述基准值通过当被设定为基准值设定模式时由所述压力传感器测量的压力值进行积分来计算;以及
异常检测装置,其用于当工艺气体通过所述第一截止阀被供应到所述流量控制装置、在流量上被所述流量控制装置控制并且被供应到所述压力传感器时,通过对由所述压力传感器测量的压力值进行积分来计算压力积分值,并将所述压力积分值与所述基准值进行比较来检测工艺气体的异常流量。
2.如权利要求1所述的流量检定系统,还包括:
安装在所述流量控制装置和所述压力传感器之间的第二截止阀;以及
安装在所述压力传感器下游的终段截止阀;
其中刚好在所述流量控制装置开始流量控制之后,通过对由在所述第二截止阀和所述终段截止阀之间的所述压力传感器测量的压力值进行积分来计算所述压力积分值。
3.如权利要求1所述的流量检定系统,还包括基准值设定模式设定装置,其布置成当所述流量控制装置安装在所述气体管道系统中时,在所述流量控制装置控制所述工艺气体的流量时使所述压力传感器测量所述压力,并且使所述基准值存储装置将通过所测量的压力值的积分而算出的压力积分值存储为基准值。
4.如权利要求2所述的流量检定系统,还包括基准值设定模式设定装置,其布置成当所述流量控制装置安装在所述气体管道系统中时,在所述流量控制装置控制所述工艺气体的流量时使所述压力传感器测量所述压力,并且使所述基准值存储装置将通过所测量的压力值的积分而算出的压力积分值存储为基准值。
5.如权利要求1所述的流量检定系统,还包括:
多个气体管路,每个所述气体管路都包括所述第一截止阀和所述流量控制装置并且连接到所述压力传感器;
安装在所述流量控制装置和所述压力传感器之间的第二截止阀,在所述多个气体管路中仅仅待测量的气体管路的第二截止阀被关闭或打开以由所述基准值存储装置进行基准值存储和由所述异常检测装置进行工艺管路的异常流量的检测;以及
测量时间调节装置,用于在每个气体管路中调节压力测量时间,在所述压力测量时间期间,由所述压力传感器测量检定所述流量所需的压力测量值。
6.如权利要求2所述的流量检定系统,还包括:
多个气体管路,每个所述气体管路都包括所述第一截止阀和所述流量控制装置并且连接到所述压力传感器;以及
测量时间调节装置,用于在每个气体管路中调节压力测量时间,在所述压力测量时间期间,由所述压力传感器测量检定所述流量所需的压力测量值,
其中,在所述多个气体管路中仅仅待测量的气体管路的第二截止阀被关闭或打开以由所述基准值存储装置进行基准值存储和由所述异常检测装置进行工艺管路的异常流量的检测。
7.如权利要求3所述的流量检定系统,还包括:
多个气体管路,每个所述气体管路都包括所述第一截止阀和所述流量控制装置并且连接到所述压力传感器;
安装在所述流量控制装置和所述压力传感器之间的第二截止阀,在所述多个气体管路中仅仅待测量的气体管路的第二截止阀被关闭或打开以由所述基准值存储装置进行基准值存储和由所述异常检测装置进行工艺管路的异常流量的检测;以及
测量时间调节装置,用于在每个气体管路中调节压力测量时间,在所述压力测量时间期间,由所述压力传感器测量检定所述流量所需的压力测量值。
8.如权利要求4所述的流量检定系统,还包括:
多个气体管路,每个所述气体管路都包括所述第一截止阀和所述流量控制装置并且连接到所述压力传感器;以及
测量时间调节装置,用于在每个气体管路中调节压力测量时间,在所述压力测量时间期间,由所述压力传感器测量检定所述流量所需的压力测量值,
其中,在所述多个气体管路中仅仅待测量的气体管路的第二截止阀被关闭或打开以由所述基准值存储装置进行基准值存储和由所述异常检测装置进行工艺管路的异常流量的检测。
9.一种检定气体管道系统中的流量的流量检定方法,
所述气体管道系统包括:第一截止阀;安装在所述第一截止阀下游的流量控制装置;和用于测量所述流量控制装置下游的压力的压力传感器,所述流量检定方法布置成基于由所述压力传感器测量的压力来检定所述流量,
所述流量检定方法包括:
当所述工艺气体通过所述第一截止阀被供应到所述流量控制装置并且在流量上被所述流量控制装置控制时,对由所述压力传感器测量的压力值进行积分来计算压力积分值的压力积分值计算步骤;
将在所述压力积分值计算步骤中计算的压力积分值与基准值进行比较的比较步骤,所述基准值通过对当被设定为基准值设定模式时由所述压力传感器测量的压力值进行积分来计算;以及
基于所述比较步骤中的比较结果来检测所述流量中的异常的异常检测步骤。
10.如权利要求9所述的流量检定方法,还包括在所述流量控制装置开始流量控制之后使所述压力传感器测量第二截止阀和终段截止阀之间的压力的压力测量步骤,其中所述第二截止阀安装在所述流量控制装置和所述压力传感器之间,所述终段截止阀安装在所述压力传感器的下游。
CN2008102149250A 2007-08-29 2008-08-29 流量检定系统和流量检定方法 Expired - Fee Related CN101408276B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007222582 2007-08-29
JP2007222582A JP4870633B2 (ja) 2007-08-29 2007-08-29 流量検定システム及び流量検定方法
JP2007-222582 2007-08-29

Publications (2)

Publication Number Publication Date
CN101408276A CN101408276A (zh) 2009-04-15
CN101408276B true CN101408276B (zh) 2012-12-26

Family

ID=40408776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008102149250A Expired - Fee Related CN101408276B (zh) 2007-08-29 2008-08-29 流量检定系统和流量检定方法

Country Status (5)

Country Link
US (1) US7904257B2 (zh)
JP (1) JP4870633B2 (zh)
KR (1) KR101017285B1 (zh)
CN (1) CN101408276B (zh)
TW (1) TWI368935B (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102319A1 (ja) * 2006-03-07 2007-09-13 Ckd Corporation ガス流量検定ユニット
JP5346628B2 (ja) * 2009-03-11 2013-11-20 株式会社堀場エステック マスフローコントローラの検定システム、検定方法、検定用プログラム
US8874388B2 (en) * 2009-09-15 2014-10-28 On Site Gas Systems, Inc. Method and system for measuring a rate of flow of an output
CN102269330A (zh) * 2011-04-28 2011-12-07 煤炭科学研究总院重庆研究院 煤层气集输管道压力调节控制器
JP5430621B2 (ja) * 2011-08-10 2014-03-05 Ckd株式会社 ガス流量検定システム及びガス流量検定ユニット
CN102635785A (zh) * 2012-02-28 2012-08-15 中国人民解放军军事交通学院 一种不解体液压管道的流量监测方法
CN103148347B (zh) * 2013-03-18 2015-07-15 福建省文松彩印有限公司 一种使用蒸汽机台的蒸汽自动调压系统
DE102013113387A1 (de) * 2013-12-03 2015-06-03 Ulrich Gmbh & Co. Kg Injektor zur Injektion eines Fluids und Verfahren zur Steuerung eines Injektors
CN106323425A (zh) * 2015-06-19 2017-01-11 沈阳兴大通仪器仪表有限公司 一种边测边调检定装置
KR102579543B1 (ko) 2015-08-31 2023-09-18 엠케이에스 인스트루먼츠, 인코포레이티드 비임계적 흐름 조건에서 압력 기반의 흐름 측정을 위한 방법 및 장치
JP6541584B2 (ja) * 2015-09-16 2019-07-10 東京エレクトロン株式会社 ガス供給系を検査する方法
JP6600568B2 (ja) * 2015-09-16 2019-10-30 東京エレクトロン株式会社 流量制御器の出力流量を求める方法
CN108496064B (zh) * 2016-01-15 2020-05-22 株式会社富士金 能够测定流量的气体供给装置、流量计以及流量测定方法
CN106369283A (zh) * 2016-10-13 2017-02-01 上海航天能源股份有限公司 管路流量控制系统及方法
KR102496178B1 (ko) * 2016-12-15 2023-02-03 현대자동차주식회사 연료전지 차량에 탑재되는 수소차단밸브의 제어 방법
CN108735631B (zh) * 2017-04-24 2024-03-22 东京毅力科创株式会社 处理装置、异常探测方法以及存储介质
JP6978865B2 (ja) * 2017-07-05 2021-12-08 株式会社堀場エステック 流体制御装置、流体制御方法、及び、流体制御装置用プログラム
US10866135B2 (en) 2018-03-26 2020-12-15 Applied Materials, Inc. Methods, systems, and apparatus for mass flow verification based on rate of pressure decay
JP7254620B2 (ja) * 2018-06-26 2023-04-10 株式会社Kokusai Electric 半導体装置の製造方法、部品の管理方法、基板処理装置及び基板処理プログラム
CN110849427A (zh) * 2019-08-31 2020-02-28 广州海达安控智能科技有限公司 混凝土泵车流量监控方法、系统及计算机可读存储介质
DE102019215319A1 (de) * 2019-10-07 2021-04-08 Leybold Gmbh Einlasssystem für ein Massenspektrometer
CN112864044A (zh) * 2019-11-28 2021-05-28 上海新微技术研发中心有限公司 化学品的循环管路流量控制系统及其控制方法
CN113124323B (zh) * 2019-12-31 2023-01-31 佛山市美的清湖净水设备有限公司 供水设备的异常检测方法、装置和供水设备
JP7122334B2 (ja) * 2020-03-30 2022-08-19 Ckd株式会社 パルスショット式流量調整装置、パルスショット式流量調整方法、及び、プログラム
JP7122335B2 (ja) 2020-03-30 2022-08-19 Ckd株式会社 パルスショット式流量調整装置、パルスショット式流量調整方法、及び、プログラム
US20220328288A1 (en) * 2020-05-15 2022-10-13 Hitachi High-Tech Corporation Inspection method of plasma processing apparatus
CN111911807A (zh) * 2020-08-25 2020-11-10 深圳市德达康健股份有限公司 一种小型制氧机及其流量控制装置、方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4858637A (en) * 1986-12-23 1989-08-22 University Of Waterloo Gas consumption measuring system
CN1204396A (zh) * 1996-01-04 1999-01-06 罗斯蒙德公司 带有空速管的平均压力流量计
JP2004085354A (ja) * 2002-08-27 2004-03-18 Nippon Applied Flow Kk 流速・圧力計測器および流速・圧力計測装置ならびに配管網監視システムならびに流速計測装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3367811B2 (ja) 1996-01-05 2003-01-20 シーケーディ株式会社 ガス配管系の検定システム
JP4086057B2 (ja) * 2004-06-21 2008-05-14 日立金属株式会社 質量流量制御装置及びこの検定方法
JP4648098B2 (ja) 2005-06-06 2011-03-09 シーケーディ株式会社 流量制御機器絶対流量検定システム
WO2007102319A1 (ja) * 2006-03-07 2007-09-13 Ckd Corporation ガス流量検定ユニット
JP5134841B2 (ja) * 2007-03-16 2013-01-30 Ckd株式会社 ガス供給ユニット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4858637A (en) * 1986-12-23 1989-08-22 University Of Waterloo Gas consumption measuring system
CN1204396A (zh) * 1996-01-04 1999-01-06 罗斯蒙德公司 带有空速管的平均压力流量计
JP2004085354A (ja) * 2002-08-27 2004-03-18 Nippon Applied Flow Kk 流速・圧力計測器および流速・圧力計測装置ならびに配管網監視システムならびに流速計測装置

Also Published As

Publication number Publication date
US20090063059A1 (en) 2009-03-05
JP4870633B2 (ja) 2012-02-08
KR20090023123A (ko) 2009-03-04
CN101408276A (zh) 2009-04-15
TW200913005A (en) 2009-03-16
JP2009054094A (ja) 2009-03-12
TWI368935B (en) 2012-07-21
KR101017285B1 (ko) 2011-02-28
US7904257B2 (en) 2011-03-08

Similar Documents

Publication Publication Date Title
CN101408276B (zh) 流量检定系统和流量检定方法
JP6093019B2 (ja) 質量流量制御システム
CN101978132B (zh) 对气体流动控制器进行现场测试的方法和设备
KR101572407B1 (ko) 차압식 매스 플로우 컨트롤러에 있어서 진단 기구
US7610117B2 (en) System and method for flow monitoring and control
KR101442574B1 (ko) 가스 유량 감시 시스템
JP6892687B2 (ja) 流量制御装置および流量制御装置を用いる異常検知方法
US7740024B2 (en) System and method for flow monitoring and control
JP5148634B2 (ja) 弁の自己漏洩の診断
JP6533740B2 (ja) ガス流量監視方法及びガス流量監視装置
KR20070056092A (ko) 유량계의 교정 시스템 및 방법
KR20090086936A (ko) 유량제어장치의 검정방법
US10663337B2 (en) Apparatus for controlling flow and method of calibrating same
US20090292399A1 (en) Method for detecting malfunction of valve on the downstream side of throttle mechanism of pressure type flow control apparatus
TWI607201B (zh) 流量校驗單元
JP2005196788A (ja) 流体の流量を制御する装置、方法及びシステム
KR20140136024A (ko) 자가 확증형 질량 유량 제어기 및 질량 유량계를 제공하는 시스템 및 방법
KR20170033236A (ko) 유량 제어기의 출력 유량을 구하는 방법
JPH11223538A (ja) マスフローコントローラ流量検定システム
KR20190087644A (ko) 넓은 범위의 질량 유동 검증을 위한 방법 및 장치
US10274972B2 (en) Method of inspecting gas supply system
JPH07306084A (ja) マスフローコントローラ流量検定システム
CN113835449B (zh) 一种基于压力波动快速调节流量控制器阀门的控制方法
JPH06104155A (ja) 半導体製造プロセスにおける中間制御装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121226

CF01 Termination of patent right due to non-payment of annual fee