CN101365537A - 燃料电池的电催化剂载体 - Google Patents

燃料电池的电催化剂载体 Download PDF

Info

Publication number
CN101365537A
CN101365537A CNA2006800290987A CN200680029098A CN101365537A CN 101365537 A CN101365537 A CN 101365537A CN A2006800290987 A CNA2006800290987 A CN A2006800290987A CN 200680029098 A CN200680029098 A CN 200680029098A CN 101365537 A CN101365537 A CN 101365537A
Authority
CN
China
Prior art keywords
electrode
particle
titanium
catalyst
dopant element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800290987A
Other languages
English (en)
Other versions
CN101365537B (zh
Inventor
M·蔡
Y·卢
Z·吴
L·L·冯
M·S·拉思科斯基
J·T·约翰逊
F·T·瓦纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Tulane University
Original Assignee
GM Global Technology Operations LLC
Tulane University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC, Tulane University filed Critical GM Global Technology Operations LLC
Publication of CN101365537A publication Critical patent/CN101365537A/zh
Application granted granted Critical
Publication of CN101365537B publication Critical patent/CN101365537B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

氧化钛(通常是二氧化钛)催化剂载体颗粒,为电子传导率而进行掺杂并且形成具有表面面积提高的孔隙,例如在氢气/氧气燃料电池中在质子交换膜电极上用于电催化的电极中。合适的钛的化合物和掺杂剂与成孔颗粒一起分散在液体介质中。该化合物在成孔颗粒上以沉淀物或者溶胶的形式沉积,并且被加热以便将沉积物转化成含掺杂剂的二氧化钛的晶体。如果加热未分解成孔颗粒的话,它们被化学方法从现在的孔隙强化的二氧化钛颗粒中去除。

Description

燃料电池的电催化剂载体
技术领域
[0001]本发明涉及燃料电池的电极催化剂,更确切地,本发明涉及燃料电池(特别是具有阴极的电池,在所述阴极处氧气在空气中还原)的抗腐蚀催化剂的载体。
背景技术
[0002]燃料电池是为移动式和固定式电力产生而开发的电化学电池。一个燃料电池设计采用固体聚合物电解质(SPE)膜或者质子交换膜(PEM)来提供阴极和阳极之间的离子传送。能提供质子的气态和液态燃料被采用。实例包括氢气和甲醇,氢气更有利。氢气被供给燃料电池的阳极。氧气(以空气形式)是电池氧化剂并且被供给电池的阴极。燃料电池电极由多孔导电材料制成,例如网状石墨(woven graphite),石墨化薄片,或者碳纸,使得燃料能够在朝向燃料供应电极的膜表面上分散。每个电极包括细分的催化剂颗粒(例如,铂颗粒),以碳颗粒为载体,用来促进阳极处氢气的电离和阴极处氧气的还原。质子从阳极通过离子导电聚合物膜流向阴极,并在阴极处它们与氧气结合生成水,而所述水从电池中排出(discharged)。导电板带走在阳极处生成的电子。
[0003]通常,现有技术中PEM燃料电池采用一种由全氟化的离聚物例如Dupint NafionTM制成的膜。离聚物具有可电离侧基(例如磺酸盐基团)来传输质子通过膜从阳极到达阴极。
[0004]目前,以高表面积碳为载体的铂(Pt)是用于PEM燃料电池系统中的最有效的电催化剂。但是,阻碍质子交换膜(PEM)燃料电池技术大范围应用的重要问题是在扩展操作(extended operation)和汽车循环(automotive cycling)期间的性能损失。最近电池性能退化的研究表明性能损失的主要部分被归咎于电催化剂的退化:尽管碳被认为是最有利的催化剂载体,因为它成本低,电子传导率好,表面面积高,并且化学稳定,但是,对于PEM燃料电池长期稳定性来说,PEM燃料电池阴极侧的碳载体的腐蚀作为有挑战的问题出现。
[0005]本发明的目的是提供一种多孔氧化钛电催化剂载体,其具有适用于PEM燃料电池环境的特性,包括适当的表面面积,电导率和化学稳定性。
发明内容
[0006]本发明采用一种多孔状的二氧化钛(有时也称为“二氧化钛(titania)”)作为铂或者其他合适的催化剂的高表面面积载体。优选地,二氧化钛被混合或者掺杂有元素如铌来提高载体材料的电导率。氧化钛在可移除的填料颗粒(微粒模板),例如二氧化硅颗粒,的周围形成,所述可移除的填料颗粒从二氧化钛颗粒中化学溶解(蚀刻)来产生高多孔的催化剂颗粒载体。贵金属或其他催化剂材料的颗粒然后沉积在多孔的载体材料上。这种二氧化钛载体材料特别可用于与其中氧气被电化学还原的燃料电池中的质子交换膜结合的催化电极材料中。
[0007]根据本发明的优选实施方式,烷氧基钛化合物在醇或水性/醇介质中形成为溶液或者溶胶。例如,可以形成异丙氧基钛(IV)或2-乙基己氧基钛(IV)的溶液或者溶胶。合适的掺杂剂(dopant)元素的盐或者醇盐(alkoxide)也可以溶解或分散在介质中。合适的掺杂剂元素的实例包括镧,锰,钼,铌,钽,钨,锶,钒和钇。此外,分散在液体介质中的是二氧化硅、聚合物粒(polymer bead)或类似物的合适尺寸(举例来说最大尺寸低于20nm)的颗粒(优选地在超声波能量帮助下)。钛和掺杂剂元素化合物然后沉淀或者凝胶化在分散的颗粒上。
[0008]凝胶化或者沉淀的复合材料从液体介质中分离并干燥,如果需要的话。复合材料在受控气氛中,例如在氢气或者氨的受控气氛中,被加热到合适的温度,形成掺杂有合适量的铌或类似物的二氧化钛的非常小的颗粒(纳米尺寸)。当模板颗粒包括有机聚合物时,它们可以通过加热而被除去,从而在二氧化钛的聚集颗粒中留下孔隙(pore)。当模板颗粒是无机的,例如二氧化硅,它们可以从二氧化钛颗粒中化学溶解,留下内部和外部表面孔隙,用来接受和分散催化剂金属的细颗粒。
[0009]多孔的且掺杂的二氧化钛颗粒提供了充足的表面来有效的分散铂颗粒,所述铂颗粒在氢气/氧气燃料电池环境中在NafionTM质子交换膜上用作阴极电极材料。二氧化钛载体在高温空气环境中耐受氧化重量损失并且表现出电导率。
[0010]通过说明性的优选实施方案的详细描述,本发明的其他目的和优点变得明显。
具体实施方式
[0011]本发明的二氧化钛催化剂载体材料在催化剂应用具有广义实用性。它们的实用性包括在燃料电池电极中作为催化剂颗粒的催化剂载体的应用。例如,这些耐用的催化剂载体可应用于电化学燃料电池组件(assembly),该燃料电池组件包括固体聚合物电解质膜和暴露于氧气或空气的阴极。许多转让给本发明的受让人的美国专利描述了具有固体聚合物电解质膜组件和电极组件的电化学燃料电池组件。例如U.S.6,277,513的图1-4包括这样的描述,该专利的说明书和附图通过引用而结合到本说明书中。在所述′513专利中,采用碳颗粒来携带或者担载用于电极(阳极或阴极)工作的催化剂颗粒。在本发明中,采用多孔的且掺杂的二氧化钛颗粒来携带用于电极功能的催化剂。
[0012]烷氧基钛(IV)化合物,例如(异丙氧基)4钛或(2-乙基己氧基)4钛是易于获得的,并因此,是合适的并且甚至优选的,对于应用于本发明的实践中来说。这些化合物在本发明方法中所采用的醇(乙醇)中具有合适的溶解度。如上所述,合适的掺杂剂元素包括镧,锰,钼,铌,钽,钨,锶,钒和钇。可以添加掺杂剂元素的原子,从而通过在晶体氧化钛载体材料中引入缺陷(defects)来提高电子传导率。掺杂剂合适的加入量最高大约是载体材料中钛原子的一半。这些掺杂剂元素的醇盐化合物或者盐是可得的并且可用于将一种或多种掺杂剂元素引入到氧化钛催化剂载体颗粒中。
[0013]例如异丙氧基钛(IV)和氯化铌(V)或乙氧基铌(V)以每个铌原子两原子份钛的比例溶解在乙醇中。二氧化硅颗粒(最大尺寸是10-15nm)分散在钛和铌化合物的醇溶液或溶胶中。以提供每份钛大约1.2重量份硅的量将二氧化硅适当地添加到溶胶中。或者,在该分散体中,尼龙或氯乙烯的纳米尺寸颗粒可以被用作成孔模板。分散体成分混合的均匀性可通过分散体的声振动来改善。
[0014]然后用盐酸水溶液酸化该溶液(溶胶)而水解钛和铌化合物并且形成夹带二氧化硅颗粒的含钛和含铌材料的凝胶或沉淀物。含钛材料含有足够的氧(气)来形成二氧化钛。
[0015]沉淀物或凝胶从液体介质中分离出并干燥。然后固体材料在氢气(或合适地,氨)气氛中加热至大约1000℃而形成掺杂有元素铌的晶体二氧化钛。二氧化钛颗粒很小,纳米尺寸,并且二氧化硅颗粒分散在掺杂的二氧化钛中。
[0016]采用氢氧化钠或氟化氢水溶液对铌掺杂的氧化物颗粒进行化学蚀刻,以去除成孔二氧化硅颗粒。化学蚀刻的残余物是大量的非常小的、含孔的、铌掺杂的、TiO2颗粒,其中主要通过去除二氧化硅颗粒来形成孔隙。
[0017]在特定的实验的实施例中,生成的多孔TiO2是结晶的,所含的Ti/Nb的原子比是2,并且BET表面面积是125m2/g。
[0018]在实验的举例说明的延续部分中,Pt沉积在这种Nb掺杂的TiO2上,采用亚硝酸铂(II)二胺——Pt(NO2)2(NH3)2的水溶液作为前体。在80℃利用超声能量将Nb掺杂的TiO2分散在水中。在搅拌的情况下,将铂前体也单独地溶解在70-80℃的水中。将TiO2分散体和铂前体溶液混合。利用乙酸将所得到的铂沉积物介质的pH值调至3.0,并且一氧化碳气体以每分钟2升的速度扩散通过介质。在90℃搅拌反应介质。
[0019]采用水合肼来还原在Nb掺杂的TiO2颗粒上非常小的颗粒形式的铂和它的沉积物。在搅拌的情况下,在1小时的时间内将水合肼逐滴地加入到铂沉积物介质(在90℃,pH值3,一氧化碳扩散)。然后将具有沉积的铂的含TiO2的介质冷却至室温。将在Nb掺杂的TiO2颗粒上沉积的铂的反应产物过滤通过孔径尺寸是0.45μm的硝酸纤维素膜,使用蒸馏水清洗,并且在50℃在真空炉中干燥过夜。
[0020]在本实施例中,铂,以72重量%,沉积在多孔Nb掺杂的TiO2上,并且使用意图诱发催化剂的氧化腐蚀的气相加速热烧结法,测试所得的催化剂。测试在250℃,在大气下(其中氧气的体积比是0.7%,水的体积比是8%,并且有平衡量的氦气)进行30小时。对两种商用以碳为载体的铂催化剂进行相同的腐蚀测试以便比较。表1记录了由根据本发明生产的以二氧化钛为载体的铂催化剂和两种对比的以碳为载体的铂催化剂所得的质量损失。
表1 质量损失的比较
 
催化剂 Pt装载量 质量损失
Pt/TiO2(无Nb) 42% -1.1%
Pt/TiO2(Nb/Ti=1/2) 72% -4.4%
Pt/碳(1) 46.6% -55.8%
Pt/碳(2) 45.9% -76.2%
[0021]可见,在氧化性的环境中,氧化钛担载的催化剂的生存性优于碳担载的催化剂。
[0022]进一步针对其氧气还原活性测试上述多孔、铌掺杂的氧化钛担载的铂催化剂。通过一种特别的方法(混合并在悬浮液中声处理)制备催化剂样品用于电化学测量,从而形成用于转盘电极(RDE)的油墨。悬浮液包含以掺杂的二氧化钛为载体的铂(指定为41305 TJ)和分散在异丙醇和水中的商用导电微粒碳。分散体也含有NafionTM离聚物在水中的5%的溶液。
[0023]将包含担载的铂和碳的混合物放入密封的60ml玻璃瓶。接着,通过2-4小时的摇晃和声处理来混合该内容物。一旦形成均匀的油墨悬浮液,10-20微升的悬浮液分配到玻璃状(glassy)碳电极表面。然后在室温下干燥,将电极放到转盘电极(RDE)装置上进行活性测量(单位为在0.9V,每平方厘米的铂的微安数)。电极上所得的干燥催化剂包含52.6wt%的Pt。
[0024]制备铂/未掺杂的TiO2的样品用于比较测试。铂/未掺杂的TiO2(样品0131005TJ)以油墨形式应用到RCE用于通过上述技术进行对比电极活性的测量。此外,制备了第二个铂/铌-掺杂的TiO2催化剂(样品061705KV)。该样品包含数量为5%钛的铌并且电极上Pt的装载量(33.4%)低于样品131005TJ。
[0025]在电极活性测试中,电极以1600RPM在0.1M HClO4电解质中在60℃在一个大气压的氧气饱和的流动的气氛中旋转。电极电压扫描速度是5mV/s,在0-1V电压范围内。
[0026]表2总结了两种示例性的以掺杂的二氧化钛为载体的铂催化剂的氧气还原活性和使用非掺杂的TiO2样品和两种商用铂/碳对比催化剂获得的类似结果。
表2
 
催化剂 Pt(wt%) 类型 比活性(μA/cm2Pt,在0.90V)
0131005TJ 27.8 Pt/TiO2(无Nb) 153
041305TJ 52.6 Pt/Nb-TiO2(1:2) 548
061705KV 33.4 Pt/Nb-TiO2(5%) 494
Pt/C(3) 46.4 PtCo/C 298
Pt/C(4) 46.5 Pt/HSC 172
[0027]可见,具有铂催化剂的铌掺杂的钛载体颗粒在测试中提供了高度合适的比电极活性。这两个样品的比活性(单位为μA/cm2Pt,在0.90V)高于铂/碳电催化剂或铂/未掺杂的TiO2电极材料。
[0028]虽然通过某些优选的实施方案举例说明了本发明,但是这些说明意图是非限制性的。

Claims (14)

1.一种多孔催化剂载体,其包括氧化钛颗粒,该氧化钛颗粒含有用来提高电子传导率的掺杂剂元素,并且该颗粒具有由腾空的成孔颗粒造成的表面面积增加的孔隙。
2.权利要求1的催化剂载体,其中该掺杂剂元素包括一种或多种选自镧,锰,钼,铌,钽,钨,锶,钒和钇的元素。
3.权利要求1的催化剂载体,其中该掺杂剂元素包括铌。
4.一种燃料电池的电极,该电极包括分散在氧化钛催化剂载体颗粒上的催化剂颗粒,该氧化钛含有用来提高电子传导率的掺杂剂元素,并且该颗粒具有由腾空的成孔颗粒造成的表面面积增加的孔隙。
5.权利要求4的燃料电池的电极,其中该电极形成在质子交换膜表面上并且包括贵金属催化剂颗粒。
6.权利要求4的燃料电池的电极,其中该电极是用于在空气物流中还原氧气的阴极。
7.权利要求5的燃料电池的电极,其中该电极是用于在空气物流中还原氧气的阴极。
8.权利要求4的燃料电池的电极,其中该催化剂包括铂并且该掺杂剂元素是铌。
9.权利要求5的燃料电池的电极,其中该催化剂包括铂并且该掺杂剂元素是铌。
10.一种制备用于担载催化剂颗粒的二氧化钛颗粒的方法,其包括:
将钛的化合物和掺杂剂元素,以溶质或者溶胶的形式,共分散在液体介质中;
在液体介质中分散用于成孔的不可溶颗粒,该颗粒的最大尺寸不大于大约20纳米;
将分散的钛的化合物和掺杂剂沉淀在成孔颗粒上;
将钛化合物和掺杂剂化合物涂覆的颗粒从液体介质中分离;
在大气中加热涂覆的颗粒形成晶体、含掺杂剂元素的氧化钛;并且如果需要的话,在加热后,
从晶体、含掺杂剂元素的氧化钛颗粒中去除嵌入的模板颗粒而在氧化钛颗粒中留下模板颗粒-腾空的孔隙。
11、权利要求10的方法,其中钛的化合物是烷氧基钛(IV)化合物并且该液体介质包括醇和/或水。
12、权利要求10的方法,其中该模板颗粒是二氧化硅颗粒。
13、权利要求10的方法,其中该掺杂剂元素包括一种或多种选自镧,锰,钼,铌,钽,钨,锶,钒和钇的元素。
14、权利要求10的方法,其中该掺杂剂元素包括铌。
CN2006800290987A 2005-08-12 2006-08-09 燃料电池的电催化剂载体 Active CN101365537B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US70793705P 2005-08-12 2005-08-12
US60/707,937 2005-08-12
PCT/US2006/030921 WO2007021695A2 (en) 2005-08-12 2006-08-09 Electrocatalyst supports for fuel cells

Publications (2)

Publication Number Publication Date
CN101365537A true CN101365537A (zh) 2009-02-11
CN101365537B CN101365537B (zh) 2012-08-15

Family

ID=37758098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800290987A Active CN101365537B (zh) 2005-08-12 2006-08-09 燃料电池的电催化剂载体

Country Status (5)

Country Link
US (2) US20070037041A1 (zh)
KR (1) KR100982648B1 (zh)
CN (1) CN101365537B (zh)
DE (1) DE112006002287B4 (zh)
WO (1) WO2007021695A2 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102459085A (zh) * 2009-05-21 2012-05-16 康奈尔大学 导电的金属氧化物和金属氮化物纳米颗粒
CN104220630A (zh) * 2012-02-23 2014-12-17 特来德斯通技术公司 耐腐蚀且导电的金属表面
CN107785588A (zh) * 2016-08-26 2018-03-09 福特全球技术公司 燃料电池氧化还原反应催化剂
CN108075159A (zh) * 2017-12-29 2018-05-25 成都新柯力化工科技有限公司 一种掺杂金红石相TiO2燃料电池膜电极及制备方法
CN108321405A (zh) * 2016-12-07 2018-07-24 黄河科技学院 质子交换膜燃料电池用电极催化剂的多孔载体
CN108808028A (zh) * 2018-06-07 2018-11-13 东莞理工学院 燃料电池催化剂载体其制备方法及电池电极
CN111266110A (zh) * 2020-02-24 2020-06-12 中国科学院广州能源研究所 一种以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂及其制备方法
CN112166514A (zh) * 2018-07-09 2021-01-01 舍弗勒技术股份两合公司 催化剂体系、电极以及燃料电池或电解器
CN115475616A (zh) * 2021-06-16 2022-12-16 中国石油化工股份有限公司 一种湿式氧化催化剂及其制备方法和应用

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070128499A1 (en) * 2005-11-18 2007-06-07 Campbell Stephen A Catalyst for fuel cells
US7879752B2 (en) * 2006-08-11 2011-02-01 GM Global Technology Operations LLC Electrocatalyst
KR100892099B1 (ko) 2007-11-20 2009-04-08 서울산업대학교 산학협력단 연료전지용 전극촉매의 제조방법 및 그에 의해 제조된전극촉매
US8883674B2 (en) * 2008-06-11 2014-11-11 GM Global Technology Operations LLC Mesoporous electrically conductive metal oxide catalyst supports
US8974762B2 (en) * 2010-04-08 2015-03-10 Nalco Company Silica particle manufacturing process
US20140004444A1 (en) * 2010-09-28 2014-01-02 Isotta Cerri Fuel cell electrocatalyst
CN102139917B (zh) * 2010-12-31 2012-11-14 昆明冶金高等专科学校 一种介孔二氧化钛材料的制备方法
JP5724030B2 (ja) * 2011-07-25 2015-05-27 トヨタ モーター ヨーロッパ ナームロゼ フェンノートシャップ/ソシエテ アノニム 高電気化学的安定性及び高費用効率のコア−シェル触媒
GB201300810D0 (en) 2013-01-16 2013-02-27 Llika Technologies Ltd Composite Materials
GB2509916A (en) 2013-01-16 2014-07-23 Ilika Technologies Ltd A mixed metal oxide material of tantalum and titanium
GB2517394A (en) 2013-01-16 2015-02-25 Ilika Technologies Ltd Composite materials
US20150221954A1 (en) * 2014-01-31 2015-08-06 Nissan North America, Inc. Templated non-carbon metal oxide catalyst support
US10090530B2 (en) 2014-01-31 2018-10-02 Nissan North America, Inc. Non-carbon mixed-metal oxide electrocatalysts
US20160204447A1 (en) * 2015-01-08 2016-07-14 Nissan North America, Inc. Membrane electrode assembly with multi-layer catalyst
US9698428B2 (en) 2015-02-04 2017-07-04 Nissan North America, Inc. Catalyst support particle structures
US9871256B2 (en) 2015-02-04 2018-01-16 Nissan North America, Inc. Fuel cell electrode having non-ionomer proton-conducting material
WO2017069831A2 (en) * 2015-08-06 2017-04-27 Ballard Power Systems Inc. Fuel cell with improved electro catalyst
CN110718700A (zh) * 2018-07-13 2020-01-21 黄炳照 触媒层材料及包含其的膜电极组
CN117957199A (zh) * 2021-09-08 2024-04-30 国立大学法人弘前大学 导电性钛氧化物、金属担载导电性钛氧化物、膜电极接合体、固体高分子型燃料电池、导电性钛氧化物的制造方法以及金属担载导电性钛氧化物的制造方法
CN114149057B (zh) * 2021-12-15 2023-09-01 厦门华澈环保科技有限公司 一种难生化废水电化学高级氧化EAOPs多孔电极制备方法及多孔电极板

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039480A (en) * 1975-03-21 1977-08-02 Reynolds Metals Company Hollow ceramic balls as automotive catalysts supports
JPH02116603A (ja) 1988-10-27 1990-05-01 Mitsubishi Heavy Ind Ltd メタノール改質方法
US5021304A (en) * 1989-03-22 1991-06-04 Westinghouse Electric Corp. Modified cermet fuel electrodes for solid oxide electrochemical cells
DE19614540A1 (de) * 1996-04-12 1997-10-16 Degussa Dieselkatalysator
US6086844A (en) * 1996-12-26 2000-07-11 Sumitomo Chemical Company, Ltd. Titania fiber, method for producing the fiber and method for using the fiber
US6967183B2 (en) 1998-08-27 2005-11-22 Cabot Corporation Electrocatalyst powders, methods for producing powders and devices fabricated from same
US6277513B1 (en) 1999-04-12 2001-08-21 General Motors Corporation Layered electrode for electrochemical cells
US6478994B1 (en) * 2000-03-30 2002-11-12 Trustees Of The University Of Pennsylvania Method for making boron carbide containing ceramics
DE60107991T2 (de) * 2000-03-31 2005-12-15 Sumitomo Chemical Co., Ltd. Verfahren zur Herstellung von Titanoxid
DE10049625A1 (de) * 2000-10-05 2002-04-11 Bayer Ag Verfahren zur katalytischen Direktoxidation ungesättigter Kohlenwasserstoffe in der Gasphase
CN1128009C (zh) * 2001-09-15 2003-11-19 云南省冶金研究设计院 二氧化钛基催化剂载体的制造方法
KR100951345B1 (ko) * 2005-02-18 2010-04-08 지엠 글로벌 테크놀러지 오퍼레이션스, 인코포레이티드 연료전지용 내산화성 전극
CN101171711B (zh) * 2005-05-02 2010-06-16 通用汽车环球科技运作公司 燃料电池催化剂的载体
DE112006001209T5 (de) * 2005-05-16 2008-04-30 General Motors Global Technology Operations, Inc., Detroit Katalysator für Brennstoffzellenelektrode

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102459085A (zh) * 2009-05-21 2012-05-16 康奈尔大学 导电的金属氧化物和金属氮化物纳米颗粒
CN102459085B (zh) * 2009-05-21 2015-06-03 康奈尔大学 导电的金属氧化物和金属氮化物纳米颗粒
CN104220630A (zh) * 2012-02-23 2014-12-17 特来德斯通技术公司 耐腐蚀且导电的金属表面
CN104220630B (zh) * 2012-02-23 2017-03-08 特来德斯通技术公司 耐腐蚀且导电的金属表面
CN107785588A (zh) * 2016-08-26 2018-03-09 福特全球技术公司 燃料电池氧化还原反应催化剂
CN107785588B (zh) * 2016-08-26 2022-07-22 福特全球技术公司 燃料电池氧化还原反应催化剂
CN108321405A (zh) * 2016-12-07 2018-07-24 黄河科技学院 质子交换膜燃料电池用电极催化剂的多孔载体
CN108075159A (zh) * 2017-12-29 2018-05-25 成都新柯力化工科技有限公司 一种掺杂金红石相TiO2燃料电池膜电极及制备方法
CN108808028A (zh) * 2018-06-07 2018-11-13 东莞理工学院 燃料电池催化剂载体其制备方法及电池电极
CN112166514A (zh) * 2018-07-09 2021-01-01 舍弗勒技术股份两合公司 催化剂体系、电极以及燃料电池或电解器
CN112166514B (zh) * 2018-07-09 2022-12-13 舍弗勒技术股份两合公司 催化剂体系、电极以及燃料电池或电解器
CN111266110A (zh) * 2020-02-24 2020-06-12 中国科学院广州能源研究所 一种以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂及其制备方法
CN111266110B (zh) * 2020-02-24 2023-02-03 中国科学院广州能源研究所 一种以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂及其制备方法
CN115475616A (zh) * 2021-06-16 2022-12-16 中国石油化工股份有限公司 一种湿式氧化催化剂及其制备方法和应用
CN115475616B (zh) * 2021-06-16 2024-03-26 中国石油化工股份有限公司 一种湿式氧化催化剂及其制备方法和应用

Also Published As

Publication number Publication date
US20070037041A1 (en) 2007-02-15
US8025861B2 (en) 2011-09-27
KR100982648B1 (ko) 2010-09-17
WO2007021695A3 (en) 2008-07-24
WO2007021695A2 (en) 2007-02-22
CN101365537B (zh) 2012-08-15
KR20080037709A (ko) 2008-04-30
DE112006002287B4 (de) 2009-12-17
DE112006002287T5 (de) 2008-07-03
US20100160153A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
CN101365537B (zh) 燃料电池的电催化剂载体
Zhu et al. Fe‐Ni‐Mo nitride porous nanotubes for full water splitting and Zn‐air batteries
Liu et al. Controllable urchin‐like NiCo2S4 microsphere synergized with sulfur‐doped graphene as bifunctional catalyst for superior rechargeable Zn–air battery
Cruz et al. Nanosized Pt/IrO2 electrocatalyst prepared by modified polyol method for application as dual function oxygen electrode in unitized regenerative fuel cells
CN1781843B (zh) 碳纳米球及其制备方法、催化剂及燃料电池
US20090047559A1 (en) Fuel cell electrode catalyst with improved noble metal utilization efficiency, method for manufacturing the same, and solid polymer fuel cell comprising the same
CN101641816B (zh) 用于基于聚合物电解质的燃料电池的电化学催化剂的方法
CN106058276B (zh) 一种二氧化硅修饰的多球腔碳材料的制法及其在燃料电池膜电极中的应用
Feng et al. Cobalt-based hydroxide nanoparticles@ N-doping carbonic frameworks core–shell structures as highly efficient bifunctional electrocatalysts for oxygen evolution and oxygen reduction reactions
CN101156265A (zh) 用于燃料电池的抗氧化电极
US20130149632A1 (en) Electrode catalyst for a fuel cell, method of preparing the same, and membrane electrode assembly and fuel cell including the electrode catalyst
Kong et al. Preparation of IrO2 nanoparticles with SBA-15 template and its supported Pt nanocomposite as bifunctional oxygen catalyst
CN108615899B (zh) 一种多孔碳材料及其制备方法和在锌空电池中的应用
Parthiban et al. Fluorine-enriched mesoporous carbon as efficient oxygen reduction catalyst: understanding the defects in porous matrix and fuel cell applications
CN110010911B (zh) 一种双掺杂多孔石墨烯阴极非铂催化剂及其制备方法
CN106935867B (zh) 燃料电池用电极催化剂的制造方法和其用途
Zhao et al. B‐Doped Fe/N/C Porous Catalyst for High‐Performance Oxygen Reduction in Anion‐Exchange Membrane Fuel Cells
JP5255160B1 (ja) 燃料電池用電極触媒およびその製造方法
Yin et al. Activating ORR and OER in Ruddlesden-Popper based catalysts by enhancing interstitial oxygen and lattice oxygen redox reactions
Gai et al. Sandwich-like hierarchical porous dual-carbon catalyst with more accessible sites for boosting oxygen reduction reaction
Shi et al. Hierarchical Crystalline/Amorphous Heterostructure MoNi/NiMoOx for Electrochemical Hydrogen Evolution with Industry‐Level Activity and Stability
CN113398923B (zh) 一种具有草莓状结构的碳担载IrO2@Ir异质结复合催化剂及其制备方法和应用
Shi et al. Structure optimization of ZIF-12-derived Co-NC for efficient oxygen reduction and oxygen evolution
Armstrong et al. Nanoscale titania ceramic composite supports for PEM fuel cells
CN100438972C (zh) 一种纳米粉体的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant