CN101240252B - 一株用于脱硫的放射形土壤杆菌及应用 - Google Patents

一株用于脱硫的放射形土壤杆菌及应用 Download PDF

Info

Publication number
CN101240252B
CN101240252B CN2007100103807A CN200710010380A CN101240252B CN 101240252 B CN101240252 B CN 101240252B CN 2007100103807 A CN2007100103807 A CN 2007100103807A CN 200710010380 A CN200710010380 A CN 200710010380A CN 101240252 B CN101240252 B CN 101240252B
Authority
CN
China
Prior art keywords
agrobacterium radiobacter
desulfurization
cell
application
dbt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007100103807A
Other languages
English (en)
Other versions
CN101240252A (zh
Inventor
张全
高会杰
佟明友
黎元生
唐似茵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN2007100103807A priority Critical patent/CN101240252B/zh
Publication of CN101240252A publication Critical patent/CN101240252A/zh
Application granted granted Critical
Publication of CN101240252B publication Critical patent/CN101240252B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及一株用于生物脱硫的放射形土壤杆菌及应用。该菌株为放射形土壤杆菌Agrobacterium radiobacter FD-3,于2004年11月24日保藏于CGMCC,保藏号为CGMCC NO.1254。本发明的放射形土壤杆菌FD-3是以山东孤岛油田采取的被石油污染的土壤为菌源,DBT作为选择压力筛选分离得到,生长周期短、脱硫活性高、能耐受硫酸根离子、具有良好的耐油性,催化活性稳定,能专一性断裂含有机硫的化合物中C—S键。本发明还涉及一个利用放射形土壤杆菌FD-3或其细胞抽提液作为生物催化剂对含有有机硫化合物的矿质燃料进行生物脱硫的方法。

Description

一株用于脱硫的放射形土壤杆菌及应用
技术领域
本发明属于生物技术领域,涉及到一株新筛选的菌株放射形土壤杆菌。该放射形土壤杆菌能够选择性断裂含碳物质的C—S键,保持含碳物质的生热值基本不变。本发明的放射形土壤杆菌特别适用于含有有机硫化合物的物质脱硫,如用于脱除含硫的煤炭或原油及其馏分中的硫。
背景技术
硫元素是石油中继碳元素和氢元素之后的第三大元素,并且它无论在已加工或未加工的燃油中都是不受欢迎的组分。石油中的硫元素造成石油精炼过程中对设备的腐蚀,另外,含硫燃油燃烧产生的SO2会造成环境污染。环境部门对石油产品如汽油与柴油中硫含量的限制越来越严格。
无机的硫铁矿硫和有机硫各占煤炭的3.5%(w/w)左右。硫铁矿硫相对容易被脱除。微生物如真菌(HE De-wen,CHAI Li-yuan,SONG Wei-feng,"Experimental Research on Factors Affecting Desulfurization Mechanism of Fungi,"Environmental Science and Technology,27(1):5-6)等通过氧化或还原方式代谢无机硫和有机硫为水溶性硫酸盐。
Kodama等人曾在1973年报道一个在有氧条件下,通过“kodama”途径裂解二苯并噻吩(DBT)导致DBT芳香环断裂的转化过程(Kodama K.,Umehara K.,Shimizu K.,Nakatanni S.,Minoda Y.,Yamada K.1973.Identification of microbialproducts from dibenzothiophene and its proposed oxidation pathway.Agr.Biol.Chem.37:45-50),但是在这个过程中DBT的硫元素并没有被释放出来,“kodama”途径见图1。Van Afferden M等人也在1990年报道了一个利用DBT作为单一碳源、硫源与能源的特异性路径(Van Afferden M.,Schacht S.,Klein J.,Trüper H.G.1990.Desulfurization of dibenzothiophene by Brevibacterium sp.DO.Arch.Microbiol.153:324-328)。这两个路径都导致了芳香环中C—C键的断裂,造成燃油中燃烧热值降低,因此这两个代谢途径都不是在BDS过程中希望利用的路径。
Kilbane等人1989年在Rhodococcus rhodochrous IGTS8(US5,002,888)和Bacillus sphaericus strain ATCC No.53969(US 5,104,801)中发现一个选择性断裂C—S键的路径,命名为“4S”路径。Rhodococcus rhodochrous IGTS8能够执行一个针对杂环分子,如噻吩、硫化物、二硫化物、硫醇、亚砜和砜中的硫原子的选择性逐步氧化过程,而碳骨架不被代谢(Kayser K.J.,Bielaga-Jones B.A.,Jackowski K.,Odusan O.,Kilbane J.J.1993.Utilization of organosulfur compoundsby axenic and mixed cultures ofRhodococcus rhodochrous IGTS8.J.Gen.Microbiol.139:3123-3129)。特别是通过“4S”途径Rhodococcus rhodochrous IGTS8能够降解DBT产生2-羟基联苯(2—HBP)和硫酸盐(Gallagher J.R.,Olson E.S.,StanleyD.C.1993.Microbial desulfurization of dibenzothiophene:a sulfur specific pathway.FEMS Microbiol.Lett.107:31-36),“4S”途径见图2。
Kilbane等人公布了他们的工作之后各国科技工作者又先后筛选出一大批与IGTS8相似的能够选择性断裂有机硫化合物中C—S的菌株,这些菌株如有Sphingomonas sp.Strain AD109(US 5,132,219),Norcardiasp.CKYS2(US6,197,570),Gordona sp.CYKS1(US 6,204,046),Mycobacterium(CN1379084A),Pseudomonas delafildii R—8(CN1386847A),中国科学院化工冶金研究所缑仲轩等人筛选出的红平红球菌LSSE—1(CN1418948A)。红平红球菌LSSE—1能够专一性断裂有机硫化合物中的C—S键,对矿质燃料如石油,煤等脱硫不损失燃烧热值,具有较高的应用价值。利用红平红球菌LSSE—1制备的生物催化剂能够对加氢精制柴油进行深度脱硫,从263ppm降低到50ppm以下。LSSE—1在以DBT为单一硫源的基本培养基中生长84h达到指数生长期,菌体浓度为4.18OD(600nm处,下同),168h达到稳定生长期,菌体浓度为5.87OD,生长84h和168h的细胞的比脱硫活力分别为0.22和0.14mg(S)·g-1(DCW)·h-1(李珊,邢建民,缑仲轩等人,红平红球菌LSSE8-1的培养及其对二苯并噻吩中硫元素脱除的影响,过程工程学报,2(3):257—261)。
虽然已经分离出很多能够用于燃油BDS过程的菌株,但未见有放射形土壤杆菌用于生物脱硫的报道。而且还有很多限制因素阻碍了石油BDS过程的商业化应用。这些限制因素例如有:用于脱硫的菌株生长周期太长,脱硫菌株的专一催化活性不够高,脱硫过程中产生的硫酸盐严重的抑制生物催化剂的活性,以及石油对脱硫菌株的毒性缩短了生物催化剂的寿命等等。
因此迫切需要一株具有增强的专一性催化活性,和增强的催化稳定性的菌株用于生物脱硫过程。
发明内容
本发明目的在于克服以往的脱硫菌株的缺点,提供一株从被石油污染的土壤中新筛选出的,生长周期短、脱硫活性高、同时还能耐受高浓度硫酸根离子、具有良好的耐油性,以及催化活性稳定的能专一性断裂含有机硫的化合物中C—S键的菌株。以及该菌株在含硫的煤炭或原油及其馏分脱硫中的应用。
本发明提供一种用于生物脱硫的放射形土壤杆菌,放射形土壤杆菌Agrobacterium radiobacter FD-3,于2004年11月24日保藏于中国微生物菌种保藏管理委员会普通微生物中心(CGMCC),保藏号为CGMCC NO.1254。
本发明提供的放射形土壤杆菌革兰氏染色为阴性;细胞形态杆状。在pH4~9均能良好生长,生长温度28~42℃,属于好氧菌。
本发明放射形土壤杆菌FD-3对含硫有机物中的C—S键进行专一性降解,不破坏有机物中的C—C键,因此可以作为生物催化剂对所有含硫化合物如原油、柴油、汽油、煤炭等进行脱硫处理方法。
本发明的放射形土壤杆菌FD-3无论是生长细胞,休止细胞,细胞抽提液,以及细胞中与生物脱硫有关的酶的提取液都可以用于所有含硫化合物如原油、柴油、汽油、煤炭等的脱硫处理。如放射形土壤杆菌在原油、柴油、汽油、煤炭进行脱硫处理中的应用;放射形土壤杆菌生长细胞在含硫化合物脱硫中的应用;放射形土壤杆菌休止细胞在含硫化合物脱硫中的应用;放射形土壤杆菌固定化细胞在含硫化合物脱硫中的应用;放射形土壤杆菌细胞抽提液在含硫化合物脱硫中的应用等等。
本发明放射形土壤杆菌FD-3制备的休止细胞在4℃条件可以长期保存并保持脱硫活性。
本发明提供的放射形土壤杆菌FD-3主要应用于含硫化合物如石油、煤炭等的脱硫,含硫化合物中的硫元素为有机硫或无机硫。本发明提供的放射形土壤杆菌FD-3利用的硫源广泛,如可以利用硫酸盐、磺酸盐、砜类、噻吩及其衍生物、苯并噻吩及其衍生物以及二苯并噻吩(DBT)及其衍生物作为单一硫源生长,见图3。本发明的放射形土壤杆菌FD-3对含硫有机物如DBT及其衍生物中的C—S键进行专一性降解,不破坏烃结构中的C—C键,因此不损失燃料的燃烧值。本发明放射形土壤杆菌FD-3的生长周期短、脱硫活性高、同时还能耐受高浓度硫酸根离子、具有良好的耐油性。
附图说明
图1是DBT降解的“kodama”途径。
图2是R.erythropolis IGTS8降解DBT的“4S”途径。
图3是FD-3菌株以不同含硫化合物为单一硫源生长时的菌体浓度,其中DSMO、T、BT、MTP、MT、DMT、TXTO、DMDBT、MBT、DBT、MPS分别代表二甲基亚砜、噻吩、苯并噻吩、2—甲基硫茚、2—甲基噻吩、2,5—二甲基噻吩、噻吩-9-酮、4,6—二甲基二苯并噻吩、3—甲基苯并噻吩和二苯并噻吩、邻甲基苯磺酸。
图4是HBP浓度与OD关系曲线。
图5是FD-3降解DBT生成2-HBP与培养时间的关系。
图6加氢柴油深度生物脱硫前后的GC-AED图谱。
本发明的FD-3是以山东孤岛油田采取的被石油污染的土壤为菌源,DBT作为选择压力分离出的一株能够专一性断裂DBT中C—S键的菌株,其生理生化试验结果见表1。
具体实施方式
表1FD-3的生理生化试验结果
Figure DEST_PATH_S07110380720070608D000051
Figure DEST_PATH_S07110380720070608D000061
经“中国微生物菌种保藏管理委员会普通微生物中心”鉴定,该菌株属于放射形土壤杆菌(Agrobacterium radiobacter),命名为FD-3。
FMA培养基配方:5g/l葡萄糖、2g/l NH4Cl、14.04g/l Na2HPO4、2.24g/lKH2PO4、0.2g/l MgCl2·6H2O,微量元素溶液母液和维生素溶液母液的加入量各为1.0ml/l,pH值7.0~7.2。微量元素母液含有0.5g/lFeCl2·4H2O、0.5g/l ZnCl2、0.5g/lMnCl2·4H2O、0.1g/l NaMoO4·2H2O、0.05g/l CuCl2、0.05g/l NaWO4·2H2O和120mmol/l HCl。维生素母液含有400mg/l泛酸钙、200mg/l肌醇、400mg/l烟酸、400mg/l盐酸吡哆醇、200mg/l对氨基甲苯和0.5mg/lVB12;FMAD培养基即FMA培养基中加入适量DBT,如0.1~10mmol/l。
本发明的菌株放射形土壤杆菌Agrobacterium radiobacter FD-3能够在丰富培养基,如LB中迅速生长,也可以在加有无机硫源如Na2SO4,或有机硫源如DBT的FMA中生长。菌株FD-3在pH4~9均能良好生长,最佳pH6~8;生长温度28~42℃,最佳温度30~32℃;属于好氧菌。
本发明的放射形土壤杆菌Agrobacterium radiobacter FD-3几乎能够降解所有的含硫化合物,如磺酸盐、砜类、噻吩及其衍生物、苯并噻吩及其衍生物以及二苯并噻吩(DBT)及其衍生物,释放其中的硫元素为无机硫化合物溶解于水相中。图6是一种经过加氢处理的柴油利用放射形土壤杆菌Agrobacteriumradiobacter FD-3处理前后含硫化合物含量的变化图。
本发明提供的以放射形土壤杆菌Agrobacterium radiobacter FD-3为生物催化剂的生物脱硫方法是:(1)生长细胞脱硫:利用放射形土壤杆菌Agrobacteriumradiobacter FD-3接种于无硫矿质培养基FMA中,并加入适量的需进行生物脱硫处理的含硫化合物如DBT,石油或煤炭作为单一硫源,放射形土壤杆菌Agrobacterium radiobacter FD-3边生长边对底物脱硫;(2)休止细胞脱硫:利用FMAD培养基(FMA培养基中加入适量DBT)或丰富培养基如LB培养基培养放射形土壤杆菌Agrobacterium radiobacter FD-3到对数期末期,收集细菌,然后利用0.85%的生理盐水洗涤两次,重新悬浮于pH7.0的磷酸盐缓冲液中,加入1%的葡萄糖,做成休止细胞,再往休止细胞中加入适量的需进行生物脱硫处理的含硫化合物如DBT,石油或煤炭培育一段时间,即可实现对这些化合物的脱硫;(3)固定化细胞脱硫:按照(2)中制备休止细胞的方法制备放射形土壤杆菌Agrobacterium radiobacter FD-3的菌体悬浮液,利用海藻酸钠、聚丙烯酰氨凝胶、琼脂糖、壳聚糖等制备成含有FSD—2菌株的珠子,以这些珠子作为生物催化剂可以对需进行生物脱硫处理的含硫化合物如DBT,石油或煤炭进行脱硫;(4)细胞抽提液脱硫:按照(2)中制备休止细胞的方法制备放射形土壤杆菌Agrobacterium radiobacter FD-3的菌体悬浮液,利用细胞破碎仪破碎细胞,离心去除细胞碎片,得到的细胞抽提液中加入适量需进行生物脱硫处理的含硫化合物如DBT,石油或煤炭进培育合适的时间即可实现生物脱硫。
本发明的放射形土壤杆菌Agrobacterium radiobacter FD-3耐油性强。菌体浓度为10g(DCW)·l-1的休止细胞,按油水比(OWR)2:5加入柴油,对柴油进行生物脱硫处理,30℃培育12小时,平均比脱硫活性为0.6mg(S)·g-1(DCW)·h-1,比OWR为1:5时平均比脱硫活力的0.5mg(S)·g-1(DCW)·h-1还高16.7%。
本发明的放射形土壤杆菌Agrobacterium radiobacter FD-3催化活性稳定。利用休止细胞对柴油脱硫,OWR为1:5时,经过处理柴油18小时后的细胞的脱硫活性与处理柴油3小时后的细胞的脱硫活性仅降低了0.05mg(S)·g-1(DCW)·h-1
本发明的放射形土壤杆菌Agrobacterium radiobacter FD-3能够耐受高浓度的硫酸盐。利用休止细胞对柴油脱硫,OWR为1:5,加入Na2SO4到终浓度为20mM时,30℃培育12小时,平均比脱硫活性为0.58mg(S)·g-1(DCW)·h-1,比未加入Na2SO4的休止细胞处理柴油时比脱硫活力仅降低5%。
本发明的放射形土壤杆菌Agrobacterium radiobacter FD-3的休止细胞在4℃条件保存1个月,比脱硫活力在0.5~0.8mg(S)·g-1(DCW)·h-1之间,变化不大,便于保藏。
本发明的放射形土壤杆菌Agrobacterium radiobacter FD-3的生长周期短,该菌株对数中后期培养物以10%接种量接入到FMAD培养基中,24小时即可到稳定期,稳定期菌体浓度为12OD,即3.2g(DCW)·l-1,比生长速率0.13g(DCW)·l-1·h-1
本发明的放射形土壤杆菌Agrobacterium radiobacter FD-3对含硫化合物降解后不断裂碳骨架,因此对烃类结构影响不大,不损失燃烧值,表2是利用MS—GC分析法测定的FD-3的休止细胞处理前后柴油中各种烃类含量百分比变化。
表2FD-3的休止细胞处理前后柴油中各种烃类质量含量百分比变化
Figure DEST_PATH_S07110380720070608D000081
Figure 284843DEST_PATH_GA20180321200710010380701D00011
实施例1:FD-3菌株的筛选
从山东孤岛油田附近采取被石油污染的土壤样品,经过一个三步骤过程筛选分离纯化对石油选择性脱硫的微生物。第一步,加入0.5g被石油污染的土壤样品到50ml含有终浓度为1mmol/l DBT的无硫基本培养基FBM中(FBM培养基含有10.0g/l葡萄糖,2.0g/l NH4Cl,6.3g/l KH2PO4,8.0g/l K2HPO4,0.2g/lMgCl2·6H2O,等等,含有1mmol/l DBT的FBM培养基为FBMD培养基),30℃振荡培养5天,以10%接种量转接到FBMD培养基中,相同条件培养2天,反复转接2-3次。第二步,经过如此2-3次富集培养后,取1ml培养物,于3000rpm离心5min,取上清0.5ml做Gibb’s分析(DBT经“4S”途径降解后,生成的产物2-HBP与2,6-二氯醌-4-亚胺在碱性环境下反应生成兰色化合物)。第三步,把Gibb’s反应成兰色的培养物取出100μl,涂于FBMD琼脂平板上,30℃静置培养2-3天,挑取单菌落按上述方式在FBMD液体培养基中培养,挑选生长状态良好的菌株培养物做Gibb’s分析,有兰色反应的菌株培养物则表明该菌株有很大可能性能够专一选择性断裂DBT中的C-S键,并生成了2-HBP。
一共挑选了500株菌株,筛选得到1株生长状态良好,对DBT具有专一性脱硫能力的放射形土壤杆菌Agrobacterium radiobacter FD-3,并于2004年11月24日保藏于“中国微生物菌种保藏管理委员会普通微生物中心”,其保藏号为CGMCC NO.1254。
实施例2:FD-3菌株代谢物分析
挑取FMAD琼脂斜面培养的FD-3菌株,接种到50ml FMAD液体培养基中。FMAD液体培养基的成分:5g/l葡萄糖、2g/l NH4Cl、14.04g/l Na2HPO4、2.24g/lKH2PO4、0.2g/l MgCl2·6H2O,微量元素溶液母液和维生素溶液母液的加入量各为1.0ml/l,DBT终浓度1.0mmol/l,pH值7.0~7.2。微量元素母液含有0.5g/lFeCl2·4H2O、0.5g/l ZnCl2、0.5g/l MnCl2·4H2O、0.1g/l NaMoO4·2H2O、0.05g/l CuCl2、0.05g/l NaWO4·2H2O和120mmol/l HCl。维生素母液含有400mg/l泛酸钙、200mg/l肌醇、400mg/l烟酸、400mg/l盐酸吡哆醇、200mg/l对氨基甲苯和0.5mg/lVB12。30℃,150转/分培养24—48小时,取10ml培养物,加入2ml二氯甲烷萃取培养物中的代谢产物,萃取液采用PE Autosystem GC/Q-Mass910气相色谱—质谱联用仪分析。DBT经过放射形土壤杆菌Agrobacterium radiobacter FD-3降解后,最终被转化为2—HBP,这与“4S”途径的最终产物一致,说明该菌株通过C—S键断裂方式降解DBT。
实施例3:FD-3菌株生长细胞降解DBT
挑取FMAD琼脂斜面培养的FD-3菌株,接种到50ml FMAD液体培养基中。FMAD液体培养基的成分:5g/l葡萄糖、2g/l NH4Cl、14.04g/l Na2HPO4、2.24g/lKH2PO4、0.02g/l MgCl2·6H2O,微量元素溶液母液和维生素溶液母液的加入量各为1.0ml/l,DBT终浓度0.5mmol/l,pH值7.0~7.2。微量元素母液含有0.5g/lFeCl2·4H2O、0.5g/l ZnCl2、0.5g/l MnCl2·4H2O、0.1g/l NaMoO4·2H2O、0.05g/l CuCl2、0.05g/l NaWO4·2H2O和120mmol/l HCl。维生素母液含有400mg/l泛酸钙、200mg/l肌醇、400mg/l烟酸、400mg/l盐酸吡哆醇、200mg/l对氨基甲苯和0.5mg/lVB12。30℃,150转/分培养,定期取样做Gibb’s分析。Gibb’s分析方法如下:培养物于5000转/分离心,取上清0.5ml,加入3.5ml pH10的0.05M硼砂—0.2NNaOH缓冲液调pH8.0以上,加入10μl1%的2,6-二氯醌-4-亚胺(Gibb’s试剂),30℃反应20分钟,利用可见分光光度计于590nm测定吸光度。吸光度值代入到标准曲线(图4)即可得到培养物中HBP的浓度。本发明的放射形土壤杆菌Agrobacterium radiobacter FD-3培养32h后,FMAD培养基中的0.5mmol/l DBT88%被降解,见图5。
实施例4:FD-3菌株休止细胞对加氢柴油深度脱硫
挑取FMAD琼脂斜面培养的FD-3菌株,接种到50ml FMAD液体培养基中。FMAD液体培养基的成分:5g/l葡萄糖、2g/l NH4Cl、14.04g/l Na2HPO4、2.24g/lKH2PO4、00.2g/l MgCl2·6H2O,微量元素溶液母液和维生素溶液母液的加入量各为1.0ml/l,DBT终浓度0.2mmol/l,pH值7.0~7.2。微量元素母液含有0.5g/lFeCl2·4H2O、0.5g/l ZnCl2、0.5g/l MnCl2·4H2O、0.1g/l NaMoO4·2H2O、0.05g/l CuCl2、0.05g/l NaWO4·2H2O和120mmol/l HCl。维生素母液含有400mg/l泛酸钙、200mg/l肌醇、400mg/l烟酸、400mg/l盐酸吡哆醇、200mg/l对氨基甲苯和0.5mg/lVB12。30℃,150转/分培养24—48小时,按10%接种量转接同样的FMAD液体培养基,培养到对数期中后期,离心收集菌体,菌体用0.85%生理盐水洗涤两次,在用pH7.0的磷酸缓冲液重新悬浮到菌体浓度为12g(DCW)·l-1的悬浮液,加入1%(w/v)的葡萄糖作为能源,即制备成可用于柴油生物脱硫的休止细胞。按OWR为1:5加入精制柴油,30℃,150转/分培育12小时,回收柴油,采用库仑仪分析柴油中的总硫含量,见表3。
表3FD-3休止细胞对精制柴油深度脱硫前后总硫含量
Figure DEST_PATH_S07110380720070608D000111
然后对深度生物脱硫前后的加氢柴油进行了GC-AED分析,见图6。

Claims (9)

1.一株用于生物脱硫的放射形土壤杆菌,放射形土壤杆菌(Agrobacteriumradiobacter)FD-3,2004年11月24日保藏于“中国微生物菌种保藏管理委员会普通微生物中心”,其保藏号为CGMCC NO.1254。
2.按照权利要求1所述的放射形土壤杆菌,其特征在于该菌株革兰氏染色为阴性,细胞形态杆状。
3.按照权利要求1所述的放射形土壤杆菌,其特征在于所述的该放射形土壤杆菌对含硫有机物中的C-S键进行专一性降解,不破坏有机物中的C-C键。
4.按照权利要求1所述的放射形土壤杆菌,其特征在于所述的该放射形土壤杆菌在pH4~9均能良好生长,生长温度28~42℃,属于好氧菌。
5.权利要求1所述的放射形土壤杆菌在原油、柴油、汽油、煤炭进行脱硫处理中的应用。
6.权利要求1所述的放射形土壤杆菌生长细胞在含硫化合物脱硫中的应用。
7.权利要求1所述的放射形土壤杆菌休止细胞在含硫化合物脱硫中的应用。
8.权利要求1所述的放射形土壤杆菌固定化细胞在含硫化合物脱硫中的应用。
9.权利要求1所述的放射形土壤杆菌细胞抽提液在含硫化合物脱硫中的应用。
CN2007100103807A 2007-02-09 2007-02-09 一株用于脱硫的放射形土壤杆菌及应用 Active CN101240252B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007100103807A CN101240252B (zh) 2007-02-09 2007-02-09 一株用于脱硫的放射形土壤杆菌及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007100103807A CN101240252B (zh) 2007-02-09 2007-02-09 一株用于脱硫的放射形土壤杆菌及应用

Publications (2)

Publication Number Publication Date
CN101240252A CN101240252A (zh) 2008-08-13
CN101240252B true CN101240252B (zh) 2010-08-18

Family

ID=39932086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100103807A Active CN101240252B (zh) 2007-02-09 2007-02-09 一株用于脱硫的放射形土壤杆菌及应用

Country Status (1)

Country Link
CN (1) CN101240252B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2551289B (en) * 2015-07-30 2018-09-26 Ford Motor Co Consortium
CN106544288B (zh) * 2015-09-16 2019-09-03 有研工程技术研究院有限公司 一种专属菌及用于高硫分煤矿中有机硫的脱除工艺
CN106282021A (zh) * 2016-09-12 2017-01-04 黑龙江省能源环境研究院 一种石油燃料脱硫微生物的筛选和培养方法
CN106350454A (zh) * 2016-11-30 2017-01-25 黑龙江省能源环境研究院 一种石油产品脱硫巨大芽孢杆菌的筛选方法
CN115074272B (zh) * 2022-06-10 2023-03-24 广西科学院 一种生物脱硫的阿氏芽孢杆菌及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544581A (zh) * 2003-11-24 2004-11-10 山东大学 利用固定化分枝杆菌细胞脱除汽油中有机硫的方法
CN1699547A (zh) * 2005-05-24 2005-11-23 南开大学 一株土生戈登氏新菌株及其脱硫作用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544581A (zh) * 2003-11-24 2004-11-10 山东大学 利用固定化分枝杆菌细胞脱除汽油中有机硫的方法
CN1699547A (zh) * 2005-05-24 2005-11-23 南开大学 一株土生戈登氏新菌株及其脱硫作用

Also Published As

Publication number Publication date
CN101240252A (zh) 2008-08-13

Similar Documents

Publication Publication Date Title
CN100371438C (zh) 一株用于生物脱硫的红串红球菌及应用
Kilbane II Sulfur-specific microbial metabolism of organic compounds
Mishra et al. Effect of native bacteria Sinomonas flava 1C and Acidithiobacillus ferrooxidans on desulphurization of Meghalaya coal and its combustion properties
JPH0771481B2 (ja) 有機c−s結合開裂のための細菌産生抽出物および酵素
JPH0771476B2 (ja) 有機c−s結合の開裂に有用な突然変異体微生物
CN101240252B (zh) 一株用于脱硫的放射形土壤杆菌及应用
JPH04311383A (ja) 有機c−s結合の開裂に有用な突然変異体微生物
Song et al. Influence of graphene oxide and biochar on anaerobic degradation of petroleum hydrocarbons
Chen et al. Desulfurization of various organic sulfur compounds and the mixture of DBT+ 4, 6-DMDBT by Mycobacterium sp. ZD-19
CN105462902B (zh) 一种石油脱硫脱氮的生物技术及应用
CN104450592A (zh) 一种基于生物多样性信息分离反硝化脱硫细菌的方法
CN104651269A (zh) 一株高效降解dbt类的脱硫菌及其在脱硫方面的应用
Ma et al. Methods for the preparation of a biodesulfurization biocatalyst using Rhodococcus sp.
CN105505827B (zh) 石油脱硫脱氮菌株及其脱硫脱氮的基因与应用
CN1323160C (zh) 一株红平红球菌及其在原油脱硫中的应用
Hardy The enumeration, isolation and characterization of sulphate‐reducing bacteria from North Sea waters
CN106350454A (zh) 一种石油产品脱硫巨大芽孢杆菌的筛选方法
CN1132933C (zh) 短芽孢杆菌菌株及其在脱除含硫有机化合物中硫的应用
EP0821982B1 (en) High-Temperature Desulfurization by Microorganisms
CN1252248C (zh) 一种枯草芽孢杆菌及应用
CN100370020C (zh) 一株基因重组的红平红球菌及其在脱除原油有害物-硫和氮中的应用
CN116004463A (zh) 苯酚高效降解相关菌群及其应用
Gou et al. Isolation and identification of nondestructive desulfurization bacterium
CN100513551C (zh) 可耐受硫酸盐的红串红球菌及其应用
CN100451101C (zh) 利用分枝杆菌深度脱除化石燃料中有机硫的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant