CN101228275B - 糖基化的il-7,制备及应用 - Google Patents
糖基化的il-7,制备及应用 Download PDFInfo
- Publication number
- CN101228275B CN101228275B CN200680026503.XA CN200680026503A CN101228275B CN 101228275 B CN101228275 B CN 101228275B CN 200680026503 A CN200680026503 A CN 200680026503A CN 101228275 B CN101228275 B CN 101228275B
- Authority
- CN
- China
- Prior art keywords
- polypeptide
- cell
- composition
- glycosylated
- glycosylation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
- C07K14/5418—IL-7
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
- C07K16/244—Interleukins [IL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Virology (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Toxicology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- AIDS & HIV (AREA)
- Tropical Medicine & Parasitology (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Saccharide Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
本发明涉及新的和改进的白介素-7多肽,以及含有它们的组合物、它们的制剂和应用。更具体来说,本发明涉及了具有改进的性质的超糖基化的IL-7多肽,以及它们的生产和治疗性应用。本发明还公开了具有修饰的氨基酸序列、含有人工产生的糖基化位点的新的IL-7多肽,以及相应的核酸分子、载体和重组宿主细胞。本发明还涉及了使用这样的多肽、细胞或核酸,用于治疗性或预防性治疗哺乳动物受试者,包括人类受试者。
Description
本发明涉及新的改进的白介素-7多肽,以及含有它的组合物及其制备和应用。更具体来说,本发明涉及具有改进的性质的超糖基化的IL-7多肽,以及它们的生产和治疗应用。本发明还公开了新的具有修饰的含有人工产生的糖基化位点的氨基酸序列的IL-7多肽,以及相应的核酸分子、载体和重组宿主或宿主细胞。本发明还涉及了使用这样的多肽、细胞或核酸用来治愈性或预防性治疗哺乳动物受试者,包括人类受试者。
发明背景
B和T淋巴细胞是免疫反应的主要效应细胞。这两类细胞被认为最终都是从哺乳动物骨髓中的造血干细胞通过代表每种类别细胞的分化过程中不同的阶段的祖细胞或前体细胞衍生而来的。成熟的T细胞主要在胸腺中发育,可能是由在T淋巴细胞发育的早期从骨髓迁移到胸腺的前体细胞发育而来的。淋巴样细胞的发育依赖于各种基质细胞产生的生长、存活和分化因子。有大量因子对成熟的外周B和T细胞有活性,包括IL-1、IL-2、IL-4、IL-5、γ-干扰素、BSF-2、神经白细胞素、转化生长因子β和IL-7。
“白介素-7”或“IL-7”是指哺乳动物内源分泌的糖蛋白,能够诱导骨髓衍生的淋巴细胞祖细胞和前体细胞、包括被称为前B细胞的特化的前体细胞的增殖。尽管最初是从骨髓细胞株的基质成分衍生而来的,但IL-7也被胸腺基质细胞、肠和其它上皮细胞、某些树突状细胞和滤泡树突状细胞、角质细胞和基本上所有的淋巴样组织所分泌。这种蛋白的另一种命名是“前B细胞生长因子”和“淋巴细胞生成素-1”。
EP0314415(或US4,965,195)描述了哺乳动物白介素-7蛋白和相应的DNAs。人类IL-7的氨基酸序列包含三个推测的N-连接的糖基化位点,位于70、91和116位的Asn残基上。hIL-7(人类IL-7)在COS细胞中的瞬时重组表达使得r-huIL-7(重组人类IL-7)可以被观察到为表观分子量大约为20、24和28kDa的三个蛋白条带(Cosman等,LymphokineReceptorInteractions;1989;179:229-236)。hIL-7在BHK细胞中的稳定重组表达也已经被报道(Armitage等;TheJournalofImmunology;1990;144:938-941)。但是,天然存在的人类IL-7的糖基化状态、特别是O-糖基化状态还从来没有被记录或研究过,并且糖基化情况对IL-7性质的影响也从来没有被考虑过。此外,正如在EP0314415中描述的那样,在大肠杆菌中产生的未糖基化的成熟的人类IL-7(r-hIL-7),表现出17,387道尔顿的分子量,在体外在基于各种淋巴细胞种群的增殖的特定的生物分析中显示出高的活性。其它的细胞因子和生长因子例如G-CSF、GM-CSF、IFN、HGF等,没有糖基化时也表现出完整的治疗活性。
WO2004/018681公开了人类IL-7的一种活性构象异构体,包含了下列二硫桥:1-4(C2-C92)、2-5(C34-C129)和3-6(C47-C141),并公开了生产方法或研究其特征的方法及其应用。
IL-7最初是作为细胞因子被公开的,其主要活性是诱导前体B细胞的增殖(NamenA.E.等;JournalofExperimentalmedicine;1988;167:988-1002)。最近已经报道IL-7在T细胞发育的早期阶段参与了胸腺细胞(T-细胞)的存活和增殖(SchlunsK.S.等;NatureImmunology;2000;1(5):426-432)。IL-7途径对于淋巴细胞发育、特别是发育为胸腺细胞是重要的(MaeurerM.J.等;Int.Rev.Immunol.;1998;16:309-22-FryT.J.等;Blood;2002;99:3892-904)。Fry及合作者还鉴定出IL-7在多因子作用中作为不依赖胸腺的T-细胞再生的潜在调节剂((FryT.J.等.;Blood;2001;97(6):1525-1533)。IL-7有力地调节成熟的T细胞,并且除了对成熟T-细胞的这种效应之外,IL-7还可以影响抗原呈递细胞的发育(MarquezC.等;J.Exp.Med.;1995;181:475-83)。IL-7对于CD4+和CD8+亚类的记忆T细胞的再生也是重要的(KondrackR.M.等;J.Exp.Med.;2003;198:1797-806-KaechS.M.等;Nat.Immunol.;2003;4:1191-8)。
因此,IL-7具有极大的治疗潜力,可以用于刺激T细胞前体、分泌抗体的B细胞的增殖,用于刺激抗原驱动的T-细胞外周扩增,用于生产幼稚T细胞以及其它造血细胞类型。活性IL-7分子的一种特别有趣的治疗应用是用于淋巴细胞减少的病人的免疫重建,这样的病人包括癌症治疗病人、接受骨髓或干细胞移植的病人、表现出获得性或遗传免疫缺陷的病人、老年病人或任何具有低CD4计数的病人。由于IL-7具有产生新的幼稚CD4T-细胞以及扩增特定的库以产生或增加特异性免疫反应(疫苗增强)的能力,它在这些方面还有其它的应用。
鉴于其治疗潜力,对于开发适合于有效的治疗应用的生物活性或改进的IL-7多肽有相当大的兴趣。就这点而言,在可以商业获得的各种细胞因子和生长因子中,有些是低免疫原性的(例如α-干扰素“IFNα”,粒细胞集落刺激因子“G-CSF”),以便相应的药物物质不需要超过通常接受的重组蛋白常规水平的非常特定的多肽纯度。相反,其它的生长因子具有更高的免疫原性(例如β-干扰素“β-IFN”,粒细胞巨噬细胞集落刺激因子“GM-CSF”),或它们比活性对于生命来说非常重要(例如红细胞生成素,“EPO”),以至于药物物质多肽的纯度和分布情况必须被特别地研究并维持在狭窄的限度内,以保护免受免疫原性的影响。
IL-7是独特的分子。由于其内在的免疫增强性质,用作治疗药剂的IL-7特别易于触发抗IL-7的免疫原性(抗IL-7的结合或中和抗体)。这种免疫原性对于蛋白的长期治疗活性是有害的。抗IL-7抗体可以修饰IL-7的药物动力学,并中和其治疗活性。
有多种IL-7同工型参与触发抗IL-7的免疫原性,其中包括:改变的多肽序列(例如氧化、还原、脱酰胺基的或截短的形式)、共价的或非共价的IL-7多聚体、例如聚集的IL-7分子等。因此,关键的是确定更稳定的、更不易于分子间聚集的、更少免疫原性的、但仍然具有生物学活性的IL-7多肽和药物物质。事实上,尽管大多数药物的活性与AUC参数相关,但IL-7的活性与半衰期参数、更具体来说是平均存留时间相关。
发明简述
本发明公开了新的、改进的IL-7多肽、药物物质和组合物。更具体来说,本发明公开了新的IL-7分子种类,它具有高程度的糖基化,寡糖分布情况移向较高的分子大小,碳水化合物基团上带有增加的唾液酸化和岩藻糖基化,并具有较低的等电点。本发明显示出这些新的寡糖分布情况给这些新的药物物质赋予了改进的化学和药物学稳定性,以及在体内使用后延长的药物动力学分布情况,其特征为增加的平均存留时间(MRT),这允许以较低的频率计划剂量给药。
因此,本发明提供了新的高度糖基化或超糖基化的、具有改进的性质的IL-7多肽。本发明还公开了新的具有修饰的氨基酸序列的IL-7多肽,其中包含了人工产生的糖基化位点,以及公开了相应的核酸分子、载体和重组宿主或宿主细胞。本发明还涉及使用这些多肽、细胞或核酸用于哺乳动物受试者、包括人类受试者的治疗性或预防性治疗。因此,本发明公开了新的活性IL-7多肽、药物物质和药物组合物,它们表现出增加的稳定性、对蛋白水解和聚集的减少的敏感性、利于体内的长期活性以及减少的免疫原性,从而允许在哺乳动物受试者中产生改进的全面的或特异性免疫反应。
本发明的一个目标在于超糖基化的IL-7组合物。
本发明的另一个目标在于纯化的超糖基化的IL-7多肽。
这种超糖基化的IL-7多肽含有至少三个N-糖基化氨基酸残基。
本发明的另一个目标涉及使用超糖基化的IL-7用于制造由该超糖基化的IL-7和可药用的赋形剂或载体组成的药物,用于治疗哺乳动物受试者。
本发明的另一个目标涉及使用超糖基化的IL-7组合物用于制造药物,以治疗哺乳动物受试者。
本发明的另一个目标是在受试者中引起或刺激免疫反应的方法,包括给受试者使用有效量的超糖基化的IL-7组合物。
本发明的另一个目标是离体(ex-vivo)增强T细胞的扩增的方法,该方法包括将T细胞与超糖基化的IL-7多肽或组合物相接触,从而增强T细胞的扩增。
在具体的实施方案中,超糖基化的IL-7组合物是含有至少80%、优选在80%和95%之间的IL-7多肽的组合物,所述多肽在至少三个不同的氨基酸残基上被糖基化的。这些残基可以是天然存在于IL-7多肽序列中,也/或可以是人工产生的糖基化位点。
在另一个具体的实施方案中,超糖基化的IL-7组合物是含有至少80%、优选在80%和95%之间的IL-7多肽的组合物,所述多肽在从三到八个不同的氨基酸残基上被糖基化的,其中的糖基化位点包括一个O-和最多七个N-糖基化位点。这些残基可以是天然存在于IL-7多肽序列中,也/或可以是人工产生的N-糖基化位点。
在这方面,本发明的另一个目标涉及具有修饰的氨基酸序列的IL-7多肽,其中该序列含有至少一个人工产生的糖基化位点。根据特定的实施方案,本发明的IL-7多肽含有1、2、3或4个人工产生的糖基化位点,更优选为1、2或3个;更优选为1或2个。正如将被进一步公开的那样,人工产生的糖基化位点优选为N-连接的糖基化位点。本发明的IL-7多肽可以来自任何哺乳动物来源,特别是人类来源。此外,这样的IL-7多肽可以包含成熟的IL-7多肽的序列,或者进一步含有其它的氨基酸残基,例如分泌肽。此外,或者可选的,IL-7多肽优选是包含下列三个二硫桥的特定的构象异构体:Cys:1-4(Cys2-Cys92);2-5(Cys34-Cys129);3-6(Cys47-Cys141)。这样的修饰的IL-7多肽的具体的例子含有至少一个在后面的表1中公开的氨基酸修饰,或是它们的组合。
本发明的另一个目标在于编码上面讨论的IL-7多肽的核酸分子。核酸分子可以是任何DNA或RNA分子,典型为cDNA分子。
本发明的另一个目标在于编码分泌信号、包含SEQIDNO:19的核酸分子。
本发明的另一个目标在于含有上面定义的核酸分子的载体。载体可以是任何原核或真核载体,典型为真核载体,可以从质粒、染色体外DNA、粘粒、病毒载体、人工染色体等中选择。载体可以含有任何允许编码的核酸在选定的宿主细胞中适当表达的调节序列,例如启动子、终止子、polyA、复制原点、同源区域、内含子、基因的5’或3’非翻译区域(UTR)等。
上述的核酸和载体可以用于例如在各种感受态宿主细胞中生产重组的哺乳动物IL-7多肽,以及用于基因治疗目的。
本发明的另一个目标在于含有上面公开的核酸或载体的重组宿主细胞。这样的重组细胞可以是原核的,也可以是、并且是更优选的是真核的,例如酵母、昆虫、植物或哺乳动物细胞,例如,更优选情况下,被转化以表达或过量表达例如来自人类来源的糖基转移酶和/或2-6-唾液酸转移酶基因的重组宿主细胞。
本发明的另一个目标在于含有上面描述的IL-7多肽、典型为超糖基化的IL-7多肽的药物物质。更优选情况下,药物物质含有少于大约10%的无糖基化或单糖基化的IL-7多肽,和/或基本上不含有与产物相关的杂质。
本发明还涉及使用上述的药物物质来制造药物(“药物产品”)或药物组合物。
本发明还涉及含有有效量的上述IL-7多肽或组合物或药物物质以及一种或多种药物相容载体或赋形剂的药物组合物。
本发明还提供了能够与上面定义的IL-7多肽发生特异性免疫反应的抗体及其片段或衍生物、产生该抗体的杂交瘤细胞系、以及含有该抗体及其片段或衍生物的适合用于诊断、分析测试或治疗的组合物。
本发明的另一方面是从原核或真核宿主细胞生产上述的IL-7多肽的方法,以及检测或测量这样的IL-7多肽在样品中的存在的方法,或对样品定性的方法。
在具体的情况下,生产上述的IL-7多肽的方法包括:
a)培养上述的重组宿主细胞,以及
b)收集从该细胞产生的IL-7多肽。
按照优选实施方案,在允许有效的糖基化基序,特别是唾液酸残基被加到IL-7多肽的条件下进行表达。
在另一个优选实施方案中,在维持细胞在指数生长末期的分批补料培养或灌注状态下进行生产。这样的条件提高了翻译后修饰的质量,有助于每个IL-7多肽的较高程度的唾液酸化。按照具体的实施方案,编码核酸含有分泌信号和/或最适化的核酸序列,和/或宿主细胞是真核宿主细胞(例如哺乳动物或昆虫或酵母细胞)。
本发明的另一个目标涉及使用上面定义的或通过上述方法获得的IL-7多肽或超糖基化的IL-7组合物,用于生产能够在受试者中引起或调节免疫反应、特别是诱导延长的淋巴细胞生成刺激和/或放大免疫反应的药物组合物。
本发明还涉及使用上面定义的或通过上述方法获得的IL-7多肽,用于生产防止或治疗与免疫缺陷有关的疾病的药物组合物。
正如将在下面讨论的那样,本发明的多肽表现出了延长的血浆半衰期和平均存留时间,这有利于体内受体相互作用和活性、和/或改进的稳定性和/或较低的长期免疫原性,从而允许它们用于在哺乳动物受试者、特别是人类受试者中治疗各种病理状况。
附图说明
图1:质粒ph-pgk.EP7-hIL-7:
eflapA:“延伸因子1α”polyA序列;hghpA:“人类生长激素”polyA序列;SpA:合成的polyA序列;hph:潮霉素抗性;Amp:氨苄青霉素抗性;MARrabbitβ珠蛋白:推测的兔β珠蛋白(基质结合区);pr.Tk:胸苷激酶启动子;sv40enh.:sv40增强子;prpgk:磷酸甘油酯激酶启动子;5’UTRintl:含有嵌合的内含子(hB珠蛋白-免疫球蛋白)的5’非翻译区;EP7-hIL7:上游含有EP7信号肽的最适化的人类IL-7cDNA。
图2:质粒pBh-pgk.EP7-hIL-7:
Bcl2:Bcl2cDNA;IRES:内部核糖体插入位点
图3:在生物反应器中培养1天(D1)到10天(D10)的哺乳动物细胞中重组hIL-7的表达,细胞内的与分泌的IL-7的Westen印迹比较
图4:在整个纯化过程中rec-hIL-7糖基化形式的层析分级分离:不同洗脱级份(B1-B10)中蛋白含量的SDSPAGE分析。IL-7糖基化形式在捕获和HIC步骤中被分离。使用缓冲液梯度以按照它们轻微不同的物理化学性质分别洗脱hIL-7的糖基化形式。对足够级份的分级分离以及随后的选择允许富集全部三种糖基化的重组hIL-7(3N-或2N-以及1O-糖基团)。MWM,蛋白分子量标准(10;15;20;25;37;50;75;100;150;250kDa);B1-B10,洗脱级份;B1-B4,留下来用于进一步纯化的洗脱级份;CT,从用同样的最适化的hIL-7cDNA转染的HEK293细胞株的培养物获得的级份B1。
图5:纯化的重组hIL-7在SDSPAGE上的分析。纯化的重组hIL-7的样品在还原条件下被上样SDSPAGE。凝胶通过下列方法显示:
A.考马斯染色
B.Western印迹
MWM:分子量标准(10;15;20;25;37;50;75;100;150;250kDa)。1道:HG-37-147;2道:HG-40-104;3道:HG-hIL-7;4道:E.colihIL-7。
图6:纯化的糖基化rec-hIL-7产物的SDS-PAGE表观分子量的比较。
M道=分子量标准,1道=Namen等在专利#US5328988中描述的纯化产物(大约25KDa)的示意图,2道=申请者纯化的CHOrec-sIL-7产物,3道=申请者纯化的CHOrec-hIL-7产物,4道=hIL-71N-和2N-糖基化形式作为表观分子量比较的标准,5道=申请者纯化的大肠杆菌rec-hIL-7产物(CYT99007)。
图7:纯化的重组人类IL-7在脱糖基化后在还原条件下在SDSPAGE上的分析。
纯化的重组糖基化人类IL-7样品用PNGaseF消化:从2分钟到24小时的动力学样品上样在凝胶上。
另一个样品(OO/N)用PNGaseF+O-糖苷酶/(1-4)半乳糖苷酶/神经氨酸酶/N-乙酰氨基葡糖苷酶消化24小时以上。
糖基化人类IL-7和大肠杆菌人类IL-7作为对照上样在凝胶上。
然后将3N+1O、2N+1O、1N+IO、1O糖基化形式和脱糖基化的人类IL7按照它们估计的MW在凝胶上分离,分别为33、27、24、18和17kDa。
图8:不同的纯化的rec-hIL-7糖基化形式的质谱分析。
-23kDa(23179Da):Rec-hIL-7(CHOS,2N+3N)
-25kDa(25127Da):Rec-hIL-7(CHOS,3N)
图9:纯化的重组超糖基化的人类IL-7多肽的二维电泳分析。在等电聚焦(pH范围3-10)之后,糖基化的形式在还原条件下在SDSPAGE上分离(考马斯亮蓝染色)。
图10:重组的hIL-7N-聚糖复杂性的质谱分析。纯化的糖基化的hIL-7样品用内切糖苷酶例如肽-N-糖苷酶(PNGaseF,Roche)进行酶法消化。酶法消化释放的N-连接的寡糖、释放的蛋白样品从肽结构上分离出来,通过MALDI-TOF质谱进行分析。在国际数据库中搜索相应每个峰的m/z值,这允许准确地鉴定hIL-7分子上的N-聚糖的名单。
图11:在重组hIL-7上使用特异性外源凝集素(外源凝集素印迹)研究O-聚糖的性质。在分离蛋白样品并与转印到膜上之后,使用两种外源凝集素(MAA,来自Maackiaamurensis;PNA,来自Arachishypogea)中的任何一种来显示产物。1道:标准蛋白胎球蛋白,这是一种唾液酸化的蛋白;2道:用唾液酸酶处理的胎球蛋白;道3:hIL-7;道4:用唾液酸酶处理的hIL-7。
图12:超糖基化的IL-7多肽的外源凝集素亲和性(ELISA筛选)。外源凝集素(来自Lycopersiconesculentum的LEA,来自Triticumvulgare的WGA,来自Ulexeuropeus的UEA.I,来自Maackiaamurensis的MAA,来自Amaranthuscaudatus的ACA,来自Artocarpusintergrifolia的AIA,来自Agaricusbisporus的ABA,来自Phaseolusvulgaris的PHA.L)包被的平板被用于结合同样量的重组的纯化的hIL-7制备物。结合的IL-7的量依赖于外源凝集素与聚糖基团的特异性,通过与生物素偶联的特异的抗hIL-7抗体(Ab)来显示。外源凝集素-IL-7-Ab夹心结构用链亲和素-过氧化物酶结合物显示。
图13:重组人类IL-7活性的生物分析。PB-1细胞生长的剂量反应性动力学被未糖基化的r-hIL-7(在大肠杆菌中表达)或高度糖基化的r-hIL-7(在哺乳动物细胞中生产)所诱导。
图14:重组人类IL-7活性的生物分析。在典型的生物分析中常规地获得了剂量反应性的动力学数据和曲线:PB-1细胞生长被未糖基化的r-hIL-7(在大肠杆菌中表达)、高度糖基化的或超糖基化的r-hIL-7(在哺乳动物细胞中生产)所诱导。(数据点代表三次测定的平均值±SD)。
发明详述
本发明涉及超糖基化的IL-7组合物、它们的生产以及在药物工业中的应用。本发明第一次显示了依赖于多肽的糖基化情况,IL-7的活性和/或性质可以被增强。本发明还令人吃惊地公开了,与体外数据相反,在体内,具有至少2个到优选3个被占据的N-连接的糖基化位点和一个O-连接的糖基化位点以及最大化的寡糖基团的末端唾液酸化的IL-7,可以获得最好的活性。本发明还公开了人工产生的超糖基化的IL-7多肽,它表现出延长的活性(从而允许减少的给药频率),和/或降低的长期免疫原性。至于IL-7的应用,这样的多肽和组合物代表了高度有价值和有用的活性分子,可用于在受试者、包括人类受试者中调节免疫反应。
因此,本发明的第一个目标在于超糖基化的IL-7组合物。
本发明的另一个目标涉及使用超糖基化的IL-7,用于制造由该超糖基化的IL-7和至少一种可药用的载体或赋形剂组成的药物,以治疗哺乳动物受试者。
本发明的另一个目标是在受试者中引起或刺激免疫反应的方法,包括给受试者使用有效量的超糖基化的IL-7组合物。
本发明的另一个目标涉及使用超糖基化的(优选高度唾液酸化的)IL-7组合物,用于制造在受试者中引起或刺激免疫反应的药物。
IL-7多肽
在本发明的上下文中,“IL-7多肽”是指哺乳动物(例如人类、猿、牛、马、猫或狗)的IL-7多肽。更优选情况下,IL-7多肽是人类IL-7多肽,特别可用作治疗药物或疫苗。此外,特别是用于非人类灵长动物实验或兽医应用中时,IL-7多肽可以是任何其它的哺乳动物IL-7多肽,例如猿的IL-7多肽或狗的IL-7多肽。
本发明的优选的人类IL-7多肽包含在EP314415或WO2004/018681A2中描述的氨基酸序列,以及它们的任何天然变异体和类似物。人类IL-7的序列也可以从基因库中获得。典型的野生型蛋白含有152个氨基酸,并且也可以含有另外的N-末端甲硫氨酸残基(SEQIDNO:1)。更优选情况下,其变异体包括由天然多态性引起的天然的等位基因变异体,包括SNPs、剪接变异体等。在具体的实施方案中,术语IL-7多肽是指具有SEQIDNO:1的序列的多肽或其天然变异体。
在另一个实施方案中,IL-7多肽是狗的IL-7多肽。在这一方面,本发明第一次公开了分离的IL-7多肽的序列,这代表了本发明的另一个目标。具体来说,本发明涉及含有在SEQIDNO:7中描述的氨基酸序列的IL-7多肽,以及其任何天然变异体、类似物或独特的片段。术语“变异体”或“类似物”是指与SEQIDNO:7不同的多肽,具有一个或有限数量的氨基酸缺失、置换或添加。优选情况下,这样的变异体或类似物显示出与SEQIDNO:7具有大于85%、优选大于90%、优选大于95%、最优选大于98%的一致性百分数。
在本发明中使用的IL-7多肽优选为重组的IL-7。本文中使用的术语“重组的”是指多肽是从重组表达系统获得或衍生的,即来自被工程化而含有为IL-7多肽编码的核酸分子的宿主细胞(例如微生物或昆虫或植物或哺乳动物)的培养物或转基因植物或动物。“微生物的”是指在细菌表达系统中制造的重组蛋白。“哺乳动物的”是指在哺乳动物表达系统中制造的重组糖蛋白。正如将在下面讨论的那样,所有这些宿主细胞优选将天然地或在转基因后表达适合的糖基转移酶和/或唾液酸转移酶基因。IL-7多肽也可以通过在体外或体内使用适当的糖基转移酶和/或唾液酸转移酶分子、或通过接枝寡糖结构来糖基化。
人类IL-7多肽的一个具体例子是SEQIDNO:1中的多肽,含有二硫桥Cys2-Cys92、Cys34-Cys129和Cys47-Cys141。
本发明的IL-7多肽也可以含有成熟的IL-7多肽的序列,或者进一步含有其它的氨基酸残基,例如分泌肽。这样的分泌肽的优选的例子包括但不限于从含有EPO信号肽、SEAP信号肽、IgGκ信号肽、乳转铁蛋白/玻璃粘连蛋白信号肽、VIP/玻璃粘连蛋白信号肽和cytostatinbis信号肽的组中选择的信号肽。这些信号肽的系列分别显示在SEQIDNO13到18中。在具体的实施方案中,信号肽是由发明人在从EPO和IL-7信号肽衍生的序列之间制成的杂交体结构。该信号肽被命名为EPy7或EP7,其序列被显示在SEQIDNO:19中,代表了本发明的一个特定的目标。
超糖基化的IL-7和组合物
在本发明的上下文中,术语“超糖基化的IL-7”是指具有至少三个被占据的糖基化位点、即具有至少三个糖基化的氨基酸残基的IL-7多肽。
“糖基化位点”是指多肽中被糖基化的、即与糖结构结合的任何氨基酸残基或区域。这样的位点典型为N-糖基化位点(即多肽中任何允许通过N-连接与糖结构结合的氨基酸残基或区域)和/或O-糖基化位点(即多肽中任何允许通过O-连接与糖结构结合的氨基酸残基或区域)。糖基化位点的共有序列在本技术领域中是众所周知的。例如,共有的N-糖基化位点典型具有下列结构:Asn-X-Ser/Thr,其中的X是除了脯氨酸之外的任何氨基酸。正如将在下文中公开的那样,这样的糖基化位点可以天然存在于IL-7多肽序列中,和/或人工添加或产生在该序列中。
术语“超糖基化的IL-7组合物”是指其中至少80%的IL-7多肽具有至少三个被占据的糖基化位点、即具有至少三个糖基化的氨基酸残基的IL-7组合物。优选情况下,这样的组合物含有至少80%的IL-7多肽,它们在至少三个N-糖基化位点以及可选的一个O-糖基化位点上被糖基化。最优选情况下,这样的组合物基本上不含未糖基化或单糖基化的IL-7多肽,因此含有最多20%的双糖基化的IL-7多肽。在优选实施方案中,超糖基化的IL-7组合物是指其中至少90%的IL-7多肽在三个N-糖基化位点以及可选的一个O-糖基化位点上被糖基化的IL-7组合物。最优选情况下,这样的组合物基本上不含未糖基化或单糖基化的IL-7多肽,因此含有最多10%的带有或不带有单-O-糖基化的双-N-糖基化的IL-7多肽。
IL-7的一级氨基酸序列含有三个推测的N-糖基化位点,它们是70、91和116位(相对于人类野生型序列而言,参见SEQIDNO:1)上的天冬酰胺(Asn)残基。此外,本发明显示出IL-7序列也含有一个O-糖基化位点,即110位上的苏氨酸(Thr)残基。在特定的实施方案中,本发明的超糖基化的IL-7多肽是具有上述三个被占据的N-糖基化位点以及带有或不带有一个被占据的O-糖基化位点的IL-7多肽,超糖基化的IL-7组合物是其中至少80%的IL-7多肽在上述的N-糖基化位点和可选的也在O-糖基化位点被糖基化的IL-7组合物。
在具体的实施方案中,超糖基化的IL-7多肽可以含有其它人工添加或产生的糖基化位点。因此,本发明的超糖基化的IL-7多肽是具有至少三个被占据的N-糖基化位点和一个被占据的O-糖基化位点的IL-7多肽,这些位点或者是天然发生的,也可以是/或人工添加/产生的;超糖基化的IL-7组合物是其中至少80%的IL-7多肽在至少4个糖基化位点被糖基化的IL-7组合物,这些位点或者是天然发生的,也可以是/或人工添加/产生的。
在这一方面,本发明现在公开了具有修饰的氨基酸序列的IL-7多肽,其中该序列含有至少一个人工产生的糖基化位点。按照具体的实施方案,本发明的IL-7多肽包含1、2、3或4个人工产生的糖基化位点,更优选1、2或3个、更优选1或2个糖基化位点。
人工产生的糖基化位点优选为N-连接的糖基化位点。共有的N-糖基化位点典型具有下面的结构:Asn-X-Ser/Thr,其中的X是除了脯氨酸之外的任何氨基酸。
糖基化位点可以从装配的合成的寡聚核苷酸通过化学方法、或者使用几种技术包括诱变方法以及下面的本技术领域中现有的技术在IL-7一级氨基酸序列中的不同位置产生或添加。因为修饰的IL-7多肽将保留与IL-7受体结合的能力,糖基化位点最优选产生在IL-7多肽序列的不改变IL-7与IL-7受体的结合能力的区域或结构域中。最优选情况下,位点被导入到多肽的α螺旋之外,优选除了在甘氨酸残基的最邻近点之外。优选情况下,它们被导入到最柔性的区域,避开更刚性和对多肽的三级结构重要的区域。优选情况下,糖基化位点的产生不影响任何参与二硫键的半胱氨酸残基(例如Cys2、34、47、92、129和141),也不影响任何参与IL-7多肽与其关联的受体的相互作用的关键残基(例如Ser19、Leu23和77、Tyr12、Val15、Gln22、Lys81和Glu84),也不影响任何参与多肽活性的保守残基(例如Arg133、Gln136、Glu137、Lys139和144、Thr140和Asn143)。糖基化位点典型地通过在对照IL-7多肽的一级序列中通过一个或几个氨基酸残基的突变、缺失或添加来产生,从而产生典型的共有糖基化位点。
在具体的实施方案中,本发明涉及含有人类(或哺乳动物)IL-7多肽的IL-7多肽,该多肽含有一个或几个从Lys28Asn-Ile30Ser-Ile30Ihr-Ile30Asn-Ser32Thr-Leu35Ser-Leu35Thr-Glu38Ser-Glu38Thr-Phe39Ser-Phe39Thr-Phe42Ser-Phe42Thr-Glu52Ser-Glu52Thr-Val82Asn-Glu84Thr-Glu84Ser-Lys97Asn-Arg99Thr-Arg99Ser-Ala102Asn-Leu104Thr-Leu104Ser-Leu104Asn-Glu106Thr-Glu106Ser-Leu128Ser-Leu128Thr-Ile145Asn-Met147Thr-Met147Ser-Met147Asn-Thr149Ser(或从其它哺乳动物IL-7多肽中对应的位置)中选择的氨基酸修饰。
本发明的(人类)IL-7多肽的具体例子包括在下面的表1中公开的氨基酸修饰:
表1
IL-7多肽类似物 | 氨基酸变化 |
HG28a | Lys28Asn;Ile30Ser |
HG28b | Lys28Asn;Ile30Thr |
HG30 | Ile30Asn;Ser32Thr |
HG33a | Leu35Ser |
HG33b | Leu35Thr |
HG36a | Glu38Ser |
HG36b | Glu38Thr |
HG37a | Phe39Ser |
HG37b | Phe39Thr |
HG40a | Phe42Ser |
HG40b | Phe42Thr |
HG50a | Glu52Ser |
HG50b | Glu52Thr |
HG82a | Val82Asn;Glu84Ser |
HG82b | Val82Asn;Glu84Thr |
HG97a | Lys97Asn;Arg99Ser |
HG97b | Lys97Asn;Arg99Thr |
HG102a | Ala102Asn;Leu104Ser |
HG102b | Ala102Asn;Leu104Thr |
HG104a | Leu104Asn;Glu106Ser |
HG104b | Leu104Asn;Glu106Thr |
HG126a | Leu128Ser |
HG126b | Leu128Thr |
HG145a | Ile145Asn;Met147Ser |
HG145b | Ile145Asn;Met147Thr |
HG147 | Met147Asn;Thr149Ser |
上面的氨基酸修饰产生N-糖基化位点而基本上不改变IL-7的结合亲和性,从而产生了本发明的改进的IL-7多肽。
术语“基本上不改变结合亲和性”是指结合亲和性没有被改变,或者可能被减小,但不影响由与受体相互作用而产生的体内效应。当在体外定量时,结合亲和性可以被减少小于50%、优选小于40%、优选小于30%、优选小于20%、优选小于5%。
上面的修饰也可以被组合以在本发明的IL-7多肽中产生几个其它的糖基化位点。在这一方面,本发明涉及了具有通过添加了至少1个到4个其它的(N-连接)糖基化位点而修饰的(人类或哺乳动物)白介素-7的一级序列的任何生物活性的IL-7多肽。本发明的另一个优选实施方案是含有包含了一个或两个其它的(N-连接的)糖基化位点的白介素-7的一级序列的生物活性IL-7多肽。
本发明的最优选的IL-7多肽是生物活性的,即它们能够与白介素-7受体结合,在特定的生物分析中显示出体外活性,和/或在体内具有增加的平均存留时间(MRT)。在剂量/反应生物分析研究中进行了未糖基化的标准品与超糖基化的IL-7的活性的比较,其中ED50值对应的剂量等于最大活性的一半。超糖基化通常在生物分析中导致减小的活性,但没有转变成体内活性的减小。在目前状态下,扩展的动力学分布情况事实上将提高体内活性。
尽管ED50不反映IL-7的体内活性,它允许在具有同样的糖基化水平的不同样品之间进行比较。在这种框架下,未糖基化的标准品的典型的ED50值范围在0.5到2.0ngIL-7/ml之间,而超糖基化的ED50的值范围在1.5到3.5ng超糖基化IL-7/ml之间。
本发明的超糖基化IL-7多肽显示出改进的稳定性、体内延长的半衰期和在哺乳动物宿主中延长的平均存留时间。术语“改进的稳定性”、“延长的半衰期和平均存留时间”应该被理解为是与未糖基化的形式相比较。优选情况下,半衰期的增加至少是大约3倍,优选至少大约5到20倍。平均存留时间(MRT)是指在第一次用药之后每个IL-7分子在病人血液中存留时间的平均值。优选情况下,与未糖基化的形式的MRT相比,MRT的增加至少为大约2倍,或优选至少大约4到10倍。
例如,超糖基化的形式的血浆半衰期被显示为在30到40小时的范围内,而未糖基化形式的血浆半衰期通常为5到8小时(两种形式在相同的条件下被给药,即在一次皮下注射中同时给药)。
平均存留时间(MRT)是大约40小时,而未糖基化的形式是大约10小时。
应该理解,本发明也涵盖了本发明的IL-7多肽的任何独特片段,即任何含有上面公开的氨基酸修饰的片段,或任何含有上面公开的人工产生的糖基化位点的片段。这样的片段典型地含有至少5个氨基酸残基,典型地至少8、9、10、11、12或15个残基,并可以含有多达20、30、40、50或更多的连续的氨基酸残基。这样的片段可以用作拮抗物或免疫原,以产生特异性抗体。
此外,尽管上面的氨基酸位置是参照人类IL-7多肽序列给出的,应该理解本发明也涵盖了具有通过在哺乳动物序列中基于对人类序列的序列比对进行同源突变而修饰的哺乳动物IL-7的一级序列的IL-7多肽。
本发明的优选实施方案涉及新的生物活性IL-7多肽,其中含有从包含下列修饰的组中选择的一个或几个氨基酸修饰:
Phe39Ser-Phe39Thr-Phe42Ser-Phe42Thr-Leu104Asn-Glu106Thr-Glu106Ser-Leu128Ser-Leu128Thr-Met147Asn及其组合,或其独特的片段。
本发明的最优选的修饰的IL-7多肽被公开在下面的表2中:
表2
IL-7多肽类似物 | 氨基酸变化 |
HG37a | Phe39Ser |
HG37b | Phe39Thr |
HG40a | Phe42Ser |
HG40b | Phe42Thr |
HG104a | Leu104Asn;Glu106Ser |
HG104b | Leu104Asn;Glu106Thr |
HG126a | Leu128Ser |
HG126b | Leu128Thr |
HG147 | Met147Asn;Thr149Ser |
本发明的另一个具体的目标是含有上面公开的一级氨基酸序列的超糖基化的IL-7多肽。
寡糖单位
在本发明的超糖基化的IL-7多肽中结合到特定的糖基化位点上的寡糖单位的结构和数量可以是变化的。它们可以是例如N-乙酰葡萄糖胺、N-乙酰半乳糖胺、甘露糖、半乳糖、葡萄糖、海藻糖、木糖、葡萄糖醛酸、艾杜糖醛酸和/或唾液酸。
更优选情况下,超糖基化的IL-7多肽含有(或富集了)从下面选择的N-连接的和/或O-连接的糖链:
a)哺乳动物类型的糖链,优选为CHO细胞表达的类型;
b)含有复杂的N-糖链(例如三天线(triantenary)或二天线(biantenary)结构)的糖链,更优选含有高含量的甘露糖和乙酰葡糖胺分子和高含量的末端唾液酸残基;
c)含有O-糖链,没有但优选具有末端唾液酸残基的糖链;
d)被α2,6-唾液酸转移酶或α2,3-唾液酸转移酶唾液酸化的糖链;和/或
e)显示出3到30个之间的唾液酸基-N-乙酰半乳糖胺的唾液酸化的糖链,优选为7到23个。
特别优选的糖链含有三天线或二天线结构,具有部分或完全的末端唾液酸化。另一个优选的糖链含有三天线结构和三或双唾液酸化,和/或具有双唾液酸化的二天线结构。这样的糖的例子被公开在表4中,包括基序#2420、2623、2785和3092。
根据另一个具体的实施方案,本发明的超糖基化的白介素-7多肽具有低于6.5的平均等电点和超过27kDa,在28KDa和65KDa之间(7N+1O糖基化的理论值)的平均表观分子量,优选在28KDa和35KDa之间(正如3N+1O糖基化所显示的那样),这是通过凝胶电泳测定的(通过Western印迹印证),所述分子量通过质谱分析检测为25kDa。
在具体的实施方案中,本发明的超糖基化的IL-7多肽由哺乳动物糖基化突变体生产,该突变体稳定地表达α2,6-唾液酸转移酶,并存在CMP-Neu5Ac水解酶活性缺陷,优选为CHO糖基化突变体。这样的糖基化典型包括N-乙酰葡萄糖胺、N-乙酰半乳糖胺、甘露糖、半乳糖、葡萄糖、海藻糖、木糖、葡萄糖醛酸、艾杜糖醛酸和/或唾液酸。
在另一个实施方案中,超糖基化的IL-7多肽通过重组技术在人类宿主细胞中产生,该宿主细胞可以从人类基质或上皮细胞系、HEK-293(人类胚胎肾)、HER(人类胚胎视网膜)、HEK(人类表皮角质细胞)、人类胸腺或人类皮质上皮细胞系、人类骨髓或人类骨髓基质细胞株中选择。
本发明的最优选的超糖基化白介素-7多肽显示出下列特点:
a)它们在重组生产细胞株中具有改进的分泌分布情况和生产率;和/或
b)它们每个IL-7多肽含有高度的唾液酸残基,导致降低了等电点值并改进了平均存留时间;和/或
c)它们被保护免于分子间聚集;和/或
d)它们对蛋白水解作用具有减少的易感性;和/或
e)它们含有被掩盖的抗原位点,反映出减小的免疫原性倾向,减小的对APC(抗原呈递细胞)捕获、被MHCII分子加工和呈递的易损性(vulnerability);和/或
f)它们具有增加的化学稳定性;和/或
g)它们与未糖基化的父本肽相比具有延长的体内生物学半衰期(IL-7的长作用同工型);和/或
h)与未糖基化的父本蛋白相比,它们具有增加的体内药物活性,这主要是由于较好的平均存留时间(MRT);和/或
i)它们允许较低频率的给药方案,从每星期3/4次降低到每星期两次或一次,或对更长效产品来说每两星期一次;和/或
j)它们显示出改进的药物动力学情况(减少的峰浓度和改进的平均存留时间),和/或
k)它们显示出通过质谱分析确定的平均分子量大于25KDa,或通过SDS-PAGE确定的平均分子量大于27KDa,平均等电点低于6.5。
本发明的多肽可以是单体的形式,或者与选定的特定化合物结合或复合。在这一方面,在特定的实施方案中,IL-7构象异构体与肝细胞生长因子(“HGF”)结合形成异源二聚体。异源二聚体可以通过络合作用化学获得,或通过重组技术(即通过遗传融合)获得。
在另一个特定实施方案中,IL-7多肽与IgG重链的Fc部分在功能上相连,典型是通过肽铰链区。这样的融合分子潜在地增加了体内稳定性和半衰期。最优选的IgG基团是人类IgG1或IgG4。
在另一个特定的实施方案中,IL-7多肽与人类血清白蛋白(“HSA”)或HSA的一部分在功能上相连成为融合蛋白。这样的融合分子潜在地增加了体内稳定性并延长了半衰期。
本发明的另一个目标是超糖基化的IL-7组合物。这样的组合物优选含有至少80%、优选在80%到95%之间的的IL-7多肽,所述多肽在至少三个不同的氨基酸残基上被糖基化,糖基化位点可以是天然存在于IL-7多肽序列中(例如共有的N-连接和O-连接糖位点),也可以/或是人工产生的糖基化位点,正如前面讨论的那样。
按照具体的特定实施方案,本发明涉及的超糖基化的IL-7组合物包含:
a)大部分(>80%,优选大于90%,最优选大于大约95%)为白介素-7,它们在3个共有的N-连接糖位点(Asn70/91/116)上被糖基化,在1个O-连接糖位点(Thr110)上被糖基化或未糖基化;优选情况下,组合物含有少量(<20%,优选少于大约10%)只在(与或不与1个O-连接糖位点相连的)2个共有的N-连接糖位点上被糖基化的白介素-7,和/或组合物基本上不含有单糖基化或未糖基化的蛋白;或
b)大部分(>80%,优选大于90%,最优选大于大约95%)为生物活性白介素-7类似物,具有修饰的IL-7一级氨基酸序列,引入了另一个糖基化位点,总共在4个N-连接的糖位点上以及另外在或不在1个O-连接糖位点上(Thr110)被糖基化;优选情况下,组合物含有少量(<20%,优选少于大约10%)同样的类似物,所述类似物只在(与或不与1个O-连接糖位点相连的)3或2个N-连接糖位点上被糖基化,和/或组合物基本上不含有单或未糖基化的蛋白;或
c)大部分(>80%,优选大于90%,最优选大于大约95%)为白介素-7生物活性类似物,具有修饰的IL-7一级氨基酸序列,引入了另两个糖基化位点,总共在5个N-连接的糖位点上以及另外在或不在1个O-连接糖位点上(Thr110)被糖基化;优选情况下,组合物含有少量(<20%,优选少于大约10%)同样的类似物,所述类似物只在与或不与1个O-连接糖位点相连的4、3或2个N-连接糖位点上被糖基化,和/或组合物基本上不含有单糖基化或未糖基化的蛋白;或
d)大部分(>80%,优选大于90%,最优选大于大约95%)为白介素-7生物活性类似物,具有修饰的IL-7一级氨基酸序列,引入了另三个糖基化位点,总共在6个N-连接的糖位点上以及另外在或不在1个O-连接糖位点上(Thr110)被糖基化;优选情况下,组合物含有少量(<20%,优选少于大约10%)同样的类似物,所述类似物只在与或不与1个O-连接糖位点相关的5、4、3或2个N-连接糖位点上被糖基化,和/或组合物基本上不含有单糖基化或未糖基化的蛋白;或
e)大部分(>80%,优选大于90%,最优选大于大约95%)为白介素-7生物活性类似物,具有修饰的IL-7一级氨基酸序列,引入了另四个糖基化位点,总共在7个N-连接的糖位点上以及另外在或不在1个O-连接糖位点上(Thr110)被糖基化;优选情况下,组合物含有少量(<20%,优选少于大约10%)同样的类似物,所述类似物只在与或不与1个O-连接糖位点相关的6、5、4、3或2个N-连接糖位点上被糖基化,和/或组合物基本上不含有单糖基化或未糖基化的蛋白。
本发明还涉及了含有上述的作为活性物质的组合物的药物组合物。
核酸
本发明的另一个目标在于编码上面讨论的IL-7多肽的核酸分子。核酸分子可以是任何DNA或RNA分子,典型为cDNA分子。
本发明的具体的目标是含有SEQIDNO:2从79位到结束的核苷酸残基的核酸,及其独特的片段和互补链。
本发明的另一个目标是含有SEQIDNO:4的核酸,及其任何独特的片段、其变异体(与SEQIDNO:4具有至少90%的一致性)、及其互补链。
本发明的另一个目标是含有SEQIDNO:6的核酸,及其任何独特的片段、其变异体(与SEQIDNO:6具有至少90%的一致性)、及其互补链。本发明的具体的目标是含有SEQIDNO:6从79位到结束的核苷酸残基的核酸,及其变异体(与SEQIDNO:6具有至少90%的一致性)、及其互补链。本发明也涵盖了由这样的序列(例如SEQIDNO:7)所编码的多肽。
上面使用的术语“变异体”对于核酸来说,更具体是指能够在严紧条件下与参比序列杂交的核苷酸序列,和/或编码与参比序列编码的多肽具有同样类型的活性的多肽的核苷酸序列。最优选情况下,变异体与参比序列相比表现出至少在92%和99%之间(例如92%、93%、94%、95%、96%、97%、98%或99%的一致性。
本发明的另一个具体的目标是含有下列序列的核酸:
CTGAATAACGAAACTAACSEQIDNO:8
AACTTCACTAAGSEQIDNO:9
GCCAACGGTACCSEQIDNO:10
CTGAACGACAGCTGTSEQIDNO:11,或
ATCTTGAACGGGSEQIDNO:12,或它们的组合
本发明的核酸的具体例子含有在SEQIDNOs:8到12任何一个中显示的核苷酸序列。
本发明的另一个目的在于含有上面定义的核酸分子的克隆和/或表达载体。载体可以是任何原核或真核载体,典型为真核载体,可以从质粒、粘粒、病毒载体、人工染色体等中选择。载体可以含有任何允许编码核酸在选定的宿主细胞中适当表达的调控序列,例如启动子、终止子、polyA、复制原点、整合区域(例如同源区域)、内含子、UTR序列、标记物基因等。
本发明的一个具体的目标是含有上面定义的核酸分子的表达载体,包括信号肽,可操作地连接到调控元件以允许该核酸在哺乳动物宿主或宿主细胞中表达。
优选的调控元件包括启动子,它可以从病毒、细胞和合成启动子中选择,但不限于此,包括组成型的、组织特异性的或受调节的启动子,特别是选自CMV启动子、E1F启动子和金属硫蛋白启动子的启动子。其它可以被包含在本发明的载体中的调控元件包括但不限于Bcl-2基因、UTR序列和MAR序列。
在优选实施方案中,载体是游离的表达载体。
上述的核酸和载体可以用于例如在各种感受态宿主或宿主细胞中生产重组哺乳动物IL-7多肽,以及用于基因治疗目的。
本发明的另一个目标在于含有上面公开的核酸或载体的重组宿主细胞。这样的重组细胞可以是原核的,或更有选是真核的,例如酵母、昆虫、植物或哺乳动物细胞。
在优选实施方案中,宿主细胞是哺乳动物细胞,优选从PERC6、NSO细胞和BHK细胞中选择,优选为CHO细胞,或人类细胞系。载体、构建物和重组细胞将在本申请的后面部分中更详细地公开,但不限于此。
药物物质和药物组合物
本发明的另一个目标在于含有所需产物,即上面描述的IL-7多肽、典型为超糖基化的IL-7多肽的药物物质。更优选情况下,药物物质含有少于大约10%的未糖基化或单糖基化的IL-7多肽,并且/或基本上不含与产物有关的杂质。
本发明还涉及使用上述的药物物质生产药物(“药物产品”)或药物组合物。
优选的药物物质还基本上不含与处理相关的杂质。
在本发明中,术语“药物物质”是指适合用作药物的活性要素的产品。本发明的“药物物质”在本质上是复合产品,即作为其生产方法(例如重组DNA技术)的结果。
本发明现在揭示,为了产生有效的治疗和疫苗增强效应,IL-7药物物质或药物组合物应该含有超糖基化的IL-7多肽组合物作为主要的分子种类。
本文中使用的术语“基本上不含”是指药物物质不含显著量或有害量的与产品相关的杂质和与处理方法相关的杂质。更具体来说,药物物质将含有少于5%、更优选少于、更优选少于2%的与产品相关的杂质和与处理方法相关的杂质。最优选的药物物质含有少于大约1%的与产品相关的杂质和仅仅痕量的与处理方法相关的杂质。
与IL-7产品相关的物质是指IL-7分子变异体,包括例如有活性或无活性的IL-7肽或多肽片段。
与IL-7相关的杂质包括例如含有单或双二硫桥的人类IL-7多肽、截短的IL-7、脱酰胺的重组IL-7、含有IL-7的二聚体或多聚体蛋白、氧化型甲硫氨酸形式或其组合。
无论其生物活性如何,这些IL-7分子变异体和IL-7相关的杂质应该严格地最小化或从药物物质中丢弃。
与处理方法相关的杂质包括DNA、内毒素、细胞碎片、病毒等。
因此,优选的药物物质是其中超糖基化IL-7组合物的总重量中含有重量百分比至少为95%、优选至少98%、更优选至少99.5%的本发明的超糖基化IL-7组合物的药物物质。
本发明还涉及了药物组合物,其含有有效量的上面描述的药物物质或超糖基化的IL-7组合物以及一种或多种药物相容或可接受的载体、赋形剂或稀释剂。
本发明显示,含有上述超糖基化的IL-7组合物的药物组合物明显地增加了IL-7的疫苗性质和它刺激抗原特异性免疫反应的能力。
药物相容的或生理可接受的载体、赋形剂或稀释剂可以从中性到微酸性、等渗的、缓冲盐溶液或悬浮液中选择,更优选从蔗糖、海藻糖和氨基酸中选择。药物相容的载体优选被包含在适当的缓冲液中以形成等渗溶液。适合的缓冲液优选具有的pH范围包括在4.5到7.5之间,优选5.0到7.0,更有选大约5.5,优选为从柠檬酸钠缓冲液或乙酸铵缓冲液中选择的有机酸盐。药物组合物可以采取悬浮液、溶液、凝胶、粉末、固体等形式。组合物优选为液体形式。
组合物可以含有稳定剂,例如糖、氨基酸、蛋白、表面活性剂等。组合物可以含有任何盐溶液,包括磷酸盐、氯化物等。
本发明的特定的药物组合物,除了活性药物物质之外,还包含蛋白和/或表面活性剂。蛋白或任何其它高分子量的天然来源的分子的存在,减少了IL-7在宿主免疫系统中的暴露,从而避免了次级效应。更优选情况下,蛋白在受试者中是无免疫原性的,例如任何人类来源的蛋白。蛋白的最优选的例子是人类血清白蛋白。表面活性剂可以从已知的表面活性剂中选择,例如聚山梨酸酯产物,优选为Tween20TM或Tween80TM。本发明的具体的组合物含有人类血清白蛋白(优选2到5mg/ml)或聚山梨酸酯(Tween20或80(典型为0.005%))或任何其它物质例如表面活性物质或氨基酸(例如精氨酸、谷氨酸、或精氨酸和谷氨酸的混合物)或糖(例如蔗糖、海藻糖、山梨醇),能够防止由于蛋白聚集和/或给药组合物后药物产品在注射位点处的局部持久存在而引起的IL-7的免疫原性。
在这一方面,本发明的具体目标在于含有浓度为大约1mg/ml到50mg/ml、优选为大约3mg/ml到20mg/ml的超糖基化的白介素-7组合物的药物组合物。优选情况下,例如在治疗或预防传染病的情况下,被给药的糖基化的白介素-7的有效量在大约10到200μg/kg/星期之间,优选在大约10到60μg/kg/星期之间。
鉴于本发明的多肽和组合物的改进的性质,在使用等价剂量以获得可比较的治疗效果的情况下,药物组合物需要使用的频率低于现有技术的组合物或产品的使用频率。更具体来说,在典型的实施方案中,组合物的使用每星期3次、每星期2次、每星期1次、每两星期1次、每月1次、疫苗接种前或疫苗接种之前和之后1次或2次。优选的剂量方案包括每7、10或14天给药1次药物组合物。
优选的给药途径是肠胃外途径。肠胃外途径优选为肿瘤内给药、更有选为静脉内或皮下给药。此外也包括动脉内、腹膜内或肌肉内注射。但是,应该理解,依赖于病人的健康状态和反应性,任何其它适合的给药途径也可以被考虑。
在具体的实施方案中,给药途径是口服途径。与其它多肽激素相比,由于超糖基化的IL-7的异常的稳定性,口服途径对于该蛋白来说事实上是可以接受的。本发明的组合物优选为固体形式,例如片剂或粉末或胶囊,也可以是液体形式,例如在适合的可药用的载体中制备的糖浆或乳浊液。优选载体本身在胃肠道和循环系统中是稳定的,并表现出可接受的血浆半衰期。
抗胃酸胶囊、例如含有超糖基化的IL-7多肽的微乳浊液或脂质体配方的抗胃酸胶囊,是有优势的。
药物组合物可以含有其它的活性成分,例如免疫刺激剂,优选从造血细胞生长因子、细胞因子、抗原性分子(或抗原)和可以组合、分别或顺序使用的佐剂中选择。
这种另外的活性成分可以与IL-7一起配制,也可以分别配制,用于组合、分别或顺续使用。在第一种情况下,活性成分被一起配制在同样的容器中。在另一种优选的情况下,它们被分别调制,即在不同的容器中。按照本实施方案,成分可以分开使用,例如同时或顺续使用(例如在不同的注射位点或不同的时间点),以产生最有效的生物效应。正如上面提到的那样,可以重复给药1次或2次活性成分。
在这种情况下,本发明涉及药物组合物,其含有上述的超糖基化的IL-7组合物和选自免疫刺激剂和抗原性分子的活性成分,以组合、分别或顺序使用。佐剂优选分开配制。
造血细胞生长因子优选从干细胞因子(SCF)、特别是可溶形式的SCF、G-CSF、GM-CSF、Flt-3配体、IL-15和IL-2中选择。用于疫苗增强的细胞因子或趋化因子的典型例子包括诱导和/或刺激Th1-类型的免疫反应的细胞因子。细胞因子优选从α或v-干扰素、IL-2、IL-12、RANTES、B7-1、MIP-2和MIP-1α中选择。应该理解,其它的因子例如NK细胞活化剂和/或NKT细胞活化剂、FGF7或FGF10、白介素和/或激素可以与IL-7结合使用,以提供其它的治疗益处。
本发明的特定组合物含有上述的超糖基化的IL-7组合物和干细胞因子、特别是其可溶形式、IL-15和/或Flt-3配体和/或FGF10。
本发明的另一种特定组合物含有上述的超糖基化的IL-7组合物和从α.或γ-干扰素、IL-2、IL-12、RANTES和MIP-1α中选择的细胞因子。
本发明的另一种特定组合物含有上述的超糖基化的IL-7组合物、干细胞因子和细胞因子。
正如上面指出的那样,药物组合物还可以含有一种或几种抗原(或抗原性分子),以组合、分别或顺续使用。抗原可以是任何合成的或天然的肽、重组蛋白、杀死的、失活的或减毒的病原产物、微生物、寄生物、脂类等,及其部分和其组合。抗原可以是完整的蛋白、或其任何含有表位的片段或部分、特别是通过I类和II类MHC分子呈递到免疫系统中的肽。抗原可以是任何病毒抗原、细菌抗原、寄生虫抗原、肿瘤抗原等。抗原的具体例子包括从HIV、水痘带状疱疹病毒、流感病毒、EpsteinBarr病毒、I型或II型单纯性疱疹病毒、人类巨细胞病毒、登革热病毒、甲、乙、丙、丁或戊型肝炎病毒、呼吸道合胞病毒、人类乳头状瘤病毒、结核分枝杆菌、弓形虫和衣原体衍生的抗原。
本发明的一个具体的目标涉及含有上述的超糖基化IL-7组合物和抗原性分子的组合物,以组合、分别或顺序使用。组合物还可以包含一种或几种上面公开的免疫刺激剂,以组合、分别或连续使用。
本发明的另一个具体的目标涉及含有上述的超糖基化IL-7组合物的药物组合物,其中该药物组合物与一种或几种抗原性分子同时、提前几天或连续使用,以在受试者中获得和/或刺激抗原特异性的免疫反应。
本发明的另一个具体目的涉及在受试者中引起或增强抗原特异性免疫反应的方法,包括给受试者给药该抗原(或其含有表位的片段)和上面描述的超糖基化的IL-7组合物。组合物可以与该抗原同时、提前几天或顺序给药,更优选在给药该抗原之前使用,以在受试者中获得和/或刺激抗原特异性的免疫反应。
在另一个优选实施方案中,本发明的组合物还含有佐剂。佐剂可以从任何促进或增加抗原的免疫原性并能够诱导Th1类型的免疫反应的物质、混合物、溶质或组合物中选择,例如CpG、QS21、ISCOM和单磷酰脂A。这样的佐剂特别适合于在哺乳动物受试者、特别是人类中产生和/或放大针对抗原的特异性免疫反应。佐剂优选与含有IL-7的组合物分开调制和使用,和/或在不同的位点注射,优选与所需的抗原一起。
本发明还涉及含有有效量的本发明的人类超糖基化IL-7组合物,与适合的稀释剂、赋形剂或载体混合的药物组合物,通过肠胃外给人类病人使用,以预防性或治疗性刺激B或T淋巴细胞的发育和增殖,或用于增强免疫反应。本发明的药物组合物诱导了延长的淋巴细胞生成刺激和/或放大的免疫反应。
本发明的药物组合物也可以用于人类病人以预防性或治疗性刺激B或T淋巴细胞的发育和增殖,用于增强全面的和/或特异性免疫重建,或用于增强体液和/或细胞免疫反应。
本发明的具体的药物组合物被用于在免疫缺陷病人中阻止或减少机会性感染。
本发明的另一个具体的药物组合物被用于延长淋巴细胞生成刺激,和/或产生不仅针对主要表位、而且针对次主要或较少免疫原性的表位、对T细胞受体具有较低的亲和性的表位的特异性免疫反应,这将允许在人类病人中扩展特异性免疫反应的总组成成分。
本发明特别适合于在受试者中产生保护性或治愈性免疫反应,这些受试者例如免疫缺陷病人、癌症病人、经历移植的病人、病毒或寄生虫感染的病人、老年病人或任何具有低的CD4计数的病人等。
本发明的IL-7多肽和组合物的具体和优选的应用包括下列应用:
-以能够有效诱导针对恶性细胞或感染因子的特异性免疫反应增强的量作为疫苗增强剂(该组合物的给药在抗原给药之前、之中或基本上同时使用);以及
-诱导无论何种来源的病人的免疫重建:传染、辐射、移植(BMT、SCT)或药物;
本发明的IL-7多肽和组合物可以单独使用,也可以与其它活性成分组合使用,例如淋巴细胞生成因子,包括但不限于SCF、Flt3-L、α-IFN、γ-IFN、IL-2、IL-3、IL-4、IL-12、IL-15、IL-18和/或IL-21。在使用组合疗法时,各种成分可以同时、分别或顺序使用,可以一起或分开调制。
本发明的IL-7多肽和组合物可以用于各种领域,包括在动物健康领域增强疫苗的接种,以及最小化活性物质给药的次数。
本发明还提供了治疗病毒感染、例如HIV感染、病毒性肝炎、西尼罗河热、登革热感染的方法,该方法包括给感染的病人使用超糖基化的IL-7多肽组合物。
在具体的实施方案中,超糖基化的IL-7组合物将与干扰素分子结合使用。干扰素分子可以是例如α-IFN(白细胞IFN)、β-IFN(成纤维细胞IFN)、γ-IFN(免疫IFN)、ω-IFN或τ-IFN(滋养母细胞因子)。
本发明还提供了用于在免疫减弱的受试者中改善胸腺生成恢复的方法,该方法包括给免疫减弱的受试者使用超糖基化的IL-7多肽组合物。
优选情况下,超糖基化的IL-7多肽与角质细胞生长因子、干细胞因子、gonadostimulin拮抗剂或生长激素结合使用。
超糖基化的IL-7多肽也可以用在提供针对恶性细胞、病毒或细菌的治疗性免疫的方法中,其中超糖基化的IL-7多肽将与抗原或抗原混合物、例如上面描述的那些结合使用。在这种情况下,超糖基化的IL-7多肽还可以与GM-CSF结合使用。
本发明的另一个目标是离体增强T细胞的扩增的方法,该方法包括将T细胞与超糖基化的IL-7多肽或组合物相接触,从而增强T细胞的增殖。该方法对于制备适合于通过过继性免疫疗法治疗患有癌症或病毒感染的病人的T细胞来说是特别有用的。过继性免疫疗法是离体方法,用于选择性扩增靶向特定抗原(恶性肿瘤或病毒)的特定T细胞。该免疫治疗技术通常包括从病人的全血中分离抗原特异性T淋巴细胞,使用IL-7多肽离体扩增这些T细胞,也可以选择通过其它细胞因子离体活化这些T细胞,并给病人使用。其它的技术也是可能的。IL-7多肽改进了这些T细胞种群的存活,这进一步显示了增强的细胞毒性活性。
生产方法和工具
本发明的另一方面是提供适合的构建物和方法,以足够用于药物应用的数量和质量生产上述的组合物、特别是上面的超糖基化的IL-7多肽、组合物和药物物质。
具体来说,正如上面讨论的那样,本发明提供了可以在各种感受态宿主细胞中生产本发明的重组人类IL-7多肽、并用于基因治疗目的的载体和重组宿主细胞。
载体可以是质粒、病毒、噬菌体、粘粒、游离体等。优选的载体是病毒载体(例如重组腺病毒)和质粒,它们可以基于可商业获得的骨架生产,例如pBR、pcDNA、pUC、pET、pVITRO等。载体典型地含有控制或介导IL-7多肽的表达的调控元件或序列。调控序列可以从启动子、增强子、沉默子、组织特异性信号、肽信号、内含子、终止子、polyA序列、GC区域,或其组合等中选择。这样的调控元件或序列可以从哺乳动物、真菌、植物、细菌、酵母、噬菌体或病毒基因衍生,也可以从人工来源衍生。用于原核细胞表达(例如大肠杆菌)的有用的启动子包括例如T7RNA聚合酶启动子(pT7)、TAC启动子(pTAC)、Trp启动子、Lac启动子、Tre启动子、PhoA启动子。适合用于在哺乳动物细胞中表达的启动子包括病毒启动子(例如CMV、LTR、RSV、SV40、TK、pCAG等)、看家基因启动子(例如E1f、鸡βactine、泛素、INSM1等)、杂交启动子(例如actine/珠蛋白等)等。载体可以含有一个以上的启动子。启动子可以是可诱导的或被调控的。例如,使用可诱导的或被调控的启动子允许通过使培养物与生产阶段分离对生产进行较好的控制。可诱导的或被调控的启动子可以在文献中发现,例如四环素系统、Geneswitch系统、Ecdysone系统、Oestradiol系统、RU486系统、Cumate系统、金属硫蛋白启动子等。其它的系统基于电流或微波,例如聚焦超声系统、AIR诱导的表达系统等。这些系统可以用于控制本发明的IL-7多肽的表达。
IL-7可以与抗凋亡因子(例如iex、Bcl2、BclXL等)或周期蛋白(例如p21、p27等)共表达。为该IL-7和该抗凋亡因子编码的cDNAs可以都位于同样的启动子下游,但是被IRES序列分开,它们各自也可以位于其自身的启动子的下游。
载体还可以含有复制原点和/或标记物基因,它们可以从常规的序列中选择。扩增选择性标记物例如DHFR基因可以被插入到载体的骨架中。
载体还可以含有这些不同元件的各种组合,它们可以以不同的方式组织。
本发明还提供了含有上面描述的核酸或载体的重组宿主细胞。宿主细胞可以从任何真核和原核细胞中选择,典型地从哺乳动物细胞(特别是人类、啮齿类、犬类)、细菌细胞(特别是大肠杆菌E.coli、短芽胞杆菌Bacillusbrevis、枯草芽孢杆菌Bacillussubtilis)、酵母细胞、植物细胞和昆虫细胞中选择。这些宿主细胞可以适应于无血清培养基。生产也可以在转基因动物或植物中完成。
优选的重组宿主细胞从哺乳动物细胞中选择,特别是人类细胞及其衍生物或突变株。
适合的宿主细胞的具体例子包括中国仓鼠卵巢(CHO)细胞、幼仓鼠肾脏(BHK)细胞、人类胚胎肾脏(HEK-293)细胞、人类表皮角质细胞(HEK)、人类基质或表皮细胞、PERC6等。在这些哺乳动物细胞中,IL-7可以使用功能性信号肽序列生产为分泌蛋白。
本发明的一个具体目标是包含含有SEQIDNO:2、4或6的核酸分子的真核宿主细胞。
本发明的另一个目标涉及与上面描述的IL-7组合物或多肽具有免疫反应性的抗体。这样的抗体可以按照常规的方法生产,包括免疫动物和收集血清(多克隆)或从脾脏细胞制备杂交瘤(单克隆)。可以通过已知的生物学和化学方法生产抗体的片段(例如Fab’)或工程化衍生物(例如ScFv或双功能抗体或微型抗体)。优选的抗体与上面描述的超糖基化IL-7多肽具有特异的免疫反应性,即可以结合超糖基化的IL-7多肽,而基本上不结合未糖基化或单糖基化的多肽。尽管也可以观察到与这些其它抗原的非特异性或低效率的结合,这样的非特异性结合可以同与本发明的特定超糖基化的IL-7多肽的特异性结合区分开来。
抗体优选为猿、鼠或人类来源的,或已经被人源化。
本发明还涉及了产生上面描述的单克隆抗体的杂交瘤细胞株。
这样的抗体可用于检测超糖基化的IL-7多肽,或在包含多个淋巴细胞因子的分析或实验中中和IL-7的生物活性。含有这样的单克隆抗体,适合用于诊断、测试或治疗的组合物也是本发明的一个目标。
本发明的另一个目标涉及可以在工业规模上用于生产药物级的、基本上纯的上述超糖基化IL-7多肽的方法。该方法产生高收率的适用于治疗应用的的重组IL-7构像异构体。本发明还提供了新的控制含有IL-7组合物的方法,以确定上述的超糖基化IL-7多肽存在的量。
在特定情况下,上面定义的生产超糖基化IL-7多肽或组合物的方法包括:
a)培养上述的重组宿主细胞,以及
b)收集从该细胞产生的IL-7多肽。
样品可以被用于进行各种处理或调制,以增加IL-7的纯度、移除细胞碎片或病毒颗粒等。这样的处理的典型的例子包括离心、澄清和/或透析、超滤、纳滤。从而可以使样品富集IL-7多肽。
为了增加方法的收率或效率,非常希望生产含有或富集了正确折叠和糖基化的IL-7多肽的样品。
超糖基化的IL-7多肽可以通过目前已知的、但尚未被用于组合生产超糖基化IL-7多肽的不同技术来进行纯化。这些技术更优选从疏水相互作用层析、离子交换层析、亲和层析和凝胶过滤层析中选择,可以单独使用,也可以以不同的方式组合使用。这些方法允许除去宿主细胞DNA和其它会降低回收率的杂质。在优选实施方案中,步骤ii)包含疏水相互作用层析步骤。这样的层析可以使用不同的支持物和形式进行,优选使用HIC丁基。步骤ii)可以在任何支持物上进行,优选使用适合的凝胶分批或在柱中进行。
在优选实施方案中,纯化步骤包括将样品上样于填充有特定凝胶(例如Sephadex)的柱子中。
在另一个优选实施方案中,纯化步骤包含精制步骤,包括将样品上样于填充有特定凝胶(Source15S)的柱子以浓缩回收的所需蛋白并除去可能的残余蛋白污染物。
在另一个特定实施方案中,纯化步骤包括将样品上样于填充有特定凝胶的柱子,该凝胶含有固定在树脂(例如硫酸葡聚糖或肝素)上的单克隆抗IL-7抗体。
这些方法允许可重复地和有效地生产上面描述的基本上纯的超糖基化IL-7多肽。这些方法是特别有利的,因为可以获得的重组IL-7相对于IL-7总量来说具有至少95%重量比、优选至少98%重量比、更优选至少99%、甚至99.5%重量比的纯度。
上面描述的方法中的每一步都可以通过分析方法、包括SDS-PAGE分析来控制。最适化的IL-7的一级结构可以通过确定基因和/或氨基酸序列、通过胰蛋白酶消化后进行肽作图分析、通过用SDS-PAGE、孔径排阻HPLC、质谱分析例如MALDITOF或电喷射质谱等测定分子量、通过例如反向HPLC测定疏水性、和/或通过例如阳离子交换层析HPLC或等电聚焦分析测定电荷来进行控制和定性。
本发明的另一个实施方案涉及上述的IL-7生产方法,其中IL-7被重组宿主细胞的表达是可诱导的、被调控的或短暂的,以便细胞培养和IL-7表达在时间上可以被分开。更具体来说,在特定实施方案中,IL-7的表达在重组细胞的生长、扩增和/或培养期间可以被抑制或最小化,以允许生产大量的重组宿主细胞而不带来任何IL-7介导的潜在毒性效应。然后,可以在细胞培养物(或其样品)中诱导IL-7的表达,以允许有效合成和释放重组IL-7。
因此,本发明的一个目标还在于生产重组IL-7多肽的方法,包括培养上面公开的含有为该IL-7多肽编码的核酸分子的重组宿主细胞和回收产生的重组IL-7多肽,其中该核酸分子为该IL-7多肽提供了被调控或可诱导的表达,以便该IL-7多肽的表达在重组细胞生长期间可以被抑制或最小化,在生产期中可以被诱导。核酸典型地含有可诱导的启动子,它在存在或不存在包含或添加到培养基中的特定试剂的情况下可以被抑制或激活。该方法特别适合于生产上面公开的IL-7超糖基化构象异构体。
在本技术领域中已经公开了多种被调控的或可诱导的表达系统,它们可以在哺乳动物宿主细胞中起作用,可以用于本发明。这包括四环素TetOn/Off系统、使用Mifepristone作为诱导剂和GAL4-E1b启动子的Geneswitch系统(Invitrogen)、Ecdysone系统(用昆虫类固醇激素的类似物松甾酮A或muristeroneA诱导)(Invitrogen)、金属硫蛋白启动子(用锌诱导)、雌二醇系统、RU486系统、聚焦超声系统、AIR(乙醛诱导的调控)诱导的表达系统、Cumate系统(Q-mate;Qbiogen)、Cre-Lox系统等。这些被调控或可诱导的表达系统可以用于各种细胞,例如HEK293、HEK293EBNA、HEK、T-REXTM-293、T-REXTM-HeLa、T-REXTM-CHO或T-REXTM-Jurkat细胞株,它们用被设计为诱导后表达IL-7的重组载体来转化。
此外,瞬时转染可以被用于分离细胞扩增和IL-7生产。在这一点上,有效的基因投送载体被用于在其扩增后将IL-7编码序列导入细胞中。更优选,用于瞬时转染的载体系统是病毒载体,例如重组腺病毒或游离的载体[例如pCEPH(Invitrogene)、pTT(IRB:DurocherY.等Nucl.Acids.Res.,2002,30(2))或使用MAR序列]。腺病毒(以及其它病毒载体例如AAVs)可以根据本技术领域现有的技术来生产。典型来说,E1-缺陷的腺病毒在E1补充的细胞株中,例如HEK293、PERC6细胞等中生产。这样的瞬时转染方法可以在培养物中的各种哺乳动物细胞中进行,例如A549-、HeLa-、VERO-、BHK-或CHO-转化细胞(正如在实施例A4中公开的那样)。另一种适合于使用在本发明中的瞬时表达方法是例如在下面的文章中公开的方法:DurocherY.等Nucl.Acids.Res.,2002,30(2),表达在HEK293EBNA或HEK293细胞中。
在优选实施方案中,本发明的生产方法包括附加的步骤c),即对包含在获得的产物中的上述特定的超糖基化IL-7多肽进行定性和测量或定量。所需的超糖基化的IL-7多肽的物理和生物学性质可以通过质谱(MALDI-TOF或电喷射)、红外波谱、核磁共振(NMR)、通过测量圆二色性、通过在特定的生物测试中评估IL-7的生物学活性、通过测量对针对该超糖基化IL-7多肽产生的特异性单克隆抗体的亲和性、或肝素亲和性HPLC来获得。一旦定性之后,该构象异构体的定量可以通过ELISA、生物测试、该超糖基化IL-7多肽与IL-7受体的亲和性和任何应用于分离的构象异构体的蛋白定量方法来进行。
在这一方面,本发明还提供和涉及了鉴定和/或测量样品中、特别是药物制剂中的超糖基化IL-7多肽和/或相关杂质的量的方法。这种定性方法可以在药物批次的质量控制中用于申报治疗应用的蛋白的最初的性质和质量的研究。本发明第一次提出了含有IL-7的制剂的定性和控制方法,以确定本发明的超糖基化的IL-7多肽的存在和/或相对数量。优选的方法使用二辛可宁酸(BCA)蛋白分析、SDS-PAGE、western印迹、孔径排阻HPLC、反向HPLC、离子交换HPLC、疏水相互作用HPLC、氨基酸分析(AAA)、等电聚焦(IEF)、ELISA、UV吸收和/或生物分析方法。这些方法可以单独使用,也可以以不同方式组合使用。
本发明还提供了生产IL-7药物物质或药物组合物的方法,该方法包括(i)培养编码IL-7多肽的重组宿主细胞,(ii)分离该重组多肽以生产IL-7药物物质和(iii)调制该IL-7药物物质以生产适合于治疗或疫苗应用的药物组合物,该方法还包括在该药物物质或药物组合物中鉴定、定性或测量上面定义的超糖基化IL-7多肽的数量和/或质量的步骤,以及更优选情况下,选择含有超过大约90%、优选95%、更优选98%的作为活性成分的该超糖基化IL-7多肽的药物物质或药物组合物的步骤。
定性步骤可以通过各种技术来进行,更优选通过伴随使用或不使用胰蛋白酶消化的与质谱相关的方法、外源凝集素亲和层析、氨基酸分析(AAA)、内切和外切N-或O-聚糖酶消化(PNGaseA/F,O-糖苷酶,神经氨酸酶)、荧光团辅助的糖电泳、MALDITOF或电喷射质谱、用于二硫桥和/或构象定性的特异性单克隆抗体分析。分子变异体和与产物相关的杂质的鉴定优选通过使用一种或几种从下面的方法中选择的方法来进行:对于脱酰胺形式,采用二维电泳、等电聚焦和离子交换层析;对于多聚体形式,采用孔径排阻层析和SDS-PAGE分析,以及对于截短形式,采用带有或不带酶法预消化的反向HPLC。
该步骤特别适合于临床或药物组合物的质量控制,其中只有含有超过大约95%、优选超过大约96%、98%或99.5%的上述超糖基化IL-7多肽的组合物被保留。所有这些超糖基化的IL-7多肽显示出低于6.5的平均等电点。
本发明的另一个目标涉及使用通过上面描述的方法获得的重组超糖基化IL-7多肽,用于生产预防或治疗与免疫缺陷有关的疾病、特别是诱导延长的淋巴细胞生成刺激、引起和/或扩增免疫反应、特别是抗原特异性免疫反应的药物组合物。
本发明的另一个目标涉及使用超糖基化的IL-7多肽,用于在兽医应用领域中在哺乳动物中用作实验工具和药物应用。
本发明的其它特点和优点将在下面的实施例中描述,这应该被当作是说明性的,不对本申请的范围构成限制。
实施例
实施例A.最适化的人类(h)和猿类(s)IL-7编码序列在哺乳动
物细胞中的构建和表达
A1.最适化的人类IL-7编码核苷酸序列的构建:
1.1.肽信号的最适化:
因为在5’末端连接了天然IL-7肽信号的IL-7cDNA片段的表达非常低,我们试验了几个信号肽序列。
新的编码人类IL-7的cDNA序列从装配的合成寡聚核苷酸化学获得。
测试了几个信号肽序列:高度分泌蛋白的信号肽(SP)(Barash等;2002;BiochemicalandBiophysicalResearchCommunications294:835-842):
IL-7SP
MFHVSFRYIFGLPPLILVLLPVASS(SEQIDNO:13)
EPOSP
MGVHECPAWLWLLLSLLSLPLGLPVLG(SEQIDNO:14)
SEAPSP
MLLLLLLLGLRLQLSLG(SEQIDNO:15)
IgGSP
METDTLLLWVLLLWVPGSTG(SEQIDNO:16)
乳转铁蛋白/玻璃粘连蛋白SP
MKLVFLVLLFLGALGVALA(SEQIDNO:17)
抑半胱氨蛋白酶蛋白bisSP
MARPLCTLLLLMATLAVALA(SEQIDNO:18)
EPO/IL-7的新杂合体SP
MGVHECPAWLWLLLSLLSLVLLPVAS(SEQIDNO:19)
获得的cDNAs序列被插入到pTT5载体中(Durocher等;2002;Nucl.Ac.Res.;30),用于在哺乳动物细胞例如HEK293细胞、CHO细胞中瞬时表达。
为了确定信号肽的良好切割,每个获得的蛋白的N-末端氨基酸被测定;hIL-7的完整性被维持。
抑半胱氨蛋白酶蛋白、IgG、EPO和杂合体EP/7表现为是最好的信号肽序列。事实上,hIL-7的表达被增强了至少10倍。
1.2.编码人类IL-7的核苷酸序列的最适化:
为了维持EP/7hIL-7的氨基酸序列,核酸序列进行了如下最适化
-消除了人类稀有密码子(使用图形密码子使用分析者软件GraphicalCodonUsageAnalysersoftware)
-通过增加除了信号肽序列之外的序列的“GC”含量并最小化连续的“CA”二核苷酸以增强mRNA的稳定性(Kim等;1997;Gene;199)。
序列被描述在SEQIDNO:2中。
A2.最适化的编码猿类IL-7的核苷酸序列的构建:
正如在编码人类IL-7的序列中描述的那样,合成了EP/7-sIL-7最适化序列(SEQIDNO:3)。
A3.编码犬类IL-7的核苷酸序列的构建:
犬类IL-7cDNA通过PCR从狗肾cDNA文库(Biochain)中扩增,按照上述人类IL-7编码序列中那样进行克隆和测序,IL-7SP或EP/7SP-cIL-7序列被合成(SEQIDNO:6)。
A4.哺乳动物表达(BHK细胞表达,或CHO细胞表达或HEK-293
细胞表达):
编码IL-7的cDNA序列通过聚合酶链反应(PCR)扩增(Mullis等;1987;MethodsinEnzymology;155:335-350)以产生限制性位点(NotI/SwaI),用于克隆在表达载体中。
设计了表达系统ph-pgk.EP7-hIL-7(图1)或pBh-pgk.EP7-hIL-7(图2)以表达从天然人类IL-7基因序列翻译而预测的IL-7蛋白。在载体上携带的抗生素(在大肠杆菌中克隆使用氨苄青霉素,在哺乳动物细胞中表达使用潮霉素)抗性标记物基因的基础上来筛选含有重组载体的细胞。
该表达载体已经被完全构建在CYTHERIS中,开始于赋予系统氨苄青霉素抗性的pIC20H质粒(ATCC)。它含有2个哺乳动物的生产单元:
1/一个用于表达IL-7编码序列,该序列在pgk启动子控制之下,带有合成的polyA序列以避免转录通过pgk启动子。
2/一个用于表达潮霉素抗性,在“sv40增强子-tk启动子”控制之下。
下列序列被插入到该最初的载体中:
-“hph-eflapA”:HindIII/SbfI片段,来自pVitro2.mcs(Invitrogen);
-tk启动子:EcoRI/HindIIIPCR片段,来自pMEP4(Invitrogen);
-sv40增强子:BssHII/EcoRIPCR片段,来自pVitro2.mcs(Invitrogen);
-MAR兔β珠蛋白:推定的“基质结合区域”,用于在染色质的高度转录区域中更好地整合,来自pSG5(Stratagene)的EcoRV/AgeI兔β珠蛋白内含子2PCR片段;
-SpA:StuI/BspEI片段,来自pCAT3对照(Promega);
-Pgk启动子:KpnI/BssHIIPCR片段,来自pQBI.pgk(Q-biogen);
-5’UTRint1:HindIII嵌合内含子片段,来自pCAT3-对照(Promega);
-NotI/SwaI或NotI/PmlIIL-7编码cDNA和突变体;
-hghpA:NruI/SwaI合成序列,从M.Goodman(DeNoto等;1981;Nucl.Acid.Res.;9(51):3719-3730)描述的人类生长激素cDNA序列合成。
载体的某些变异体使用除了pgk启动子之外的其它IL-7启动子来制备:Ef1α、snRNAU1、肌动蛋白、泛素、CMV启动子等,或其它选择标记物:新霉素等。
含有SEQIDNO:2的哺乳动物(HEK-293、CHO或BHK)表达载体被称为ph-pgk.EP7-hIL-7或pBh-pgk.EP7-hIL-7。使用ph-pgk.EP7-hIL-7或pBh-pgk.EP7-hIL-7表达载体,人类IL-7在HEK-293或CHO转染细胞中得到了稳定的表达。在用NdeI线性化后,使用本领域的专业技术人员所熟知的方法将表达载体ph-pgk.EP7-hIL-7或pBh-pgk.EP7-hIL-7转染到哺乳动物宿主细胞中。用于建立稳定的转染子的选择性标记是潮霉素(Invitrogen)。
A5.可诱导的哺乳动物表达(金属硫蛋白启动子“MT1”):
在同样的表达载体中,用参照PubMed中(NoX53530)(Carter等;1984;Proc.Natl.Acad.Sci.USA;81:7392-7396)的序列化学合成的BspEI/BssHII“小鼠MT1”序列代替了pgk启动子。
MT1是金属依赖性转录因子启动子。因此稳定的克隆的表达是锌依赖性的。
A6.IL-7和Bcl2或BclXL(BHK细胞表达、或CHO细胞表达或
HEK-293细胞表达)的哺乳动物共表达:
为了增加在哺乳动物宿主细胞培养物中的细胞存活率、从而最适化IL-7的生产量,通过将Bcl2cDNA序列插入到tk启动子和hphcDNA之间制备了变异的表达质粒,以便Bcl2的抗凋亡活性可以在生物反应器生产中测试(Zhong等;1993;Proc.Natl.Acad.Sci.USA;90:4533-4537-Lee等;2000;JournalofcellScience;114(4):677-684)(参见图2)。
实施例B.编码IL-7的核苷酸序列的超糖基化类似物在哺乳动物
细胞中的构建和表达:
B1.超糖基化IL-7类似物的cDNA序列的构建
使用几种技术包括诱变方法获得了超糖基化的IL-7类似物。超糖基化的IL-7类似物(也称为:HG37-40-104-126和-147)是从装配的合成的寡聚核苷酸化学构建的。通过引入一个或多个所需的突变获得了几个类似物,这些突变产生了具有一个或多个附加的糖基化位点的IL-7类似物。因此,在用NotI和PmII限制性酶消化之后,含有一个或多个所需的附加的糖基化位点的全长cDNA序列被插入到NotI/PmlI限制性位点之间,以直接克隆到表达载体中(与图1或2相同,但是含有适当的IL-7序列)。
B2.超糖基化IL-7类似物的cDNA序列的表达
超糖基化IL-7类似物的表达与上面A4到A6节中描述的那样进行。
实施例C.在生物反应器培养条件下生产重组hIL-7
实施例A4中获得的最稳定的阳性克隆通过几次培养基和成分筛选之后适应于无血清悬浮培养,以便产生最适合在高细胞密度培养中生产和生长的克隆。在接种到100到2000L生物反应器中之前,在“波包(wavebag)”系统中进行了预培养。细胞培养在带有灌注系统或补料分批培养系统的100到2000升生物反应器中进行10到15天。细胞在添加了植物蛋白胨的低谷氨酰胺含量的培养基中被扩增到浓度为一千万细胞/ml。
在第一个扩增步骤中,培养温度被调节到37℃以增加细胞密度。几天之后,温度被降低到大约28/32℃,以抑制细胞生长并允许较好的表达水平。此外,降低温度降低了分泌途径的速度、有利于被表达的IL-7更好地被糖基化、增加了被占据的位点。
在培养结束之前几天,通过在培养基中添加0.5-10mM丁酸钠促进了IL-7的表达。
在上面描述的条件之下,细胞内和培养基中的IL-7表达都被检测(图3)。
为了生产高分子量的IL-7糖基化形式,在培养过程中在培养基中维持3g/L葡萄糖和3mM谷氨酰胺,以及好的供氧。人们也检测氨基酸消耗,并在培养基中补加消耗掉的氨基酸。一旦细胞存活率降低到90%以下,就收获细胞培养物。
实施例D.在HEK-293和CHO细胞中表达的重组人类IL-7产物的纯化
收集粗细胞培养基,将完整细胞和细胞碎片离心沉淀。此外,这也可以通过在澄清舱或模块例如MustangXT舱(Pall)、SartoclearP(Sartorius)、Millistak+Opticap(Millipore)或中空纤维舱(AXHcrossflow10(GE))或等价物上进行深部过滤来达到。被离心的培养基使用膜截留分子量为10kDa的Centrasette盒式装置(PallLifeSciences)浓缩大约10倍以减少上清液体积。任何具有同样孔径的其它过滤/浓缩系统也可以使用。
将浓缩的上清液离心,调节到pH7.5,上样用pH7.5的50mM磷酸钠平衡的QSepharoseFastFlow(GeneralElectricHealthcare)柱。然后在流出液中回收蛋白。在该负层析步骤中,各种污染物包括DNA被消除。该步骤的一个替代方法是在同样条件下使用被证实的MustangQ膜盒(Pall),以获得更好的收率和/或稍微更快的过程。该步骤的另一种替代方法是在强阴离子交换树脂(QCeramicHyperD(Biosepra),CaptoQ(GE))或膜(SartobindQ,Sartorius)上捕获蛋白。
在这个预纯化步骤之后,在强阳离子交换树脂上进行捕获步骤。将在上一步骤结束时收集到的流出物上样至用载样缓冲液(pH7.5的50mM磷酸钠)平衡的FractogelEMDSO3-(Merck)柱,然后用pH7.5的50mM磷酸钠清洗。使用溶解在pH7.5的50mM磷酸钠中的线性NaCl梯度(15个柱体积)进行洗脱。
将有活性的级份合并,在室温下在pH3.5中失活30分钟以消除病毒。该方法的一个替代方法是在步骤末尾时用多层纳滤代替该病毒失活步骤。
在病毒失活后,用缓冲液(pH7的200mM磷酸钠,3M硫酸铵)将合并的蛋白级份稀释2倍,将pH调整到7。然后,将蛋白溶液上样至用载样缓冲液(pH7的50mM磷酸钠+1.5M硫酸铵)平衡的疏水相互作用(HIC)丁基Toyopearl650-M(Tosoh)柱。在用载样缓冲液清洗后,用25倍柱体积的溶解在pH7的50mM磷酸钠中从1.5M到0M的硫酸铵盐梯度洗脱IL-7。
替代的HIC树脂例如己基Toyopearl650-M(Tosoh)、丁基/辛基SepharoseTM4FastFlow(GeneralElectricHealthcare)可以被用于该步骤。另一种用于放大生产目的的HIC替代方法是使用另一种基质例如MEPHyperCel(PallBiosepra)以获得相似的结果。
上述捕获步骤和疏水相互作用层析的组合允许根据本身固有的生理-化学性质最适地分离不同糖基化的IL-7同种型(图4中显示的从B1到B10)。洗脱级份的适当选择(从B1到B4级份)导致富集3N-连接而不导致1O-糖基化的hIL-7实体。这样的糖基化形式分离的一个例子被显示在图4中。
高度糖基化的IL-7级份被合并,并上样至用低盐缓冲液(pH6的20mM乙酸钠)平衡的G25Sephadex(GeneralElectricHealthcare)柱。该步骤的替代方法是使用截留分子量5或10KDa的TFF膜(Qvickstartmembranes,(GE),CentramateTFF(Pall))透滤高盐蛋白合并液。
从G25步骤获得的蛋白级份被上样至用上样缓冲液(pH6的20mM乙酸钠)平衡的Source15S(GeneralElectricHealthcare)柱。该精制步骤导致蛋白浓缩和消除残留的污染物。
用乙酸钠载样缓冲液冲洗柱子,然后用15倍柱体积的溶解在pH6的20mM乙酸钠中的从0到1M的NaCl盐梯度洗脱IL-7蛋白。被洗脱的级份通过SDS-PAGE分离,用考马斯亮蓝或硝酸银染色。只有含有IL-7的级份被合并,以释放出最终的纯化的IL-7蛋白批次产品。
如果之前没有进行病毒失活,纯化方法还可以包含另外的两种过滤的组合,以确保最佳的病毒清除。病毒清除可以通过使用预过滤装置(Planova75,AsahiKaseiMedical)过滤、然后通过纳米孔径的纤维素膜(Planova20N,AsahiKaseiMedical)或通过其它的病毒移除膜(Virosart,Sartorius;DV20,Millipore)过滤来完成。
纯化的大肠杆菌、糖基化和超糖基化的hIL-7的SDS-PAGE被显示在图5中。
凝胶中的迁移说明的蛋白的糖基化水平。事实上,这里试验的超糖基化形式(HG-37-147和HG-40-104)比全糖基化的hIL-7具有更高的分子量。
实施例E.糖蛋白的糖分析
重组人类IL-7的生产在基于CHO细胞的表达系统中进行,这是因为但不限于下面的原因。CHO细胞是目前最有效和最常用的用于生产重组人类治疗性糖蛋白的宿主。此外,有大量详细的工作报道,CHO细胞、包括表达唾液酸基-α-1-6转移酶的遗传修饰的CHO细胞,能够以与在人类细胞中观察到的在量上相同的方式对重组蛋白进行糖基化。这种具体的特点对于重组糖蛋白在注射到人类病人中时减少潜在的免疫原性是非常重要的。
从转染的CHO细胞获得的富集了特定糖基化形式(3N或3N+2N,带有或不带有1个O-聚糖基团)的纯化的重组人类IL-7产物或级份通过Western印迹进行分析,以证实与大肠杆菌来源的重组人类IL-7相比的糖基化状态。
CHO产生的纯化的IL-7的不同糖基化形式使用聚丙烯酰胺凝胶电泳进行差异定性。糖蛋白实体的表观分子量范围在20KDa和35KDa之间,主要带位于大约27KDa(在SDS-PAGE上观察到的,参见图5和图6),最可能对应于带有或不带有1个O-聚糖基团的3个N-糖基化的形式。这种特点被纯化的产物的酶法脱糖基化所特异性阐明(参见图7)。
CHO产生的纯化的IL-7的这些糖基化形式(3N或3N+2N,带有或不带有1个O-聚糖基团)使用质谱进行了差异定性,得到的带有或不带有1个O-聚糖基团的3N-糖基化形式的分子质量大于25KDa,带有或不带有1个O-聚糖基团的2N-糖基化形式的分子质量大于23KDa(参见图8)。
此外,上述的糖基化形式的平均等电点为5.8,反映出高唾液酸化情况(参见图9)。
作为对照,对未糖基化的大肠杆菌来源的hIL-7进行了同样的分析,得出的蛋白的表观分子量为大约18KDa,哺乳动物细胞来源的超糖基化的hIL-7表面出的表观分子量在27到37KDa之间。
通过完全酶法脱糖基化然后层析分离并用质谱分析产生的寡糖,对纯化的CHO来源的hIL-7的总糖基化复杂性和总N-聚糖不均匀性进行了评估。
纯化的糖基化的h-IL-7样品用内切糖苷酶例如肽-N-糖苷酶F(PNGaseF,Roche)进行酶法消化。释放出的N-连接的寡糖使用graphiteCarbograph200-300μl柱子(Alltech)从肽结构上分离并分拣,然后进行MALDI-TOF质谱分析(VoyagerSpec,AppliedBiosystems)。对应于MS谱图的每个峰的m/z值允许鉴定完整hIL-7分子的N-聚糖通用结构。
为了特异性检测含有唾液酸的聚糖,在质谱分析之前进行PNGase产生的寡糖的羧甲基化(如同在PowellAK&HarveyDJ,Rap.Com.MassSpec.1996中报道的那样)。
对从纯化的CHO来源的hIL-7产生的谱图进行的分析显示出N-聚糖的质量范围从1340Da直到最大3516Da(参见图10)。
根据谱图,可以确定下面的聚糖结构(参见表3):
表3
m/z 信号 | 观察到的分子离子的指派 |
1338 | Hex3HexNAc4+Na+ |
1448 | Hex4(dHex)HexNAc4+Na+ |
1485 | Hex3(dHex)HexNAc4+Na+ |
1647 | Hex4(dHex)HexNAc4+Na+ |
1809 | Hex5(dHex)HexNAc4+Na+ |
1824 | Hex3(dHex2)HexNAc5+Na+ |
1970 | Hex5(dHex)HexNAc4(Sulph)2+2Na+ |
2012 | Hex5(dHex)HexNAc5+Na+ |
2157 | NeuAcCarboxyHex4(dHex)HexNAc5+Na+ |
2182 | NeuAcHex5(dHex)HexNAc4Sulph+Na+ |
2318 | NeuAcCarboxyHex5(dHex)HexNAc5+Na+ |
2421 | Hex3(dHex)HexNAc8(Sulph)+Na+ |
2536 | NeuAcCarboxyHex6HexNAc6+Na+ |
2624 | NeuAc2CarboxyHex5(dHex)HexNAc5+Na+ |
2786 | NeuAc2CarboxyHex6(dHex)HexNAc5+Na+ |
2843 | NeuAc2CarboxyHex6HexNAc6+Na+ |
3092 | NeuAc3CarboxyHex6(dHex)HexNAc5+Na+ |
3153 | NeuAc3 CarboxyHex6HexNAc6+Na+ |
Hex:己糖(半乳糖或甘露糖),HexNAc:N-乙酰己糖胺(N-乙酰葡萄糖胺或N-乙酰半乳糖胺),dHex:脱氧己糖(果糖),Sulph:硫酸基团,NeuAc:N-乙酰神经氨酸。
考虑到i)观察到的寡糖基团的相应质量,ii)每个单糖的质量和iii)目前已经了解的聚糖生物合成途径的法则,可以具有高度可能性地推断下列高复杂性的N-聚糖结构。
表4:在CHO来源的hIL-7(但不限于此)上定性的复杂的二和三天线哺乳动物N-聚糖:
○甘露糖□N-乙酰葡萄糖胺●半乳糖◇α1-3-果糖
△唾液酸
糖基化复杂性也通过确定在纯化的CHO来源的hIL-7的所有聚糖(如果可用的话,N-和O-聚糖)上发现的不同单糖的摩尔比率来评估。
纯化的糖基化h-IL-7样品的所有聚糖通过甲醇分解反应进行化学处理,以便水解糖之间的所有糖苷连接。使用偶联的气相色谱-质谱自动质量装置(Finnigan)将释放的单糖从肽结构上分离并分拣。参照已知的内标和经典的哺乳动物N-聚糖的3甘露糖含量确定摩尔比率。
这样的分析对CHO来源的hIL-7给出了下列摩尔比率:
表5
单糖 | Fuc | Gal | Man | GalNAc | GlcNAc | NeuAc |
分子质量 | 164 | 180 | 180 | 221 | 221 | 309 |
峰面积 | 43382 | 179120 | 310124 | 33650 | 344476 | 423587 |
纳摩尔数 | 5.41 | 24.76 | 22.15 | 5.26 | 27.29 | 20.94 |
摩尔比率 | 0.73 | 3.35 | 3 | 0.71 | 3.69 | 2.83 |
CHO来源的hIL-7的位点特异性N-聚糖模式不均匀性通过内切蛋白酶消化、然后对产生的肽进行分级和质谱分析来测试。
纯化的样品用胰蛋白酶或其它内切蛋白酶进行消化,以产生对应于表达的IL-7的每个N-糖基化位点的糖肽。每个糖肽进行N-末端微量测序,通过当用反向HPLC进行分析时它的特定持留时间来鉴定。因此将每个糖肽从其它糖肽中纯化出来。糖肽带有的N-聚糖的不均匀性通过MALDI-TOFMS(QStar,AppliedBiosystems)进行分析。对应于MS谱图的每个峰的m/z值允许鉴定hIL-7的指定位点的N-聚糖形式。
O-糖基化通过使用O-聚糖特异性外源凝集素(外源凝集素印迹,参见图11)来分析。
纯化的CHO来源的hIL-7样品通过SDS-PAGE分析进行分离,并转印到PVDF膜上。固定化的蛋白用(但不限于)过氧化物酶标记的PNA(花生凝集素)和/或MAA(Maackiaamurensis凝集素)探测并染色以可视化。
聚糖的不均匀性和组成也通过使用外源凝集素与纯化的CHO来源的hIL-7的亲和性来确定。
一系列对N-和O-聚糖结构具有亲和性的外源凝集素被选择用于包被96孔微孔板。同样量的重组纯化的IL-7制备物被保温在外源凝集素包被的微孔板孔中。在该步骤中,根据给定的外源凝集素与IL-7的聚糖修饰的亲和性,不同量的IL-7与外源凝集素保持结合。通过与生物素连接的IL-7特异性抗体保温来进行显示。外源凝集素-IL-7-抗体三明治用链亲和素-过氧化物酶共轭物来显示。
使用了8种不同的外源凝集素对IL-7纯化样品进行了定性。每种外源凝集素特异性识别糖基团。聚糖基元和结构特异性被显示在表6中。
表6:被外源凝集素识别的糖基团的模式概述和它们的聚糖基元和结构特异性的清单。
LEA是来自番茄(Lycopersiconesculentum)的外源凝集素,
WGA来自小麦(Triticumvulgare),
UEA.I来自Ulexeuropeus,
MAA来自Maackiaamurensis,
ACA来自尾穗苋(Amaranthuscaudatus),
AIA来自Artocarpusintergrifolia,
ABA来自双孢蘑菇(Agaricusbisporus),
PHA.L来自菜豆(Phaseolusvulgaris).
表6:
名称 | Glc | GlcNAc | Man | Fuc | NeuAc | GalNAc | Gal | 聚糖结构特异性 |
LEA | + | GlcNAc 4GlcNAc和N-乙酰乳糖胺寡聚物 | ||||||
WGA | + | + | GlcNAc,N-连接聚糖核心,Neu5ac | |||||
UEAI | + | 果糖 | ||||||
MAA | + | Neu5Ac-3 Galb4GlcNAc- | ||||||
ACA | + | Galb3GalNAc-O-R(T-抗原) | ||||||
AIA | + | Gala6或Gal 3GalNAc(T-抗原),乳糖 | ||||||
ABA | + | Gal-GalNAc-O-R,O-连接聚糖 | ||||||
PHAL | Galb4GlcNAc 6Man,分支复杂N-聚糖 |
结果显示在图12中。
外源凝集素清楚地证实了不同的亲和性,提供了溶液中的纯化IL-7蛋白的可获取的聚糖装饰的通用结构的信息。
因此,ACA、ABA和AIA对Gal和GalNAc具有亲和性。所有三种外源凝集素的阳性反应表明了带有这些单糖的N-和O-聚糖结构的存在。用ABA获得的特异性信号表明了O-聚糖结构的存在。ACA与AIA相比以及在较小程度上与ABA相比有较弱的信号。这表明O-聚糖被扩增,仅有很少的GalNAc作为末端残基。
LEA对GalNAc具有亲和性,表明了N-聚糖结构的存在。在试验的GlcNAc-特异性外源凝集素中(数据未显示),只有对N-乙酰乳糖胺具有亲和性的那些显示出阳性信号。
由于与N-连接的聚糖的核心结构具有低的结合亲和性,WGA显示出弱的信号。高度复杂的N-聚糖屏蔽了核心结构,使得外源凝集素的亲和性难以操作。
UEA.I对于分支果糖的存在具有特异性活性。结合相当弱,表明N-聚糖不完全的但是有效的果糖基化。
MAA对末端唾液酸具有亲和性。MAA信号强烈,表明在N和O-聚糖上都有效地唾液酸化。
PHA.L对N-聚糖的复杂分支结构具有亲和性并显示出强的信号,证实了MAA的结果。PHA-L信号表明大的三或四天线N-聚糖的存在。
在CHO来源的hIL-7(在可用时)上定性的大多数典型的哺乳动物O-聚糖:
总的来看,这些分析表明使用的基于CHO细胞的表达系统产生了人类IL-7复杂的(三天线)N-连接寡糖,如同在下面的图中描述的那样,在它们的位于70、91和116位的ASN残基处形成分支,具有高度的部分到完全唾液酸化,最多达10个唾液酸残基。此外,CHO来源的IL-7在T110位上含有O-聚糖。
因此,尽管带有复杂的唾液酸化的N-聚糖和O-聚糖,IL-7纯化的批次产品仍然含有完全和部分糖基化蛋白的混合物。
实施例F:药物物质到药物产品:重组CHO细胞表达的hIL-7的
配方、储存和长期稳定性。
药物物质的最佳配方的搜索通过组合基质研究进行,以评估不同的胁迫条件(温度、缓冲液、pH、张力调节剂浓度、搅拌、强烈照明)对纯化的蛋白的长期稳定性的影响。
高度复杂的纯化重组人类IL-7被显示在乙酸和琥珀酸缓冲液中,在5到50mM的浓度范围内是稳定的。适当的pH从pH=5.0到7.0之间选择,理想的储存温度在-20℃到+4℃之间。
糖和低浓度表面活性剂(聚山梨酸酯聚合物)可以被添加到制备物中以防止非共价的可溶性聚集。
在这样的条件下,IL-7可以在+4℃(以液体形式)下,浓度范围从0.5到8.0mg/ml,优选从2.0到4.0mg/ml,储存超过12个月。液体形式的药物组合物具有改进的稳定性分布情况。
实施例G.哺乳动物细胞来源的重组人类IL-7在特异性生物学分
析中的增殖活性分析
哺乳动物细胞来源的重组人类IL-7的生物学活性在特异性生物分析中被评估,使用来自CBA/C57BL小鼠的骨髓细胞衍生的鼠类前B细胞株PB-1(GermanCellBankDSMZ,DeutscheSammlungvonMikrooganismenundZellkulturen),它的生长严格依赖于IL-7(Mire-Sluisetal.;2000;J.Immunol.Methods;236:71-76)。这些细胞被维持在商业化的含有IL-7的培养基中进行培养,在进行生物分析之前实行IL-7饥饿。
生物分析用被测试的IL-7样品进行,平行地使用已知的大肠杆菌来源的IL-7阳性对照和缺乏IL-7的阴性对照。
来自对照或样品的IL-7被加入到饥饿的细胞培养物中,诱导剂量依赖性的细胞增殖的重新起始,在此期间放射性标记的胸腺嘧啶(3H-Tdr.Amersham)被分裂的细胞摄入。标记的量是跳动的,在液闪β计数器(Wallack)中测量,单位为每分钟的计数(cpm)。
此外,生物分析也可以使用反映细胞的整体代谢的染料标记物、例如MTT染料(3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑,被线粒体氧化还原活性所还原)或MTS染料(3-(4,5-二甲基噻唑-2-基)-5-(3-羧甲基氧基苯基)-2-(4-磺苯基)-2H-四唑)来进行。
阳性对照和被测试样品的连续稀释允许使用cpm数量相对于被测试的样品/对照的量进行作图。
图13显示了典型的生物学分析测试中常规获得的剂量反应性动力学数据和曲线:PB-1细胞的生长被未糖基化的r-hIL-7(在大肠杆菌中表达)或高度糖基化的r-hIL-7(在哺乳动物细胞中生产)所诱导。(数据点表示三次测定的平均值±SD)。
图14显示了典型的生物学分析测试中常规获得的剂量反应性动力学数据和曲线:PB-1细胞的生长被未糖基化的r-hIL-7(在大肠杆菌中表达)、高度糖基化或超糖基化的r-hIL-7(在哺乳动物细胞中生产)所诱导。(数据点表示三次测定的平均值±SD)。
对于每个样品来说被考虑的重要参数是ED50,即给出最大活性的一半时的浓度(ng/ml)。较高的ED50意味着较低的活性。
IL-7批次之间的活性比较通过分析剂量反应曲线参数例如斜率系数、最大活性来阐明。从所有曲线参数中,ED50浓度(单位为ng/ml)将参数的偏差合并在一起。ED50对应于在体外诱导一半可能的最大诱导活性所必需的IL-7剂量。在这一点上,高生物活性的分子对应于低ED50值,而较高的ED50浓度典型地来自于体外生物活性较低的IL-7制备物。
然而,在本发明中,体外活性的差异并不必然代表同样的体内活性的差异。
实施例H.超糖基化的IL-7多肽在灵长类动物中免疫原性的体内
评估
在CHO细胞系中表达(实施例A2、A6和B)并按照实施例D纯化的猿类超糖基化IL-7(sIL-7),在重复地在正常灵长类动物中使用sIL-7后,在体内评估潜在的免疫原性的出现。
未经免疫的年轻成年Cynomolgus猴(Macacafascicularis)(n=4)被引入研究,并以100μg/kg/注射的剂量水平接受超糖基化的sIL-7。被处理的动物在连续5周的时间中接受总共6次IL-7的皮下注射。动物在两个月的期间接受临床观察。在研究过程中的不同的时间点收集血液样本:在使用sIL-7前的第一天,在第37天和研究结束时。
所有的动物在研究中存活,对于sIL-7治疗没有负面反应。sIl-7的使用是局部良好耐受的。当在目的在于检测结合抗体的特异性ELISA中通过干涉进行测试时,在所有被处理的动物的血清中没有检测到抗IL-7抗体。与此相比,大肠杆菌来源的重组IL-7尽管被生产为高度纯化的药物产品,在同样的规程中将在血清中诱导高滴度的IL-7结合抗体的产生,范围从1∶400到1∶5000。
实施例I.超糖基化的IL-7多肽在灵长类中的体内生物学活性
在CHO细胞系中表达(实施例A1、A6和B)并按照实施例D纯化的人类超糖基化IL-7(hIL-7),在体内进行评估以确定hIL-7在正常灵长类中的药物动力学和药效学情况。
未经免疫的年轻成年Cynomolgus猴(Macacafascicularis)被引入研究并分为两组:未处理的n=2,hIL-7100μg/kg/注射n=2。被处理的动物接受单次IL-7的皮下注射。动物在45天的期间接受临床观察。在研究过程中的不同的时间点收集血液样本:在第1(注射后0、3、6、9和12小时)、2、3、4、7、21和45天。
hIL-7的使用具有良好的耐受性,在注射位点没有局部反应。在恒河猴中单次皮下注射hIL-7后,从前72个小时建立了hIL-7的药物动力学形式和参数:
●血浆分布情况在峰值吸收之后显示出双指数递减。
●在血浆中观察到的产物半衰期在30/40小时的范围内。该半衰期与在同样条件下使用大肠杆菌来源的重组IL-8(5到8小时)观察到的半衰期相比有显著的增加。这反映出血液中超糖基化的IL-7多肽的提高的体内稳定性。
●平均存留时间(MRT)是40小时,比较而言大肠杆菌产物是大约10小时。
●达到最大浓度的时间是180分钟。
总的来说,药物动力学研究显示出本发明的超糖基化的IL-7多肽显示了改进的和延长的药物动力学分布情况,这导致了改进的药效学效应。
以100μg/kg单次注射hIL-7诱导了外周CD3+CD4+和CD3+CD8+T细胞数量的显著增加,与基线预处理值相比分别改变了200%和170%。外周血中表达特异性IL-7受体α链(CD127)的淋巴细胞T细胞(CD4和CD8)的数量早在注射后6小时时就暂时减少。在注射后48小时,外周血中表达CD127的淋巴细胞T细胞重新出现,在注射后仅仅7天就返回到基线值。在单次皮下注射大肠杆菌来源的重组IL-7之后,完全恢复表达CD127的淋巴细胞T细胞的基线值在注射后4天发生。与大肠杆菌来源的重组IL-7相比,超糖基化的IL-7多肽的受体占有率动力学更长,反映出正如下面所显示的超糖基化的IL-7多肽在灵长类动物中的较长的半衰期。这些结果与以前的结果一致,显示出尽管IL-7的IV给药导致了较好的生物可用性,这并没有转化成改进的药物动力学效应,事实上,通过皮下注射获得的延长的投送形式比通过IV注射获得的急性投送形式更为有效。这里蛋白的超糖基化诱导了延长的动力学分布情况,这转过来转化成改进的药效学活性。鉴于这种扩展的分布情况,也希望获得改进的临床耐受性,因为药物的副作用通常与峰值浓度有关。
序列表
<110>叙塞理斯(Cytheris)
<120>糖基化的IL-7,制备及应用(GLYCOSYLATEDIL-7,PREPARATIONANDUSES)
<130>SCT076133-47
<160>19
<170>PatentInversion3.1
<210>1
<211>152
<212>PRT
<213>Homosapiens
<400>1
AspCysAspIleGluGlyLysAspGlyLysGlnTyrGluSerValLeu
151015
MetValSerIleAspGlnLeuLeuAspSerMetLysGluIleGlySer
202530
AsnCysLeuAsnAsnGluPheAsnPhePheLysArgHisIleCysAsp
354045
AlaAsnLysGluGlyMetPheLeuPheArgAlaAlaArgLysLeuArg
505560
GlnPheLeuLysMetAsnSerThrGlyAspPheAspLeuHisLeuLeu
65707580
LysValSerGluGlyThrThrIleLeuLeuAsnCysThrGlyGlnVal
859095
LysGlyArgLysProAlaAlaLeuGlyGluAlaGlnProThrLysSer
100105110
LeuGluGluAsnLysSerLeuLysGluGlnLysLysLeuAsnAspLeu
115120125
CysPheLeuLysArgLeuLeuGlnGluIleLysThrCysTrpAsnLys
130135140
IleLeuMetGlyThrLysGluHis
145150
<210>2
<211>540
<212>DNA
<213>Homosapiens
<220>
<221>CDS
<222>(1)..(537)
<223>EPy7-hIL7-optimized
<400>2
atgggtgttcatgaatgtcctgcttggttgtggttgttgttgtctttg48
MetGlyValHisGluCysProAlaTrpLeuTrpLeuLeuLeuSerLeu
151015
ttgtctttggttctgttgcctgtagcctctgattgcgatattgaaggg96
LeuSerLeuValLeuLeuProValAlaSerAspCysAspIleGluGly
202530
aaagatgggaagcagtatgagtccgtgctgatggtgagcatcgatcaa144
LysAspGlyLysGlnTyrGluSerValLeuMetValSerIleAspGln
354045
ttgttggactccatgaaagaaattgggagtaactgcctgaataacgaa192
LeuLeuAspSerMetLysGluIleGlySerAsnCysLeuAsnAsnGlu
505560
tttaacttctttaagcgccatatctgtgatgctaataaggaaggtatg240
PheAsnPhePheLysArgHisIleCysAspAlaAsnLysGluGlyMet
65707580
tttttgttccgcgctgctcggaagttgcgccagttccttaagatgaac288
PheLeuPheArgAlaAlaArgLysLeuArgGlnPheLeuLysMetAsn
859095
tctactggtgatttcgatctccacctcctgaaagtttccgaagggact336
SerThrGlyAspPheAspLeuHisLeuLeuLysValSerGluGlyThr
100105110
actatcctgttgaactgcactggccaggttaaaggaagaaaacccgct384
ThrIleLeuLeuAsnCysThrGlyGlnValLysGlyArgLysProAla
115120125
gccctgggtgaagcccaaccgacaaagagtttggaagaaaataaatct432
AlaLeuGlyGluAlaGlnProThrLysSerLeuGluGluAsnLysSer
130135140
ttgaaggaacagaagaagctgaacgacttgtgtttcctgaagcgcctg480
LeuLysGluGlnLysLysLeuAsnAspLeuCysPheLeuLysArgLeu
145150155160
ttgcaggagattaagacttgttggaataagatcttgatggggactaag528
LeuGlnGluIleLysThrCysTrpAsnLysIleLeuMetGlyThrLys
165170175
gagcattgataa540
GluHis
<210>3
<211>178
<212>PRT
<213>Homosapiens
<400>3
MetGlyValHisGluCysProAlaTrpLeuTrpLeuLeuLeuSerLeu
151015
LeuSerLeuValLeuLeuProValAlaSerAspCysAspIleGluGly
202530
LysAspGlyLysGlnTyrGluSerValLeuMetValSerIleAspGln
354045
LeuLeuAspSerMetLysGluIleGlySerAsnCysLeuAsnAsnGlu
505560
PheAsnPhePheLysArgHisIleCysAspAlaAsnLysGluGlyMet
65707580
PheLeuPheArgAlaAlaArgLysLeuArgGlnPheLeuLysMetAsn
859095
SerThrGlyAspPheAspLeuHisLeuLeuLysValSerGluGlyThr
100105110
ThrIleLeuLeuAsnCysThrGlyGlnValLysGlyArgLysProAla
115120125
AlaLeuGlyGluAlaGlnProThrLysSerLeuGluGluAsnLysSer
130135140
LeuLysGluGlnLysLysLeuAsnAspLeuCysPheLeuLysArgLeu
145150155160
LeuGlnGluIleLysThrCysTrpAsnLysIleLeuMetGlyThrLys
165170175
GluHis
<210>4
<211>537
<212>DNA
<213>Simian
<220>
<221>CDS
<222>(1)..(537)
<223>EPy7-sIL-7Optimized
<400>4
atgggtgttcatgaatgtcctgcttggttgtggttgttgttgtctttg48
MetGlyValHisGluCysProAlaTrpLeuTrpLeuLeuLeuSerLeu
151015
ttgtctttggttctgttgcctgtagcctctgattgcgatattgaaggg96
LeuSerLeuValLeuLeuProValAlaSerAspCysAspIleGluGly
202530
aaagatgggaagcagtatgagtccgtgctgatggtgagcatcgatcaa144
LysAspGlyLysGlnTyrGluSerValLeuMetValSerIleAspGln
354045
ttgttggactccatgaaagaaattgggagtaactgcctgaataacgaa192
LeuLeuAspSerMetLysGluIleGlySerAsnCysLeuAsnAsnGlu
505560
tttaacttctttaagcgccatctgtgtgatgataataaggaaggtatg240
PheAsnPhePheLysArgHisLeuCysAspAspAsnLysGluGlyMet
65707580
tttttgttccgcgctgctcggaagttgcgccagttccttaagatgaac288
PheLeuPheArgAlaAlaArgLysLeuArgGlnPheLeuLysMetAsn
859095
tctactggtgatttcgatctccacctcctgaaagtttccgaagggact336
SerThrGlyAspPheAspLeuHisLeuLeuLysValSerGluGlyThr
100105110
actatcctgttgaactgcactggcaaggttaaaggaagaaaacccgct384
ThrIleLeuLeuAsnCysThrGlyLysValLysGlyArgLysProAla
115120125
gccctgggtgaaccccaaccgacaaagagtttggaagaaaataaatct432
AlaLeuGlyGluProGlnProThrLysSerLeuGluGluAsnLysSer
130135140
ttgaaggaacagaagaagctgaacgactcctgtttcctgaagcgcctg480
LeuLysGluGlnLysLysLeuAsnAspSerCysPheLeuLysArgLeu
145150155160
ttgcagaagattaagacttgttggaataagatcttgatggggactaag528
LeuGlnLysIleLysThrCysTrpAsnLysIleLeuMetGlyThrLys
165170175
gagcattga537
GluHis
<210>5
<211>178
<212>PRT
<213>Simian
<400>5
MetGlyValHisGluCysProAlaTrpLeuTrpLeuLeuLeuSerLeu
151015
LeuSerLeuValLeuLeuProValAlaSerAspCysAspIleGluGly
202530
LysAspGlyLysGlnTyrGluSerValLeuMetValSerIleAspGln
354045
LeuLeuAspSerMetLysGluIleGlySerAsnCysLeuAsnAsnGlu
505560
PheAsnPhePheLysArgHisLeuCysAspAspAsnLysGluGlyMet
65707580
PheLeuPheArgAlaAlaArgLysLeuArgGlnPheLeuLysMetAsn
859095
SerThrGlyAspPheAspLeuHisLeuLeuLysValSerGluGlyThr
100105110
ThrIleLeuLeuAsnCysThrGlyLysValLysGlyArgLysProAla
115120125
AlaLeuGlyGluProGlnProThrLysSerLeuGluGluAsnLysSer
130135140
LeuLysGluGlnLysLysLeuAsnAspSerCysPheLeuLysArgLeu
145150155160
LeuGlnLysIleLysThrCysTrpAsnLysIleLeuMetGlyThrLys
165170175
GluHis
<210>6
<211>480
<212>DNA
<213>canine
<220>
<221>CDS
<222>(1)..(480)
<223>EPy7-cIL-7
<400>6
atgggtgttcatgaatgtcctgcttggttgtggttgttgttgtctttg48
MetGlyValHisGluCysProAlaTrpLeuTrpLeuLeuLeuSerLeu
151015
ttgtctttggttctgttgcctgtagcctctgattgtgatattgaaggc96
LeuSerLeuValLeuLeuProValAlaSerAspCysAspIleGluGly
202530
aaagacggcagagagtatcagcacgttctaatgatcagcatcaatgac144
LysAspGlyArgGluTyrGlnHisValLeuMetIleSerIleAsnAsp
354045
ttggacatcatgataaaaaatcgtaccaattgctcgaataatgaacct192
LeuAspIleMetIleLysAsnArgThrAsnCysSerAsnAsnGluPro
505560
aacattttaaaaaaacatgcatgtgatgataataaggaaggtatgttt240
AsnIleLeuLysLysHisAlaCysAspAspAsnLysGluGlyMetPhe
65707580
ttatatcgtgctgctcacaagttgaagcaatttgttaaagtgaataac288
LeuTyrArgAlaAlaHisLysLeuLysGlnPheValLysValAsnAsn
859095
agtgaggatttcaatctccacttatcaagagtttcacagggcacatta336
SerGluAspPheAsnLeuHisLeuSerArgValSerGlnGlyThrLeu
100105110
caattgttgaactgtactcccaaggaagacaataaatctttaaaggaa384
GlnLeuLeuAsnCysThrProLysGluAspAsnLysSerLeuLysGlu
115120125
cagagaaaacagaagagcttgtgttccctagggatactactacaaaag432
GlnArgLysGlnLysSerLeuCysSerLeuGlyIleLeuLeuGlnLys
130135140
ataaaaacttgttggaacaaaattttgaggggctctaaagaacattga480
IleLysThrCysTrpAsnLysIleLeuArgGlySerLysGluHis
145150155
<210>7
<211>159
<212>PRT
<213>canine
<400>7
MetGlyValHisGluCysProAlaTrpLeuTrpLeuLeuLeuSerLeu
151015
LeuSerLeuValLeuLeuProValAlaSerAspCysAspIleGluGly
202530
LysAspGlyArgGluTyrGlnHisValLeuMetIleSerIleAsnAsp
354045
LeuAspIleMetIleLysAsnArgThrAsnCysSerAsnAsnGluPro
505560
AsnIleLeuLysLysHisAlaCysAspAspAsnLysGluGlyMetPhe
65707580
LeuTyrArgAlaAlaHisLysLeuLysGlnPheValLysValAsnAsn
859095
SerGluAspPheAsnLeuHisLeuSerArgValSerGlnGlyThrLeu
100105110
GlnLeuLeuAsnCysThrProLysGluAspAsnLysSerLeuLysGlu
115120125
GlnArgLysGlnLysSerLeuCysSerLeuGlyIleLeuLeuGlnLys
130135140
IleLysThrCysTrpAsnLysIleLeuArgGlySerLysGluHis
145150155
<210>8
<211>18
<212>DNA
<213>Artificialsequence
<220>
<223>descriptionofartificialsequence:mutateddomain
<400>8
ctgaataacgaaactaac18
<210>9
<211>12
<212>DNA
<213>Artificialsequence
<220>
<223>descriptionofartificialsequence:mutateddomain
<400>9
aacttcactaag12
<210>10
<211>12
<212>DNA
<213>Artificialsequence
<220>
<223>descriptionofartificialsequence:mutateddomain
<400>10
gccaacggtacc12
<210>11
<211>15
<212>DNA
<213>Artificialsequence
<220>
<223>descriptionofartificialsequence:mutateddomain
<400>11
ctgaacgacagctgt15
<210>12
<211>12
<212>DNA
<213>Artificialsequence
<220>
<223>descriptionofartificialsequence:mutateddomain
<400>12
atcttgaacggg12
<210>13
<211>25
<212>PRT
<213>homosapiens
<400>13
MetPheHisValSerPheArgTyrIlePheGlyLeuProProLeuIle
151015
LeuValLeuLeuProValAlaSerSer
2025
<210>14
<211>27
<212>PRT
<213>homosapiens
<400>14
MetGlyValHisGluCysProAlaTrpLeuTrpLeuLeuLeuSerLeu
151015
LeuSerLeuProLeuGlyLeuProValLeuGly
2025
<210>15
<211>17
<212>PRT
<213>homosapiens
<400>15
MetLeuLeuLeuLeuLeuLeuLeuGlyLeuArgLeuGlnLeuSerLeu
151015
Gly
<210>16
<211>20
<212>PRT
<213>homosapiens
<400>16
MetGluThrAspThrLeuLeuLeuTrpValLeuLeuLeuTrpValPro
151015
GlySerThrGly
20
<210>17
<211>19
<212>PRT
<213>homosapiens
<400>17
MetLysLeuValPheLeuValLeuLeuPheLeuGlyAlaLeuGlyVal
151015
AlaLeuAla
<210>18
<211>20
<212>PRT
<213>homosapiens
<400>18
MetAlaArgProLeuCysThrLeuLeuLeuLeuMetAlaThrLeuAla
151015
ValAlaLeuAla
20
<210>19
<211>26
<212>PRT
<213>Artificialsequence
<220>
<223>descriptionofartificialsequence:chimericsignalpeptide
<400>19
MetGlyValHisGluCysProAlaTrpLeuTrpLeuLeuLeuSerLeu
151015
LeuSerLeuValLeuLeuProValAlaSer
2025
9
1
Claims (15)
1.超糖基化的IL-7组合物,其中该组合物含有的至少80%的人类IL-7多肽在3个到最多达8个不同的氨基酸残基上被糖基化,包括1个O-和最多达7个N-糖基化位点,具有低于6.5的等电点和用SDS凝胶电泳确定的大于或等于27kDa的分子量,其中该IL-7多肽在哺乳动物细胞中重组生产,以及糖基化位点选自70、91和116位的Asn残基,110位的Thr,以及表1中列出的任何人工产生的糖基化位点,或其组合,
其中该IL-7多肽含有选自下面的N-连接的糖链:
a)由CHO细胞表达的哺乳动物类型的糖链;
b)含有复杂的N-糖链的糖链,即含有大量甘露糖和乙酰葡萄糖胺分子和大量末端唾液酸残基的糖链;
c)被α-2,6-唾液酸转移酶或α-2,3-唾液酸转移酶唾液酸化的糖链;和/或
d)显示出3到30个唾液酸基-N-乙酰半乳糖胺的唾液酸化的糖链;以及
其中该IL-7多肽还含有具有末端唾液酸残基的O-连接的糖链。
2.权利要求1中的IL-7组合物,该组合物含有的80%到95%之间的人类IL-7多肽在3个到最多达8个不同的氨基酸残基上被糖基化、包括1个O-和最多达7个N-糖基化位点。
3.权利要求1的IL-7组合物,其中该超糖基化的IL-7多肽包含下列三个二硫桥:Cys:1-4(Cys2-Cys92);2-5(Cys34-Cys129);3-6(Cys47-Cys141)。
4.权利要求1中的IL-7组合物,其中的糖链含有带有部分或完全末端唾液酸化的四天线到二天线结构。
5.权利要求1中的IL-7组合物,其中哺乳动物细胞为CHO细胞。
6.生产在权利要求1到5任一项中定义的IL-7组合物的方法,包括:
a)培养含有编码人类IL-7多肽的重组核酸分子的重组哺乳动物宿主细胞,
b)收集该细胞生产的IL-7多肽,和
c)通过包括至少下列步骤的方法纯化IL-7多肽:疏水相互作用层析、离子交换层析、亲和层析或凝胶过滤层析,单独或不同方式的组合,
其中培养以补料分批或流加的方式进行,从而产生超糖基化的IL-7多肽。
7.权利要求1到5任一项中的超糖基化IL-7组合物在生产用于在受试者中引起或调节免疫反应的药物中的应用。
8.权利要求7中的应用,其中的药物用于诱导延长的淋巴细胞生成刺激和/或免疫反应的放大。
9.权利要求7中的应用,其中的药物用于治疗病毒感染性疾病。
10.权利要求9中的应用,其中的病毒感染性疾病为HIV感染性疾病、病毒性肝炎、西尼罗热、登革热。
11.权利要求9或10中的应用,其中的超糖基化IL-7组合物将与干扰素分子结合给药。
12.权利要求7中的应用,其中的药物用于在免疫受损的受试者中改进胸腺生成的恢复。
13.权利要求12中的应用,其中超糖基化的IL-7组合物将与角质细胞生长因子、干细胞因子、gonadostimulin拮抗剂或生长激素结合给药。
14.权利要求7中的应用,其中的超糖基化IL-7组合物将与抗原或抗原的混合物结合给药,以提供针对恶性细胞、病毒或细菌的治疗性免疫作用。
15.权利要求14中的应用,其中超糖基化的IL-7组合物还将与GM-CSF结合给药。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05291556A EP1746161A1 (en) | 2005-07-20 | 2005-07-20 | Glycosylated IL-7, preparation and uses |
EP05291556.8 | 2005-07-20 | ||
PCT/IB2006/002663 WO2007010401A2 (en) | 2005-07-20 | 2006-07-19 | Glycosylated il-7, preparation and uses |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610038940.9A Division CN105647939A (zh) | 2005-07-20 | 2006-07-19 | 糖基化的il-7,制备及应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101228275A CN101228275A (zh) | 2008-07-23 |
CN101228275B true CN101228275B (zh) | 2016-02-24 |
Family
ID=35385570
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200680026503.XA Active CN101228275B (zh) | 2005-07-20 | 2006-07-19 | 糖基化的il-7,制备及应用 |
CN201610038940.9A Pending CN105647939A (zh) | 2005-07-20 | 2006-07-19 | 糖基化的il-7,制备及应用 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610038940.9A Pending CN105647939A (zh) | 2005-07-20 | 2006-07-19 | 糖基化的il-7,制备及应用 |
Country Status (20)
Country | Link |
---|---|
US (3) | US7708985B2 (zh) |
EP (2) | EP1746161A1 (zh) |
JP (2) | JP5685363B2 (zh) |
CN (2) | CN101228275B (zh) |
AT (1) | ATE542901T1 (zh) |
AU (1) | AU2006271315B2 (zh) |
CA (2) | CA2859145C (zh) |
CY (1) | CY1112655T1 (zh) |
DK (1) | DK1904635T3 (zh) |
EA (1) | EA012802B1 (zh) |
ES (1) | ES2379732T3 (zh) |
HK (1) | HK1115154A1 (zh) |
IL (1) | IL188480A0 (zh) |
NO (1) | NO344802B1 (zh) |
NZ (1) | NZ564907A (zh) |
PL (1) | PL1904635T3 (zh) |
PT (1) | PT1904635E (zh) |
SI (1) | SI1904635T1 (zh) |
WO (1) | WO2007010401A2 (zh) |
ZA (1) | ZA200800533B (zh) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002026265A2 (en) | 2000-09-29 | 2002-04-04 | Schering Corporation | Pegylated interleukin-10 |
EP1391513A1 (en) | 2002-08-08 | 2004-02-25 | Cytheris | IL-7 drug substance, IL-7 comprising composition, preparation and uses thereof |
AU2007314501B2 (en) | 2006-09-28 | 2013-05-23 | Merck Sharp & Dohme Corp. | Use of pegylated IL-10 to treat cancer |
CL2007003411A1 (es) * | 2006-11-28 | 2008-07-04 | Centelion | Proteina fusion que consiste en una region fc de una inmunoglobulina con un fragmento o dominio soluble de un receptor para fgf; polinucleotido que la codifica y vector y celula que lo comprenden; composicion farmaceutica que comprende la proteina fu |
CN101943688B (zh) * | 2009-07-10 | 2013-01-02 | 复旦大学 | 一种利用质谱靶板富集糖基化肽段的方法 |
JP2013534515A (ja) | 2010-06-01 | 2013-09-05 | モナシュ ユニバーシティ | プロセシングされていない受容体型チロシンキナーゼc−METに対する抗体 |
US9103840B2 (en) * | 2010-07-19 | 2015-08-11 | Otago Innovation Limited | Signal biomarkers |
SG189475A1 (en) | 2010-11-05 | 2013-05-31 | Transbio Ltd | Markers of endothelial progenitor cells and uses thereof |
WO2012128806A1 (en) * | 2010-12-10 | 2012-09-27 | University Of Central Florida Research Foundation, Inc. | Methods and compositions comprising il-7 receptor ligands |
EA201490399A1 (ru) | 2011-08-03 | 2014-06-30 | Ситерис | Иммунотерапия hcv (вируса гепатита c) |
CN106913865A (zh) | 2013-04-18 | 2017-07-04 | 阿尔莫生物科技股份有限公司 | 使用白细胞介素‑10治疗疾病和病症的方法 |
EP3010527B1 (en) | 2013-06-17 | 2018-08-08 | Armo Biosciences, Inc. | Method for assessing protein identity and stability |
RU2016122957A (ru) | 2013-11-11 | 2017-12-19 | Армо Байосайенсиз, Инк. | Способы применения интерлейкина-10 для лечения заболеваний и расстройств |
CN104725484B (zh) * | 2013-12-19 | 2018-03-13 | 中国科学院微生物研究所 | 一种糖基化多肽及其制备方法和其应用 |
EP3119412A1 (en) | 2014-03-21 | 2017-01-25 | Boreal Invest | Terminal nanofiltration of solubilized protein compositions for removal of immunogenic aggregates |
WO2015187295A2 (en) | 2014-06-02 | 2015-12-10 | Armo Biosciences, Inc. | Methods of lowering serum cholesterol |
KR20170084033A (ko) | 2014-10-22 | 2017-07-19 | 아르모 바이오사이언시스 인코포레이티드 | 질환 및 장애를 치료하기 위해 인터루킨-10을 사용하는 방법 |
CN104372021A (zh) * | 2014-11-05 | 2015-02-25 | 太仓思源生物医药有限公司 | 人白细胞介素-2蛋白质的制备方法 |
WO2016126615A1 (en) | 2015-02-03 | 2016-08-11 | Armo Biosciences, Inc. | Methods of using interleukin-10 for treating diseases and disorders |
WO2016191587A1 (en) | 2015-05-28 | 2016-12-01 | Armo Biosciences, Inc. | Pegylated interleukin-10 for use in treating cancer |
KR101873201B1 (ko) * | 2015-06-11 | 2018-07-02 | 주식회사 제넥신 | 변형된 인터루킨-7 단백질 및 이의 용도 |
WO2017068185A1 (en) | 2015-10-23 | 2017-04-27 | Apogenix Ag | Single-chain gitr-receptor agonist proteins |
KR102386735B1 (ko) | 2015-11-06 | 2022-04-14 | 주식회사 제넥신 | 변형된 인터루킨-7 융합 단백질의 제형 |
WO2017095191A1 (ko) * | 2015-12-04 | 2017-06-08 | 주식회사 제넥신 | 면역글로불린 fc가 융합된 인터루킨-7 융합 단백질을 포함하는 사람 파필로마바이러스 유래 질환의 예방 또는 치료용 약학적 조성물 |
WO2017095140A1 (ko) | 2015-12-04 | 2017-06-08 | 주식회사 제넥신 | 면역글로불린 fc가 융합된 인터루킨-7 융합 단백질을 포함하는 인플루엔자 바이러스 감염의 예방 또는 치료용 약학적 조성물 |
CN107759696A (zh) * | 2016-08-19 | 2018-03-06 | 安源医药科技(上海)有限公司 | 人白介素7融合蛋白及其制备方法 |
US11401331B2 (en) * | 2018-01-25 | 2022-08-02 | I-Mab Biopharma Us Limited | Anti-PD-L1 antibody and IL-7 fusions |
WO2020102728A1 (en) | 2018-11-16 | 2020-05-22 | Neoimmunetech, Inc. | Method of treating a tumor with a combination of il-7 protein and an immune checkpoint inhibitor |
BR112021012037A2 (pt) | 2018-12-21 | 2021-11-03 | Ose Immunotherapeutics | Molécula anti-pd-1/il-7 bifuncional |
KR102402276B1 (ko) * | 2019-11-15 | 2022-05-26 | 주식회사 제넥신 | 변형된 인터루킨-7 및 tgf 베타 수용체 ii를 포함하는 융합단백질 및 이의 용도 |
EP4090430A1 (en) | 2020-01-13 | 2022-11-23 | Neoimmune Tech, Inc. | Method of treating a tumor with a combination of il-7 protein and a bispecific antibody |
US20230210952A1 (en) | 2020-02-05 | 2023-07-06 | Washington University | Method of treating a solid tumor with a combination of an il-7 protein and car-bearing immune cells |
KR20230098201A (ko) | 2020-10-26 | 2023-07-03 | 네오이뮨텍, 인코퍼레이티드 | 줄기 세포 동원의 유도 방법 |
KR20230104176A (ko) | 2020-11-02 | 2023-07-07 | 네오이뮨텍, 인코퍼레이티드 | 코로나바이러스의 치료를 위한 인터류킨-7의 용도 |
KR20230104175A (ko) | 2020-11-05 | 2023-07-07 | 네오이뮨텍, 인코퍼레이티드 | Il-7 단백질과 뉴클레오타이드 백신의 조합물을 사용한 종양의 치료 방법 |
WO2022117569A1 (en) | 2020-12-02 | 2022-06-09 | Oncurious Nv | A ccr8 antagonist antibody in combination with a lymphotoxin beta receptor agonist antibody in therapy against cancer |
CN113817043B (zh) * | 2021-09-22 | 2023-07-25 | 清华大学 | 制备活性铁调节激素的方法 |
KR20240130705A (ko) | 2021-12-30 | 2024-08-29 | 네오이뮨텍, 인코퍼레이티드 | Il-7 단백질 및 vegf 길항제의 조합으로 종양을 치료하는 방법 |
WO2023133595A2 (en) | 2022-01-10 | 2023-07-13 | Sana Biotechnology, Inc. | Methods of ex vivo dosing and administration of lipid particles or viral vectors and related systems and uses |
WO2023193015A1 (en) | 2022-04-01 | 2023-10-05 | Sana Biotechnology, Inc. | Cytokine receptor agonist and viral vector combination therapies |
WO2024102722A1 (en) | 2022-11-07 | 2024-05-16 | Neoimmunetech, Inc. | Methods of treating a tumor with an unmethylated mgmt promoter |
WO2024150158A1 (en) | 2023-01-11 | 2024-07-18 | Bright Peak Therapeutics Ag | Il-7 polypeptides, immunocytokines comprising same, and uses thereof |
CN117050178B (zh) * | 2023-10-13 | 2024-01-12 | 北京百普赛斯生物科技股份有限公司 | 特异性检测il-7的抗体及应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5153310A (en) * | 1989-02-28 | 1992-10-06 | Du Pont Merck Pharmaceutical Company | Il-2 analogs containing n-linked glycosylation sites |
US5328988A (en) * | 1987-10-26 | 1994-07-12 | Immunex Corporation | Interleukin-7 |
EP1391513A1 (en) * | 2002-08-08 | 2004-02-25 | Cytheris | IL-7 drug substance, IL-7 comprising composition, preparation and uses thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA887773B (en) * | 1987-10-26 | 1989-07-26 | Immunex Corp | Interleukin-7 |
US4965195A (en) | 1987-10-26 | 1990-10-23 | Immunex Corp. | Interleukin-7 |
US5714585A (en) * | 1987-10-26 | 1998-02-03 | Sterling Winthrop, Inc. | Antibodies that are immunoreactive with interleukin-7 |
CA2412882A1 (en) * | 2000-06-30 | 2002-01-10 | Maxygen Aps | Peptide extended glycosylated polypeptides |
-
2005
- 2005-07-20 EP EP05291556A patent/EP1746161A1/en not_active Withdrawn
-
2006
- 2006-07-19 DK DK06795556.7T patent/DK1904635T3/da active
- 2006-07-19 US US11/996,176 patent/US7708985B2/en active Active
- 2006-07-19 EA EA200800368A patent/EA012802B1/ru not_active IP Right Cessation
- 2006-07-19 ES ES06795556T patent/ES2379732T3/es active Active
- 2006-07-19 JP JP2008522097A patent/JP5685363B2/ja active Active
- 2006-07-19 EP EP06795556A patent/EP1904635B1/en active Active
- 2006-07-19 CA CA2859145A patent/CA2859145C/en active Active
- 2006-07-19 WO PCT/IB2006/002663 patent/WO2007010401A2/en active Application Filing
- 2006-07-19 AU AU2006271315A patent/AU2006271315B2/en active Active
- 2006-07-19 NZ NZ564907A patent/NZ564907A/en not_active IP Right Cessation
- 2006-07-19 PT PT06795556T patent/PT1904635E/pt unknown
- 2006-07-19 CA CA2615562A patent/CA2615562C/en active Active
- 2006-07-19 CN CN200680026503.XA patent/CN101228275B/zh active Active
- 2006-07-19 CN CN201610038940.9A patent/CN105647939A/zh active Pending
- 2006-07-19 PL PL06795556T patent/PL1904635T3/pl unknown
- 2006-07-19 SI SI200631263T patent/SI1904635T1/sl unknown
- 2006-07-19 AT AT06795556T patent/ATE542901T1/de active
-
2007
- 2007-12-27 IL IL188480A patent/IL188480A0/en active IP Right Grant
-
2008
- 2008-01-03 NO NO20080045A patent/NO344802B1/no not_active IP Right Cessation
- 2008-01-18 ZA ZA200800533A patent/ZA200800533B/xx unknown
- 2008-04-30 HK HK08104792.4A patent/HK1115154A1/xx not_active IP Right Cessation
-
2010
- 2010-02-24 US US12/711,675 patent/US8034327B2/en active Active
-
2011
- 2011-08-24 US US13/216,331 patent/US8153114B2/en active Active
-
2012
- 2012-02-16 CY CY20121100161T patent/CY1112655T1/el unknown
-
2014
- 2014-10-01 JP JP2014202828A patent/JP2015057392A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5328988A (en) * | 1987-10-26 | 1994-07-12 | Immunex Corporation | Interleukin-7 |
US5153310A (en) * | 1989-02-28 | 1992-10-06 | Du Pont Merck Pharmaceutical Company | Il-2 analogs containing n-linked glycosylation sites |
EP1391513A1 (en) * | 2002-08-08 | 2004-02-25 | Cytheris | IL-7 drug substance, IL-7 comprising composition, preparation and uses thereof |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101228275B (zh) | 糖基化的il-7,制备及应用 | |
JP5980467B2 (ja) | Il−7薬物原料、組成物、製造及び使用 | |
Gawlitzek et al. | Characterization of changes in the glycosylation pattern of recombinant proteins from BHK-21 cells due to different culture conditions | |
TW516962B (en) | A human TNFR1-IgG1 preparation | |
EP1366062B1 (en) | Efficient recovery of correctly refolded proteins | |
KR20120100973A (ko) | 글루코코르티코이드를 사용하여 포유동물 세포 배양액에서 당단백질을 생산하는 방법 | |
SK288100B6 (sk) | Human IL-2 mutein, pharmaceutical composition containing thereof and use, vector and prokaryotic host cell | |
JP2009502117A (ja) | 赤血球新生刺激タンパク質生成のための組み換え法 | |
WO2023104128A1 (zh) | 具有改变的糖基化修饰的Fc多肽 | |
KR20170010862A (ko) | 우리딘과 n-아세틸-d-만노사민을 함유하는 배지 | |
CN1129805A (zh) | 人促血小板生成素变异体、其cDNA克隆表达及检测方法 | |
BRPI0613747B1 (pt) | Composição de il-7 hiperglicosilada e usos | |
CN1304574C (zh) | 适于原核表达系统的重组人促红细胞生成素基因及其表达载体 | |
JP3786433B2 (ja) | 均一なn末端を有する組換え型ヒトインターロイキン6及びその製造方法 | |
CN117242175A (zh) | 超唾液酸化细胞 | |
WO1993001214A1 (en) | Recombinant human interleukin 6 with homogeneous n-terminus and production thereof | |
CN1435485A (zh) | 重组dna序列,编码的免疫融合蛋白及表达方法 | |
MXPA06007377A (en) | Il-7 fusion proteins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |