CN101223663A - 复合多孔膜、制造复合多孔膜的方法、固体聚合物电解质膜和燃料电池 - Google Patents

复合多孔膜、制造复合多孔膜的方法、固体聚合物电解质膜和燃料电池 Download PDF

Info

Publication number
CN101223663A
CN101223663A CNA2006800259927A CN200680025992A CN101223663A CN 101223663 A CN101223663 A CN 101223663A CN A2006800259927 A CNA2006800259927 A CN A2006800259927A CN 200680025992 A CN200680025992 A CN 200680025992A CN 101223663 A CN101223663 A CN 101223663A
Authority
CN
China
Prior art keywords
composite porous
porous film
film
polymer
fiberfill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800259927A
Other languages
English (en)
Inventor
片山幸久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN101223663A publication Critical patent/CN101223663A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0032Organic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/21Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Metallurgy (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

本发明旨在提供包含含纤维填料的聚合物膜或聚合物片的复合多孔膜,其特征在于具有大量通过用脉冲宽度为10-9秒或更小的超短脉冲激光照射而形成的具有暴露的纤维填料的孔,且旨在提供具有被聚合物电解质填充的孔的聚合物电解质膜。根据本发明,可以获得无机-有机或有机-有机复合多孔膜,其可以被制备成薄膜形式并高度耐用,具有高的强度和降低的燃料气体交叉泄漏。可以使用这种复合多孔膜作为固体聚合物电解质膜,以获得具有提高的输出电压和电流密度的燃料电池。

Description

复合多孔膜、制造复合多孔膜的方法、固体聚合物电解质膜和燃料电池
技术领域
本发明涉及多种功能膜,特别涉及无机-有机或有机-有机复合多孔膜,这种多孔膜最适于在固体聚合物燃料电池、水电解装置等中所用的固体聚合物电解质,本发明还涉及所述多孔膜的制造方法,和包含该复合多孔膜的燃料电池。特别地,本发明涉及用在燃料电池中时表现出优异的耐久性且没有由操作条件的反复变化引起的破损的固体聚合物电解质膜,并涉及其制造方法。
背景技术
固体聚合物电解质燃料电池具有下述结构:其包括作为电解质的固体聚合物电解质膜和与该膜两侧相连的电极。
当用作燃料电池时,聚合物固体电解质膜本身必须具有低的膜电阻。因此,要求其膜厚度应该尽可能小。但是,具有太小的膜厚度的固体聚合物电解质膜具有如下问题:在制造膜的过程中出现针孔;膜在电极形成过程中撕裂或破损;在电极之间容易产生短路。此外,用于燃料电池的聚合物固体电解质膜始终在湿状态下使用。因此,这种固体聚合物电解质膜往往具有可靠性问题,例如耐压性,或在差压操作过程中因为润湿导致聚合物膜溶胀、形变等而引起的交叉泄漏。
例如,日本专利公开(Kokai)9-194609A(1997)旨在提供一种离子交换膜,通过离子交换树脂与氟碳树脂等的多孔膜之间的相互紧密接触,所述离子交换膜没有因离子交换树脂的水含量的反复变化而引起的破损并防止了针孔出现。该文献公开了制造离子交换膜的方法,包括:用溶解在溶剂中的聚合物至少浸溃通过拉伸制成的氟碳树脂等的多孔膜的孔;通过干燥使聚合物附着到多孔膜上;和在其中引入离子交换基团。
另一方面,作为适于激光微加工的激光束,脉冲宽度为10-9秒或更小的超短脉冲激光已引起了关注。特别地,当用于加工金属和透明材料之类的多种材料时,飞秒(fs:10-12秒)脉冲激光束以几乎不会在激光束照射位置附近产生热破坏和机械破坏(形变和蚀变)为特征,这完全不同于使用CO2或YAG激光的传统加工。
在传统激光加工中,大部分照射在被加工的材料上的光能转化成热能,并在这种热作用下通过熔融、分解和驱散进行加工。相反,在使用超短脉冲激光时,能量在极短时间内集中在被加工的材料上。因此,纳米等离子体、纳米冲击、击穿、晶格应变和冲击波以超高速发生,并在产生热之前通过摩擦(驱散)进行加工。因此,加工可以仅在照射位置引发且精细地实现,不会在其附近产生破坏。
此外,使用超短脉冲激光束,例如飞秒脉冲激光,通过多光子吸收对透明材料进行加工,并因此可以在没有损坏的情况下仅三维远程加工材料表面的内部区域。此外,该加工利用非线性现象,例如多光子吸收,并且尽管使用了光,却因此产生了超出照射光波长的衍射极限的加工分辨力。
因此,使用超短脉冲激光束(例如飞秒脉冲激光)的激光加工在加工机制上与传统的激光加工完全不同。使用超短脉冲激光的加工具有高得多的分辨力,并可以将加工区域限定为被加工的材料的内部区域。因此,这种加工可以实现亚微米或更小分辨率的超微加工技术,其远远超出常规意义上的传统激光加工的限制。
例如,日本专利公开(Kokai)2004-283871A号旨在制造在聚合物材料中具有极小孔的塑料结构。该文献公开了通过用超短脉冲激光照射塑料材料来制造具有最小尺寸或宽度为200微米或更小通孔的和/或陷孔的塑料结构。
或者,对于燃料电池所用的聚合物电解质膜,下述日本专利公开(Kokai)2004-79266A号旨在提供用于甲醇燃料电池(其通过供应甲醇作为燃料经由电化学反应产生电能)的电解质膜。具体而言,该文献公开了用于直接甲醇燃料电池的电解质膜,其通过用超短脉冲激光照射包含聚合物薄膜的电解质膜以形成多个均匀的细孔、并用电解质材料填充这些细孔而制成。
发明内容
在日本专利公开(Kokai)9-194609A(1997)公开的方法中,聚合物是亲水的,而拉伸多孔膜是疏水的。通过溶剂使这些组分彼此相容。但是,其中所述的膜没有被制成高度耐用的复合膜。因此,其中存在的问题是在使用中电解质和PTFE分离。
或者,在日本专利公开(Kokai)2004-283871A和2004-79266A中,在仅使用激光加工形成孔时,即使使用超短激光,可加工的孔径也具有下限。因此,难以形成亚微米(1微米或更小)大小的孔。此外,这些加工方法仅形成通孔并因此需要化学处理,例如表面处理,以将电解质材料固定在膜上。
考虑到传统技术的问题研究出了本发明。本发明的一个目的是提供无机-有机或有机-有机复合多孔膜,其可以被制备为薄膜形式,高度耐用并具有高强度。本发明的另一目的是通过使用这种无机-有机或有机-有机复合多孔膜作为固体聚合物电解质膜提供具有提高的输出电压和电流密度的燃料电池。
本发明人发现,通过将不被超短脉冲激光驱散的无机材料混入用于用超短脉冲激光冲孔的聚合物材料中,实现了这些目的,并因此完成了本发明。
具体而言,本发明的第一方面是包含含纤维填料的聚合物膜或聚合物片的复合多孔膜,其特征在于具有大量通过用脉冲宽度为10-9秒或更小的超短脉冲激光照射而形成的具有暴露的纤维填料的孔。本发明的复合多孔膜可利用其所带的大量孔来充当多种功能膜。
在本发明中,所述纤维填料可以是无机纤维填料,或可以是内聚能与作为基底的聚合物材料不同的有机纤维填料,例如芳族聚酰胺纤维。
在本发明的无机-有机或有机-有机复合多孔膜中,用超短脉冲激光的辐射能驱散孔内的聚合物材料,而聚合物材料中所含的纤维由于其大的内聚能而保存在孔内未被驱散。因此,可以冲出具有所需形状的孔,同时也可以保持纤维增强的塑料的初始强度。在这方面,考虑到本发明的复合多孔膜的下述多种应用,孔优选应该穿透该膜。
本发明的复合多孔膜可用于多种应用。为了使用该复合多孔膜作为电解质膜,特别是用于燃料电池的电解质膜,带有暴露的纤维填料的孔必须用聚合物电解质填充。用聚合物电解质填充亚微米级的孔。因此,该复合多孔膜在聚合物膜或聚合物片基底和聚合物电解质之间具有高的粘合力,并在多种应用中表现出高的耐久性。
在本发明中,使用聚合物组合物领域中已知的各种无机纤维作为无机纤维填料。其中,玻璃纤维是最常见的,并优选作为示例。
在本发明中,使用本领域中已知的各种聚合物材料作为充当聚合物膜或聚合物片基底的聚合物材料。其中,其优选实例包括但不限于聚四氟乙烯(PTFE)或包含10摩尔%或更少共聚组分的四氟乙烯共聚物,和具有至少一个或多个选自甲基、苯基、氢和羟基的基团作为取代基的聚硅氧烷。
为了使用本发明的无机-有机或有机-有机复合多孔膜作为离子交换功能膜,用于填充孔的聚合物电解质应优选具有磺酸基团。
本发明中所用的超短脉冲激光是脉冲宽度为10-9秒或更小的超短脉冲激光。其具体实例包括纳秒、皮秒或飞秒的脉冲激光。
在本发明中,考虑到用超短脉冲激光的辐射能驱散聚合物材料而聚合物材料中所含的无机纤维保留在孔内未被驱散且不抑制离子运动,纤维填料优选应该具有大于孔的孔径大小的纤维长度和为孔的孔径大小的1/20或更小的纤维厚度。更具体地,纤维填料优选应该具有1微米至10微米的纤维长度和10或更大的长径比(平均长度÷平均直径)。
本发明的第二方面是制造复合多孔膜的方法,包括:
(1)制备含纤维填料的聚合物膜或聚合物片,和
(2)用脉冲宽度为10-9秒或更小的超短脉冲激光照射所述含纤维填料的聚合物膜或聚合物片,从而在所述含纤维填料的聚合物膜或聚合物片中形成具有暴露的纤维填料的孔。
为了使用本发明的无机-有机或有机-有机复合多孔膜作为电解质膜,该方法优选进一步包括:(3)用形成电解质的单体填充所述具有暴露的纤维填料的孔,并然后使所述形成电解质的单体聚合。在这方面,可以将所述形成电解质的单体与交联剂混合。这可以在聚合过程中引起交联反应,以使孔内的电解质部分具有强度、耐溶剂性、耐热性等等。此外,为了用所述形成电解质的单体和任选地,用交联剂填充孔,优选应该进行超声和/或消泡处理,以使所述形成电解质的单体和,任选地,交联剂充分渗入孔。为了使交联剂充分渗入孔,优选将具有高润湿能力(低极性)的溶剂用于渗透。该溶剂优选适当地选自SP值为10或更小的溶剂,例如四氯化碳、氯仿、苯、甲苯、二乙醚、丙酮和四氢呋喃。
对于使孔内的所述形成电解质的单体聚合的方法没有特别限制。其优选实例包括选自光聚合、热聚合和催化剂引发聚合的一种或多种方法。其中,就可操作性等而言,光聚合是优选的。
为了使用本发明的无机-有机或有机-有机复合多孔膜作为电解质膜,该方法还优选包括(4)用聚合物电解质填充具有暴露的纤维填料的孔,以代替步骤(3)。可以使用本领域中已知的聚合物电解质作为用于填充孔的聚合物电解质。其中,优选的聚合物电解质如下列通式(2)所示:
Figure S2006800259927D00051
其中a部分与b部分的比率a∶b=0∶1至9∶1,且n代表0、1或2。
为了用聚合物电解质填充具有暴露的纤维填料的孔,在无溶剂的情况下或在填充用的溶剂中溶解聚合物电解质。例如,使用聚合物电解质溶液,并然后将溶剂蒸发。所用溶剂优选具有高沸点和低SP值。其实例包括DMSO、CCl4和CF2Cl2。此外,为了用聚合物电解质填充具有暴露的纤维填料的孔,进行加热和/或加压是有效的。
在本发明中,超短脉冲激光的具体实例是如上所述的纳秒、皮秒或飞秒的脉冲激光。
如上所述,纤维填料的纤维长度大于孔的孔径大小,且纤维长度为1微米至10微米,长径比(平均长度/平均直径)为10或更大。如上所述,纤维填料的优选具体实例包括玻璃纤维。
为了用脉冲宽度为10-9秒或更小的超短脉冲激光照射所述膜或片,全息曝光法可用于规则地冲出大量孔,并因此优选作为制造本发明的复合多孔膜的方法。
本发明的第三方面是包含所述复合多孔膜的功能膜。
本发明的第四方面是包含所述复合多孔膜的聚合物电解质膜。
本发明的第五方面是包含所述固体聚合物电解质膜的燃料电池。
根据本发明,可以使固体聚合物电解质膜的厚度很薄。此外,使用聚合物膜或聚合物片基底作为电解质膜的载体,并可以因此增强电解质膜的强度。因此,装有本发明的固体聚合物电解质膜的燃料电池高度耐用,并可以具有降低的燃料气体交叉泄漏和提高的电流-电压特性。
本发明产生了下列效果:(1)可以使用具有所需物理性能的聚合物膜或聚合物片基底作为增强材料;(2)可以形成具有可控的均匀孔径大小的孔;(3)不必使用化学处理(例如表面处理)将电解质材料固定在聚合物膜或片上;(4)聚合物膜或聚合物片基底被聚合物电解质充分浸渍;和(5)即使具有小的孔径的复合膜也具有高增强效果,并因此可以保持机械耐久性。此外,本发明还产生了下列效果:(6)浸渍后电解质单体的聚合直接产生了没有溶剂的水性或非水电解质;(7)聚合物电解质本身具有磺酸基团。因此,可以省略通过水解在侧链中引入离子交换基团的程序;和(8)冲出的孔具有小的孔径。因此,聚合物膜或聚合物片基底对聚合物电解质具有高亲合力,并因此在作为聚合物电解质膜时具有优异的强度。
此外,根据本发明,聚合物膜或聚合物片基底被用作电解质膜的载体,并因此可以增强电解质膜的强度。可以通过聚合物膜或聚合物片基底的厚度控制固体聚合物电解质膜的厚度。因此,与包含全氟化碳磺酸树脂的、制成膜形式的传统电解质膜相比,本发明的电解质膜的强度可以得到增强。由此,与包含全氟化碳磺酸树脂的、制成膜形式的传统电解质膜相比,本发明的电解质膜即使在小的厚度下也可以使用。
附图简述
图1显示了使用本发明的无机-有机或有机-有机复合多孔膜的电解质膜的制造步骤的一个实例,其中标记号1表示含纤维填料的聚合物膜或聚合物片,标记号2表示用超短脉冲激光冲出的孔,标记号3表示暴露出的纤维填料,标记号4表示形成电解质的单体,标记号5表示聚合物电解质。
本发明的最佳实施方式
图1显示了使用本发明复合多孔膜的电解质膜的制造步骤的一个实例。用脉冲宽度为10-9秒或更小的超短脉冲激光照射含纤维填料的聚合物膜或聚合物片1,以便在含纤维填料的聚合物膜或聚合物片中形成具有暴露的纤维填料3的孔2(图1(a))。为了使用该复合多孔膜作为电解质膜,用形成电解质的单体4填充具有暴露的纤维填料3的孔2(图1(b))。然后,使所述形成电解质的单体光聚合(图1(c))。孔被聚合物电解质5填充(图1(d))。
本发明中可用的脉冲宽度为10-9秒或更小的超短脉冲激光的具体实例包括:通过从其介质为钛-蓝宝石晶体的激光器或从染料激光器中再生/放大而获得的脉冲宽度为10-9秒或更小的脉冲激光;和具有受激准分子或YAG(例如Nd-YAG)激光器的谐波的脉冲宽度为10-9秒或更小的脉冲激光。特别地,优选使用脉冲宽度为10-12至10-15秒的飞秒级脉冲激光(飞秒脉冲激光),其通过从其介质为钛-蓝宝石晶体的激光器或从染料激光器中再生/放大而获得。当然,对超短脉冲激光的脉冲宽度没有特别限制,只要其为10-9秒或更小即可。例如,脉冲宽度为10-9秒至1012秒的皮秒级或10-12至10-15秒的飞秒级,并通常为大约100飞秒(10-13秒)。使用这类超短脉冲激光,例如通过从其介质为钛-蓝宝石晶体的激光器或从染料激光器中再生/放大而获得的脉冲宽度为10-9秒或更小的脉冲激光,或具有准分子或YAG(例如Nd-YAG)激光器的谐波的脉冲宽度为10-9秒或更小的脉冲激光,可以产生高的脉冲能并因此使用多光子吸收法实现激光加工。这些激光可以通过其能量以比其波长窄的宽度进行微加工。因此,使用超短脉冲激光、通过多光子吸收法进行激光加工,可以形成最小尺寸或宽度为200微米或更小的非常小的通孔。横截面的形状不限于圆形或椭圆形,并且可以是任何形状,例如直线、曲线、或具有较长主轴的弯曲线。
在本发明中,对超短脉冲激光的波长没有特别限制。由于所用多光子吸收法,波长可以是比含纤维填料的聚合物膜或聚合物片基底中的树脂组分的吸收波长更长的波长,并可以根据含纤维填料的聚合物膜或聚合物片基底中的树脂组分的类型或吸收波长适当地选择。具体地,超短脉冲激光的波长可以是,例如,紫外至近红外范围的波长,并因此可以适当地选自200纳米至1000纳米。在这方面,超短脉冲激光的波长优选应该是充当含纤维填料的聚合物膜或聚合物片基底中的树脂组分的吸收波长(峰值吸收波长)的谐波(第二谐波、第三谐波,等等)的波长。
此外,超短脉冲激光的重复频率为1Hz至100MHz,并通常为大约10Hz至500kHz。
在含纤维填料的聚合物膜或聚合物片基底的内部区域中每单位体积照射的能量可以根据超短脉冲激光的辐射能、在聚合物膜或聚合物片基底上照射时所用物镜的数值孔径(聚光)、在被加工的塑料基底上的照射位置或焦深、激光焦点的移动速度等适当地确定。
在本发明中,对超短脉冲激光的平均输出功率或辐射能没有特别限制,并可以根据相关孔(特别是非常小的通孔)的尺寸、形状等适当地选择,并可以选自例如10000mW或更小,优选大约5至500mW的范围,更优选大约10至300mW的范围。
此外,对超短脉冲激光的照射的光点大小没有特别限制。光点大小可以根据相关孔的尺寸或形状、透镜的尺寸、数值孔径或放大率适当地选择,并可以选自例如大约0.1至10微米的范围。
作为在包含纤维填料之前用作本发明中的聚合物膜或聚合物片基底的聚合物材料,不仅可以使用具有单一化学结构的聚合物材料(包括共聚物),还可以使用包含具有不同化学结构的多种聚合物材料的聚合物合金或共混物。或者,聚合物膜或聚合物片基底可以是含有分散态的其它材料(例如无机化合物或金属)的复合体,或可以是具有两层或更多层结构、含有包含不同塑料或其它材料的层的层压件。例如,当使用包含分散在其中的炭黑的聚合物膜或聚合物片基底以使该聚合物膜或聚合物片具有导电性时,该聚合物膜或聚合物片基底表现出提高的激光吸收效率,也表现出易于加工的效果。
聚合物膜或聚合物片的具体实例包括但不限于,树脂(例如热塑性树脂),包括:基于甲基丙烯酸酯的树脂,例如聚甲基丙烯酸甲酯(PMMA);基于苯乙烯的树脂,例如聚苯乙烯、丙烯腈-苯乙烯共聚物(AS树脂)和丙烯腈-丁二烯-苯乙烯共聚物(ABS树脂);聚酰胺;聚酰亚胺(PI);聚醚酰亚胺(PEI);聚酰胺-酰亚胺;聚酯酰亚胺;聚碳酸酯(PC);聚缩醛;聚亚芳基醚,例如聚苯醚(PPO);聚苯硫醚(PPS);聚芳基化物;聚芳基;聚砜;聚醚砜(PES);聚氨酯;基于聚酯的树脂,例如聚对苯二甲酸乙二酯(PET);聚醚酮,例如聚醚醚酮(PEEK)或聚醚酮酮(PEKK);聚丙烯酸酯,例如聚丙烯酸丁酯和聚丙烯酸乙酯;聚乙烯基酯,例如聚丁氧基亚甲基;聚硅氧烷;聚硫化物;聚膦腈;聚三嗪;聚碳硼烷;聚降冰片烯;基于环氧的树脂;聚乙烯基醇;聚乙烯基吡咯烷酮;聚二烯,例如聚异戊二烯和聚丁二烯;聚链烯,例如聚异丁烯;氟基树脂,例如基于偏二氟乙烯的树脂、基于六氟丙烯的树脂、基于六氟丙酮的树脂、和聚四氟乙烯树脂;聚烯烃树脂,例如聚乙烯、聚丙烯和乙烯-丙烯共聚物。
这些聚合物膜或聚合物片基底可以根据具有孔的复合多孔膜的应用适当地选择。例如,考虑到化学稳定性等,氟基或烯烃基树脂优选用于过滤器或分离器之类的应用中。
对聚合物膜或聚合物片基底的厚度没有特别限制。该厚度可以根据具有孔的复合多孔膜的应用适当地选择,并可以为例如0.1微米或更大(例如0.1微米至10毫米)。当基底是塑料膜时,使用多光子吸收法的激光加工产生了具有孔的塑料膜。在本发明中,即使要加工的基底是聚合物膜(即,即使其厚度很薄),也可以以优异的精确度对要加工的基底进行激光加工。当要加工的基底是聚合物膜时,其厚度可以为,例如,0.1至500微米,优选1至300微米,更优选10至150微米。
在本发明中,使用聚合物组合物领域中已知的各种无机纤维作为无机纤维填料。其实例包括玻璃纤维、玻璃棉、碳纤维、纤维镁须晶、硝酸镁须晶、碳化硅须晶、氮化硅须晶、石墨、钛酸钾须晶、纤维氧化铝、针状氧化钛、硅灰石和陶瓷纤维。其中,玻璃纤维是最常用的。
可以使用本领域中已知的各种形成电解质的单体作为本发明中所用的形成电解质的单体。其优选实例包括,但不限于,在化学结构中具有强酸基团(例如磺酸基团)的化合物,即乙烯基磺酸、乙烯基膦酸、烯丙基磺酸、烯丙基膦酸、苯乙烯磺酸和苯乙烯膦酸。
此外,本发明不仅包括具有离子官能团的单体本身,还包括具有通过后继工艺中的反应转化成离子官能团的基团的单体。例如,在本发明中,通过用形成电解质的单体浸渍聚合物膜或聚合物片基底,然后使单体聚合以将分子链内的磺酰卤[-SO2X1]、磺酸酯[-SO3R1]或卤素[-X2]基团转化成磺酸[-SO3H]基团,由此制造多孔膜。或者,使用氯磺酸将磺酸基引入例如在聚合物膜或聚合物片基底中所述形成电解质的单体单元中存在的苯基、酮或醚基团中,从而制造多孔膜。
在本发明中,形成电解质的单体的典型实例包括(1)至(6)中所示的下列单体:
(1)一种或多种选自由具有磺酰卤基团的单体组成的组的单体,所述具有磺酰卤基团的单体即CF2=CF(SO2X1)(其中X1代表卤素基团-F或-Cl,下面同样如此)、CH2=CF(SO2X1)和CF2=CF(OCH2(CF2)mSO2X1)(其中m代表1至4;下面同样如此);
(2)一种或多种选自由具有磺酸酯基团的单体组成的组的单体,所述具有磺酸酯基团的单体即CF2=CF(SO3R1)(其中R1代表烷基-CH3、-C2H5或-C(CH3)3;下面同样如此)、CH2=CF(SO3R1)和CF2=CF(OCH2(CF2)mSO3R1);
(3)一种或多种选自由CF2=CF(O(CH2)mX2)(其中X2代表卤素基团-Br或-Cl;下面同样如此)和CF2=CF(OCH2(CF2)mX2)组成的组的单体;
(4)一种或多种选自由丙烯酸类单体组成的组的单体,所述丙烯酸类单体即CF2=CR2(COOR3)(其中R2代表-CH3或-F,且R3代表-H、-CH3、-C2H5或-C(CH3)3;下面同样如此)和CH2=CR2(COOR3);
(5)一种或多种选自由苯乙烯或苯乙烯衍生物单体(即2,4-二甲基苯乙烯、乙烯基甲苯和4-叔丁基苯乙烯)组成的组的单体;和
(6)一种或多种选自由乙酰基萘、乙烯基酮CH2=CH(COR4)(其中R4代表-CH3、-C2H5或苯基(-C6H5))、和乙烯基醚CH2=CH(OR5)(其中R5代表-CnH2n+1(n=1至5)、-CH(CH3)2、-C(CH3)3或苯基)组成的组的单体。
任选用作本发明中的形成电解质的单体的交联剂的具体实例包括二乙烯基苯、氰脲酸三烯丙酯、异氰脲酸三烯丙酯、3,5-双(三氟乙烯基)苯酚和3,5-双(三氟乙烯氧基)苯酚。为了交联和聚合,添加相当于单体总量的30摩尔%或更少的一种或多种这些交联剂。
本发明的具有孔的无机-有机或有机-有机复合多孔膜在表面或内部区域中具有精确受控的孔,并因此可以利用这些精确受控的和形成的孔发挥各种功能。特别地,当具有孔的复合多孔膜具有非常小的通孔时,该复合多孔膜可以例如发挥过滤器、膜、分离器、雾化、气体扩散、喷嘴和流体通道调节功能。
可以使用本发明的具有孔的无机-有机或有机-有机复合多孔膜的具体应用的实例包括:微型机械、微型传感器、生物仪器、微型反应器芯片、和可植入人造器官,这些利用了它们的形成精确空间、流体通道等的分隔件功能;和各种功能膜,例如微型过滤器、微型过滤膜(微膜)、用于电池的分离器(例如各种电池(如镍氢电池和锂离子电池)中所用的电池用分离器)、燃料电池用的膜(例如燃料电池中所用的各种膜,例如气体扩散、集电、透湿和保湿层)、微型喷嘴(例如用于印刷机、用于注射、用于喷雾、和用于间隙的微型喷嘴)、分配器、气体扩散层、和微通道。
当本发明的具有孔的无机-有机或有机-有机复合多孔膜用在燃料电池中时,可以使固体聚合物电解质膜的厚度很薄。此外,该聚合物膜或聚合物片基底用作电解质膜的载体,并可以因此增强电解质膜的强度。因此,装配有本发明的固体聚合物电解质膜的燃料电池高度耐用,并可以具有降低的燃料气体交叉泄漏和提高的电流-电压特性。
下面显示本发明的实施例。
实施例
根据图1所示的步骤通过使用超短脉冲激光进行膜加工,制造包含多孔载体的用于燃料电池的高功能性复合电解质膜。在具体制造方法中,用超短脉冲激光照射含有纤维长度大于要加工的孔径大小的纤维材料(优选没有导电性)的聚合物膜,以形成具有如图1中所示的结构的多孔膜。
所用纤维材料优选具有10-5至10-2Ω/cm的体电阻率。但是通过与膜材料混合,可以改进绝缘性。因此,可用的材料不限于这种材料。考虑到膜的加工和保持导电性,纤维材料优选具有1微米至10微米的纤维长度和10或更大的长径比(平均长度÷平均直径)。
将与填料混合的聚醚醚酮(PEEK)膜用来自蓝宝石激光器的、通过预定光学系统形成的、脉冲宽度为120fs、且输出功率为0.1W的飞秒脉冲照射0.1秒,以形成直径8微米的多孔孔(通孔)。除了PEEK外,该材料还可以是工程塑料,例如PPS、PEI、PPSU、PI和PES,或可以是通用塑料,例如PE、PP和PET。
此外,为了用电解质填充这些孔,根据下述组成制备电解质单体溶液(使用Aldrich制造的ATBS(丙烯酰胺-叔丁基磺酸))。具体而言,在纯水与电解质单体重量比=95∶5的溶液中添加痕量交联剂和表面活性剂。将所述膜浸入该溶液,然后为了渗透而进行超声清洗和消泡处理。然后,将膜用波长365纳米的紫外线(0.3W/cm2)照射3分钟,以在膜的孔内进行聚合。结果,孔被电解质材料填充而形成复合电解质材料。
工业适用性
本发明产生如下作用:(1)可以使用具有所需物理性能的聚合物膜或聚合物片基底作为增强材料;(2)可以形成具有可控的均匀孔径大小的孔;和(3)不必使用化学处理(例如表面处理)来将电解质材料固定在膜或片材上。因此,本发明的无机-有机或有机-有机复合多孔膜可以在多种应用中用作功能膜。
此外,本发明可以改进复合多孔膜、特别是固体聚合物电解质膜的耐久性。装配有本发明的固体聚合物电解质膜的燃料电池高度耐用,并可以具有降低的燃料气体交叉泄漏和提高的电流-电压特性。这提高了燃料电池的耐久性和发电性能,并有助于其实际和广泛应用。

Claims (32)

1.包含含纤维填料的聚合物膜或聚合物片的复合多孔膜,其特征在于具有大量通过用脉冲宽度为10-9秒或更小的超短脉冲激光照射而形成的具有暴露的纤维填料的孔。
2.根据权利要求1的复合多孔膜,其特征在于所述纤维填料是无机纤维填料。
3.根据权利要求1的复合多孔膜,其特征在于所述纤维填料是内聚能与作为基材的所述含纤维填料的聚合物膜或聚合物片不同的有机纤维填料。
4.根据权利要求2的复合多孔膜,其特征在于所述无机纤维填料是玻璃纤维。
5.根据权利要求3的复合多孔膜,其特征在于所述有机纤维填料是芳族聚酰胺纤维。
6.根据权利要求1至5任一项的复合多孔膜,其特征在于所述具有暴露的纤维填料的孔填充有聚合物电解质。
7.根据权利要求1至6任一项的复合多孔膜,其特征在于所述聚合物膜或聚合物片由下列通式(1)所示的聚四氟乙烯(PTFE)制成,或由包含10摩尔%或更少共聚组分的四氟乙烯共聚物制成,
Figure S2006800259927C00011
其中A代表选自下式的一种或多种,
A=-CF3
   -OCF3
   -OCF2CF2CF3
且c部分与d部分的比率c∶d=1∶0至9∶1。
8.根据权利要求1至6任一项的复合多孔膜,其特征在于所述聚合物膜或聚合物片由聚硅氧烷制成,且所述聚硅氧烷中的有机基团是至少一种或多种选自甲基、苯基、氢和羟基的基团。
9.根据权利要求6至8任一项的复合多孔膜,其特征在于所述聚合物电解质具有磺酸基团。
10.根据权利要求1至9任一项的复合多孔膜,其特征在于所述超短脉冲激光为纳秒、皮秒或飞秒的脉冲激光。
11.根据权利要求1至10任一项的复合多孔膜,其特征在于所述纤维填料的纤维长度大于所述孔的孔径大小,且纤维厚度为所述孔的孔径大小的1/20或更小。
12.根据权利要求1至11任一项的复合多孔膜,其特征在于所述纤维填料的纤维长度为1微米至10微米且长径比(平均长度÷平均直径)为10或更大。
13.制造复合多孔膜的方法,其特征在于包括用脉冲宽度为10-9秒或更小的超短脉冲激光照射含纤维填料的聚合物膜或聚合物片,从而在所述含纤维填料的聚合物膜或聚合物片中形成具有暴露的纤维填料的孔。
14.根据权利要求13的制造复合多孔膜的方法,其特征在于所述纤维填料是无机纤维填料。
15.根据权利要求13的制造复合多孔膜的方法,其特征在于所述纤维填料是内聚能与作为基材的所述含纤维填料的聚合物膜或聚合物片不同的有机纤维填料。
16.根据权利要求14的制造复合多孔膜的方法,其特征在于所述无机纤维填料是玻璃纤维。
17.根据权利要求15的制造复合多孔膜的方法,其特征在于所述有机纤维填料是芳族聚酰胺纤维。
18.根据权利要求13至17任一项的制造复合多孔膜的方法,其特征在于进一步包括用形成电解质的单体填充所述具有暴露的纤维填料的孔,并然后使所述形成电解质的单体聚合。
19.根据权利要求18的制造复合多孔膜的方法,其特征在于将所述形成电解质的单体与交联剂混合。
20.根据权利要求18或19的制造复合多孔膜的方法,其特征在于为了用形成电解质的单体和,任选地,用交联剂填充孔,进行超声和/或消泡处理以实现渗透。
21.根据权利要求18至20任一项的制造复合多孔膜的方法,其特征在于形成电解质的单体的聚合采用一种或多种选自光聚合、热聚合和催化剂引发聚合的方法。
22.根据权利要求18的制造复合多孔膜的方法,其特征在于进一步包括用聚合物电解质填充所述具有暴露的纤维填料的孔。
23.根据权利要求22的制造复合多孔膜的方法,其特征在于所述聚合物电解质如下列通式(2)所示:
Figure S2006800259927C00031
其中a部分与b部分的比率a∶b=0∶1至9∶1,且n代表0、1或2。
24.根据权利要求22或23的制造复合多孔膜的方法,其特征在于为了用聚合物电解质填充具有暴露的纤维填料的孔,使用聚合物电解质溶液,并然后将溶剂蒸发。
25.根据权利要求22至24任一项的制造复合多孔膜的方法,其特征在于为了用聚合物电解质填充具有暴露的无机纤维填料的孔,进行加热和/或加压。
26.根据权利要求13至25任一项的制造复合多孔膜的方法,其特征在于所述超短脉冲激光为纳秒、皮秒或飞秒的脉冲激光。
27.根据权利要求13至26任一项的制造复合多孔膜的方法,其特征在于所述纤维填料的纤维长度大于所述孔的孔径大小,且纤维厚度为所述孔的孔径大小的1/20或更小。
28.根据权利要求13至27任一项的制造复合多孔膜的方法,其特征在于所述纤维填料的纤维长度为1微米至10微米且长径比(平均长度÷平均直径)为10或更大。
29.根据权利要求13至28任一项的制造复合多孔膜的方法,其特征在于为了用脉冲宽度为10-9秒或更小的超短脉冲激光照射聚合物膜或聚合物片,使用全息曝光法规则地冲出大量孔。
30.功能膜,包含根据权利要求1至12任一项的复合多孔膜。
31.聚合物电解质膜,包含根据权利要求6至12任一项的复合多孔膜。
32.燃料电池,包含根据权利要求31的固体聚合物电解质膜。
CNA2006800259927A 2005-07-19 2006-07-19 复合多孔膜、制造复合多孔膜的方法、固体聚合物电解质膜和燃料电池 Pending CN101223663A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005208168A JP4992207B2 (ja) 2005-07-19 2005-07-19 複合多孔質膜、複合多孔質膜の製造方法、固体高分子電解質膜、及び燃料電池
JP208168/2005 2005-07-19

Publications (1)

Publication Number Publication Date
CN101223663A true CN101223663A (zh) 2008-07-16

Family

ID=37668924

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800259927A Pending CN101223663A (zh) 2005-07-19 2006-07-19 复合多孔膜、制造复合多孔膜的方法、固体聚合物电解质膜和燃料电池

Country Status (6)

Country Link
US (1) US20090142638A1 (zh)
EP (1) EP1909347A4 (zh)
JP (1) JP4992207B2 (zh)
CN (1) CN101223663A (zh)
CA (1) CA2615098A1 (zh)
WO (1) WO2007011054A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111518350A (zh) * 2020-05-26 2020-08-11 上海电气集团股份有限公司 可交联组合物、交联微孔膜、液流电池及其制备方法和应用
CN114290698A (zh) * 2021-12-24 2022-04-08 华中科技大学 高分子薄膜大深宽比激光加工方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101071873B (zh) * 2007-06-06 2010-05-19 武汉理工大学 聚合物超短纤维增强燃料电池质子交换膜及其制备方法
JP5196988B2 (ja) * 2007-12-21 2013-05-15 スリーエム イノベイティブ プロパティズ カンパニー インク組成物、その製造方法、そのインク組成物を用いて形成した電極触媒層及びこれらの用途
ES2336750B1 (es) * 2008-06-19 2011-06-13 Consejo Superior De Investigaciones Cientificas (Csic) Membrana de electrolito polimerico hibrida y sus aplicaciones.
JP2010165626A (ja) * 2009-01-19 2010-07-29 Toyota Motor Corp 電解質膜およびその製造方法
FR2958798B1 (fr) * 2010-04-07 2015-04-03 Commissariat Energie Atomique Pile a combustible comportant une membrane a conduction ionique localisee et procede de fabrication.
US9333454B2 (en) 2011-01-21 2016-05-10 International Business Machines Corporation Silicone-based chemical filter and silicone-based chemical bath for removing sulfur contaminants
KR101920444B1 (ko) * 2011-03-13 2018-11-20 삼성전자주식회사 후처리 충진된 미세다공성 막의 제조방법
US8900491B2 (en) 2011-05-06 2014-12-02 International Business Machines Corporation Flame retardant filler
US9186641B2 (en) 2011-08-05 2015-11-17 International Business Machines Corporation Microcapsules adapted to rupture in a magnetic field to enable easy removal of one substrate from another for enhanced reworkability
US8741804B2 (en) 2011-10-28 2014-06-03 International Business Machines Corporation Microcapsules adapted to rupture in a magnetic field
US9716055B2 (en) 2012-06-13 2017-07-25 International Business Machines Corporation Thermal interface material (TIM) with thermally conductive integrated release layer
US9209443B2 (en) 2013-01-10 2015-12-08 Sabic Global Technologies B.V. Laser-perforated porous solid-state films and applications thereof
TW201430952A (zh) * 2013-01-22 2014-08-01 Univ Nat Taiwan 製作中介層之方法
JP6161124B2 (ja) * 2013-03-29 2017-07-12 富士フイルム株式会社 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール
JP6550695B2 (ja) * 2013-07-18 2019-07-31 東洋紡株式会社 複合高分子電解質膜およびその製造方法ならびにその用途
US10258975B2 (en) 2014-01-29 2019-04-16 Indian Institute Of Technology Kanpur Polymeric nanocomposite films with embedded channels and methods for their preparation and use
JP2015165461A (ja) * 2014-03-03 2015-09-17 東洋紡株式会社 複合電解質膜及びその製造方法
CA2871901C (en) 2014-10-24 2021-07-20 Multi-Pack Solutions Systems and methods for forming dual layer water soluble packets
JP6792952B2 (ja) * 2016-03-31 2020-12-02 旭化成株式会社 多孔質膜及び固体高分子型燃料電池用電解質膜

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530809A (en) * 1980-10-14 1985-07-23 Mitsubishi Rayon Co., Ltd. Process for making microporous polyethylene hollow fibers
JPH022849A (ja) * 1987-06-26 1990-01-08 Ube Ind Ltd 多孔性中空糸膜
JP4142166B2 (ja) * 1997-12-27 2008-08-27 Tdk株式会社 セパレータ、その製造方法、およびこれを用いた電気化学デバイス
GB9822571D0 (en) * 1998-10-16 1998-12-09 Johnson Matthey Plc Substrate binder
WO2000054351A1 (fr) * 1999-03-08 2000-09-14 Center For Advanced Science And Technology Incubation, Ltd. Membrane electrolytique pour pile a combustible et son procede de fabrication, et pile a combustible et son procede de fabrication
JP2002028797A (ja) * 2000-07-14 2002-01-29 Sumitomo Rubber Ind Ltd 多孔質シートの製造方法
JP4870880B2 (ja) * 2001-07-25 2012-02-08 日本ユピカ株式会社 導電性を有する熱硬化性樹脂硬化物およびその製造方法
JP3891820B2 (ja) * 2001-10-29 2007-03-14 株式会社トクヤマ イオン交換樹脂膜
JP2004016930A (ja) * 2002-06-17 2004-01-22 Asahi Kasei Corp 微多孔膜及びその製造方法
JP2004079266A (ja) * 2002-08-13 2004-03-11 Nippon Telegr & Teleph Corp <Ntt> 直接メタノール型燃料電池用電解質膜およびその製造方法
JP2004178995A (ja) * 2002-11-27 2004-06-24 Tomoegawa Paper Co Ltd 固体高分子型燃料電池用電解質膜及びその製造方法
CN100392905C (zh) * 2003-04-17 2008-06-04 旭硝子株式会社 固体高分子电解质膜、固体高分子型燃料电池用膜电极连接体及固体高分子电解质膜的制造方法
JP2005108661A (ja) * 2003-09-30 2005-04-21 Toray Ind Inc 高分子電解質膜およびそれを用いてなる高分子型燃料電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111518350A (zh) * 2020-05-26 2020-08-11 上海电气集团股份有限公司 可交联组合物、交联微孔膜、液流电池及其制备方法和应用
CN111518350B (zh) * 2020-05-26 2022-03-15 上海电气集团股份有限公司 交联微孔膜、液流电池及其制备方法和应用
CN114290698A (zh) * 2021-12-24 2022-04-08 华中科技大学 高分子薄膜大深宽比激光加工方法
CN114290698B (zh) * 2021-12-24 2023-01-31 华中科技大学 高分子薄膜大深宽比激光加工方法

Also Published As

Publication number Publication date
EP1909347A1 (en) 2008-04-09
US20090142638A1 (en) 2009-06-04
CA2615098A1 (en) 2007-01-25
JP2007026917A (ja) 2007-02-01
JP4992207B2 (ja) 2012-08-08
WO2007011054A1 (ja) 2007-01-25
EP1909347A4 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
CN101223663A (zh) 复合多孔膜、制造复合多孔膜的方法、固体聚合物电解质膜和燃料电池
CN101223219A (zh) 多孔膜、制造多孔膜的方法、固体聚合物电解质膜和燃料电池
JP4824561B2 (ja) 微孔性pvdfフィルムおよび製造方法
Wang et al. Three-dimensional wood-inspired bilayer membrane device containing microchannels for highly efficient solar steam generation
Li et al. Mini review on cellulose-based composite separators for lithium-ion batteries: recent progress and perspectives
CN101421876B (zh) 固体高分子型燃料电池用电解质膜、膜-电极接合体(mea)、和燃料电池
US9054357B2 (en) Reinforced composite electrolyte membrane for fuel cell
Gao et al. Ultra-low-cost fabrication of polymer-based microfluidic devices with diode laser ablation
JP2009051872A (ja) 多孔質膜の製造方法、高分子電解質の製造方法、多孔質膜、高分子電解質膜、及び固体高分子型燃料電池
JP2009045911A (ja) 多孔質材料の製造方法、多孔質膜の製造方法、高分子電解質の製造方法、多孔質材料、多孔質膜、高分子電解質膜、及び固体高分子型燃料電池
EP3192116B1 (en) A method to produce a gas diffusion layer and a fuel cell comprising a gas diffusion layer
CN107431213A (zh) 多孔电极及由其制得的电化学电池和液流蓄电池
CN107408704A (zh) 多孔电极及由其制得的电化学电池和液流蓄电池
Tsai et al. Creation of lithium-ion-conducting channels in gel polymer electrolytes through non-solvent-induced phase separation for high-rate lithium-ion batteries
JP2020119871A (ja) 電極及びその製造方法、電極素子、非水電解液蓄電素子
Li et al. Review and Recent Advances of Oxygen Transfer in Li‐air Batteries
CA2375197A1 (en) Laser ablation of doped fluorocarbon materials and applications thereof
CN113024878A (zh) 多孔质结构体,多孔质结构体的制造方法以及制造装置
Jana et al. Poly (vinylidene fluoride-co-chlorotrifluoro ethylene) Nanohybrid Membrane for Fuel Cell
JP2007095433A (ja) 固体高分子形燃料電池用電解質膜及びその製造方法
Lee et al. Microstructuring of polypyrrole by maskless direct femtosecond laser ablation
Yamaki et al. Fluoropolymer-based nanostructured membranes created by swift-heavy-ion irradiation and their energy and environmental applications
Shi et al. Fluorine-Initiated Carboxyl Group Enhanced Combination Properties of the Polyethylene Separator for Lithium-Ion Batteries
JP2009172475A (ja) ガス分解素子
JPWO2017033686A1 (ja) 液状組成物、触媒層形成用塗工液および膜電極接合体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080716