CN101133001B - SiAlON陶瓷及其制造方法 - Google Patents

SiAlON陶瓷及其制造方法 Download PDF

Info

Publication number
CN101133001B
CN101133001B CN2006800064280A CN200680006428A CN101133001B CN 101133001 B CN101133001 B CN 101133001B CN 2006800064280 A CN2006800064280 A CN 2006800064280A CN 200680006428 A CN200680006428 A CN 200680006428A CN 101133001 B CN101133001 B CN 101133001B
Authority
CN
China
Prior art keywords
sialon
silicon nitride
ceramic body
beta
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800064280A
Other languages
English (en)
Other versions
CN101133001A (zh
Inventor
R·L·耶克利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kennametal Inc
Original Assignee
Kennametal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kennametal Inc filed Critical Kennametal Inc
Publication of CN101133001A publication Critical patent/CN101133001A/zh
Application granted granted Critical
Publication of CN101133001B publication Critical patent/CN101133001B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63492Natural resins, e.g. rosin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5031Alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5063Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/14Cast iron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • C04B2235/3869Aluminium oxynitrides, e.g. AlON, sialon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3878Alpha silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3882Beta silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6587Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/766Trigonal symmetry, e.g. alpha-Si3N4 or alpha-Sialon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

α'-β'SiAlON陶瓷体(20,30)及其制造方法,该陶瓷体由包括氮化硅粉体的起始粉体混合物制成,该氮化硅粉体中的β-氮化硅含量的范围是下限等于氮化硅粉体的0重量且上限等于约1.6重量%。该粉体混合物还包括向SiAlON陶瓷体提供铝、氧、氮和两种选定稀土元素的一种或多种粉体,其中所述选定稀土元素选自三个特定稀土元素组的至少两组中。

Description

SiAlON陶瓷及其制造方法
发明背景
本发明涉及一种陶瓷材料及其制造方法,该陶瓷材料包含硅铝氧氮化物(SiAlON)和稀土成分。
SiAlON材料具有许多应用,例如用于各种金属切削应用中的刀头(cutting insert)和用于各种磨损应用的磨损件(例如,用于泵的柱塞杆、球头柱塞坯(blank)、井下泵的单向阀坯、衬套、喷砂嘴以及其它磨损和冲击应用)。公开SiAlON材料的代表性专利有Yeckley的美国专利No.4563433和Yeckley的美国专利No.4711644以及Yeckley的美国专利No.6693054。一篇讨论SiAlON材料的文章是Izhevskiy等的“Progress in SiAlON ceramics”,Journal Of the EuropeanCeramic Society 20(2000),第2275-2295页。
SiAlON材料可含有α′(alpha prime)相和β′(beta prime)相,以及一种或多种其它相,例如玻璃态相和/或结晶相。a′SiAlON相可具有化学式MxSi12-(m+n)Alm+nOnN16-n,其中M是Li、Ca、Y、Mg或者其它镧系元素,并且其中x的理论最大值是2,n值范围在大于0和小于或等于2.0之间,且m值范围在大于或等于0.9和小于或等于3.5之间。β′SiAlON相可具有化学式Si6-zAlzOzN8-z,其中0<z≤4.2。
上述Yeckley的美国专利No.6693054公开了一种含α′SiAlON相和β′SiAlON相的SiAlON材料。这种陶瓷材料中添加有镱,因而α′SiAlON相的化学式为YbxSi(m+n)AlmOnN16m。在某些情况下,具有存在的玻璃态相或者结晶相。此外,Yeckley的美国专利No.6693054公开了一种用不含或者含有少量(即下限等于0重量%且上限等于约1.6重量%的量)β氮化硅的氮化硅起始粉体制造含镱的α-βSiAlON的方法。
SiAlON材料可包含α′SiAlON相和β′SiAlON相,以及进一步含有分散在整个SiAlON基体中的碳化硅颗粒。Mehrotra等的美国专利No.4826791中公开了这样的SiAlON材料。
Mehrotra等的美国专利No.5370716公开了一种包含β′SiAlON相的高Z-SiAlON材料。这种β′SiAlON相的化学式为Si6-zAlzOzN8-z,其中1<z<3。
Chen等的美国专利No.5908798公开了一种具有相对高比例(即大于存在的任何其它相)的α′SiAlON的SiAlON陶瓷。Chen等的这个'798专利列出了下列添加剂:Li、Mg、Ca、Y、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu或者它们的混合物。更优选的添加剂是Nd、Yb、Sm、Y、Li或者它们的混合物。Chen等的这个′798专利中的每个实施例似乎都只使用了列表中指定的添加剂中的一种。Chen等的这个′798专利似乎使用了包含约93重量%的β氮化硅和约7重量%的α氮化硅的起始氮化硅粉体。Chen等似乎没有提到由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量%的量)β氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶瓷。
Hwang等的美国专利No.5413972公开了一种基本上不含玻璃的α-βSiAlON陶瓷材料,该材料包括在α-SiAlON相中作为阳离子元素M的添加剂,且该材料的化学式为Mx(Si,Al)12(O,N)16,其中0<x<2。这些添加剂是Sr、Ca、Mg、Li、Na、Ce、Y、Nd、Sm、Gd、Dy、Er和Yb。具体的实施例使用钇(Y)和锶(Sr)并将它们以氧化物形式加入到起始粉体混合物中。氮化硅起始粉体由UBE工业公司以名称SNE-10提供。Tien等的专利声称SNE-10的β/(α+β)比例小于5%。本申请人认为来自UBE工业公司的SNE-10氮化硅粉体包含约2重量%的β氮化硅,且余量包括α氮化硅和不可避免的杂质。Hwang等的这个′972专利似乎没有提到由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量%的量)β氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶瓷。
Tien等的美国专利No.6124225公开了一种具有高比例的α′SiAlON的SiAlON陶瓷材料。Tien等列出了下列添加剂:Nd、Sm、Gd、Dy、Yb和Y以及它们的混合物,并且Gd是优选的添加剂。在一个优选实施方案中,起始氮化硅粉体含有约95重量%的α氮化硅。Tien等的这个′225专利似乎没有提到由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量%的量)β氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶瓷。
Yamada等的美国专利No.5200374公开了一种α-βSiAlON陶瓷材料。Yamada等的这个′374专利列出了如下的许多添加剂:Ho、Er、Tm、Yb或者Lu,其中的实施例似乎只用了一种添加剂。起始粉体似乎包括α-SiAlON粉体和性质类似于UBE工业公司的SNE-10粉体的氮化硅粉体,其中申请人认为UBE-10氮化硅粉体含有约2重量%的β氮化硅,余量包括α氮化硅和不可避免的杂质。Yamada等的这个'374专利似乎没有提到由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量%的量)β氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶瓷。
UBE工业公司的日本专利公开No.5-43333列出了Ho、Er、Tm、Yb和Lu作为SiAlON陶瓷材料的添加剂。实施例似乎只用了一种添加剂。这个日本专利公开似乎没有提到由包括含至少2重量%并且可能更大含量的β氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶瓷。
Shen等的标题为“Reactions Occurring in Post Heat-Treatedα/βSialons:On the Thermal Stability of α-SiAlON”的文章(Journal of theEuropean Ceramic Society16(1996)第873-883页)列出了单独使用的如下元素:Nd、Sm、Dy和Yb。在该文章中指定起始氮化硅粉体是UBE SN-E10。在Shen等的文章中似乎没有关于由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量%的量)β氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶瓷的任何教导。
Wang等的标题为“Preparation of R-α′β′-Sialons(R=Sm,Gd,Dy,Y and Yb)by Pressureless Sintering”的文章(Journal of the EuropeanCeramic Society13(1994)第461-465页)列出了如下元素:Sm、Gd、Dy、Y和Yb。实施例似乎表明这些元素是单独使用的,没有彼此结合使用。该类型的氮化硅起始粉体似乎是不为所知的,因为其是实验室用的并含有1.5%的氧。在Wang等的文章中,似乎没有关于由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量%的量)β氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶瓷的任何教导。
Nordberg等的标题为“Stability and Oxidation Properties ofRE-α-Sialon Ceramics(RE=Y、Nd、Sm、Yb)”的文章(J AmericanCeramic Society81[6]第1461-70页(1998))公开可以使用添加剂形成α-SiAlON。实施例似乎只使用了一种稀土元素(例如,Nd、Sm、或者Yb)。该文章描述以UBE、SN-E10为起始氮化硅粉体。似乎没有关于由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量%的量)β氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶瓷的任何教导。
Tanase等的美国专利No.4547470公开了在SiAlON中单独使用钇或单独使用铒作为添加剂,并且公开了与SiAlON结合使用碳氮化锆形式的锆。起始氮化硅粉体含有90体积%的α氮化硅。Tanase等的这个′470专利似乎没有提到由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量%的量)β氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶瓷。
Hitachi金属有限公司的日本专利No.2988966公开了一种α-βSiAlON,其包括选自Y、Er和Yb中的元素。只有一个实施例使用了两种元素(Er和Yb)。起始氮化硅粉体具有等于93%的α转化率,因而其等同于含有7重量%的β氮化硅的粉体。
日本专利公开4002664A(基于英文摘要)公开了一种SiAlON陶瓷,该陶瓷可利用与Hf或者Zr一起使用的如下元素:Ho、Er、Tm、Yb或者Lu。该日本文献没有提到由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量%的量)β氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶瓷。
尽管现有的SiAlON陶瓷体(例如刀头)表现出可以接受的性能(例如,硬度、韧性、抗热震性),然而仍希望提供具有刀头用途的改良SiAlON材料,其表现出改良的金属切削性能,包括硬度、杨氏模量、韧性、热导率以及抗热震性。对SiAlON磨损件也是如此,因为尽管现有的SiAlON磨损件具有可以接受的性能(例如,硬度、杨氏模量、韧性、热导率以及抗热震性),然而仍希望提供改良的SiAlON材料,该材料能用作表现出改良性能的磨损件。
在这点上,当烧结粉体混合物以制造SiAlON材料时,在α′SiAlON晶粒和β′SiAlON晶粒之间的晶界中会形成结晶相。晶界中结晶相含量的增加会导致SiAlON材料断裂韧性下降。因此,希望提供在晶界中形成的(一种或多种)结晶相的量最少的SiAlON材料。
添加剂形成液相时的温度会影响SiAlON体的致密化。为了改善SiAlON体的致密化,使用在相对较低的温度下形成液相的添加剂是有利的。
同样的,使用在烧结时和在整个烧结循环内形成并保持晶粒间液相的(一种或多种)添加剂(即形成非结合液相的添加剂)对α′SiAlON相的形成是有利的。在这种情况下,该形成非结合液相的添加剂基本上不会成为α′SiAlON相的一部分,即在α′SiAlON相中基本上不存在可检测量的形成非结合液相的添加剂。更具体地,这意味着该情况下α′SiAlON相的晶粒是足够大的(即,直径在大于或者等于约2微米的量级),通过使用能量色散谱-扫描电子显微镜(EDS/SEM)技术,在α′SiAlON相的晶粒中检测不到这些形成非结合液相的添加剂的存在。在α′SiAlON相中不存在任何可检测量的形成非结合液相的添加剂的结果是液相将在整个烧结循环内得以保持。通过在烧结循环期间保持液相,形成的α′SiAlON相的量增加。本申请人认为提供具有增加的α′SiAlON相含量的SiAlON陶瓷体是所希望的。
表现出较高硬度的SiAlON陶瓷材料具有用在特定应用中作为刀头和磨损件的优点。一般地,具有较细颗粒尺寸的SiAlON陶瓷材料导致较高的硬度。因此,希望提供具有较细的晶粒尺寸从而具有较高硬度的SiAlON陶瓷材料。
发明简述
在一种形式中,本发明是一种由起始粉体混合物制成的SiAlON陶瓷体,该起始粉体混合物包括氮化硅粉体和向该SiAlON陶瓷体提供铝、氧、氮、和至少两种选定稀土元素的一种或多种粉体,其中所述选定稀土元素选自下面三组稀土元素的至少两组中,其中第I组包括La、Ce、Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu。该SiAlON陶瓷体包括含α′SiAlON相和β′SiAlON相的两相复合物,其中α′SiAlON相含有一种或多种选定的稀土元素(不包括La和Ce)。氮化硅粉体占起始粉体混合物的至少约70重量%,其中氮化硅粉体中β-氮化硅含量的下限等于氮化硅粉体的0重量%且上限等于约1.6重量%。
在另一种形式中,本发明是一种由起始粉体混合物制成的SiAlON陶瓷体,该起始粉体混合物包括氮化硅粉体和向该SiAlON陶瓷体提供铝、氧、氮、和至少两种选定稀土元素的一种或多种粉体,其中所述稀土元素选自下面三组稀土元素的至少两组中,其中第I组包括La、Ce、Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu。该SiAlON陶瓷体包括含α′SiAlON相和β′SiAlON相的两相复合物。α′SiAlON相含有一种或多种选定的稀土元素(不包括La和Ce)。该陶瓷体具有落在图7中的点A、B、C和D限定的四边形(trapezoid)界定的区域内的组成。氮化硅粉体占起始粉体混合物的至少约70重量%。氮化硅粉体中β-氮化硅含量的下限等于氮化硅粉体的0重量%且上限等于约1.6重量%。
在又一种形式中,本发明是一种制造包括含α′SiAlON相和β′SiAlON相的两相复合物的SiAlON陶瓷体的方法,该方法包括步骤:提供起始粉体,该起始粉体包含至少约70重量%的氮化硅粉体和向该SiAlON陶瓷体提供铝、氧、氮、和至少两种选定稀土元素的一种或多种粉体,其中所述稀土元素选自下面三组稀土元素的至少两组中,其中第I组包括La、Ce、Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu;和固结所述起始粉体混合物以形成包括含α′SiAlON相和β′SiAlON相的两相复合物的陶瓷体,且α′SiAlON相含有一种或多种选定的稀土元素(不包括La和Ce),且该陶瓷体具有落在图7中的点A、B、C和D限定的四边形界定的区域内的组成。
再一种形式中,本发明是一种由起始粉体混合物制成的SiAlON陶瓷体,该起始粉体混合物包括氮化硅粉体和向该SiAlON陶瓷体提供铝、氧、氮、形成液相的元素、和至少一种选定稀土元素的一种或多种粉体。在一种选定稀土元素的情况下,所述选定稀土元素选自任何下面的组中,其中第I组包括Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu。在多种选定稀土元素的情况下,所述稀土元素选自下面三组稀土元素的至少两组中,其中第IA组包括La、Ce、Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu。该SiAlON陶瓷体包括含α′SiAlON相和β′SiAlON相的两相复合物,其中α′SiAlON相含有一种或多种选定的稀土元素(不包括La和Ce)。氮化硅粉体占起始粉体混合物的至少约70重量%,氮化硅粉体中β-氮化硅含量的下限等于氮化硅粉体的0重量%且上限等于约1.6重量%。
附图简述
下面是附图的简述,其构成本专利申请的一部分:
图1是第一个具体实施方案的无涂层陶瓷刀头的等轴视图;
图2是第二个具体实施方案的陶瓷刀头的等轴视图,其中该刀头具有涂层并且该涂层的一部分被除去以露出基材;
图3是显示只含镱作为稀土添加剂的SiAlON材料(下文描述的比较例ab7(39)7)的显微组织的光学显微照片,其中工艺包括带式烧结-热等静压(HIP)技术,并且该光学显微照片的标尺是30微米;
图4是显示含镱和镧作为稀土添加剂的SiAlON材料(下文所描述的组成2650C(组成标识ab7(37)7))的显微组织的光学显微照片,其中制造该陶瓷的工艺包括下文所描述的带式烧结-热等静压技术,并且该光学显微照片的标尺是30微米;
图5是显示含镱和镧的SiAlON材料(下文所描述的组成2650C(组成标识ab7(37)7))的显微组织的光学显微照片,其中制造该陶瓷的工艺包括下文所描述的分批烧结-热等静压技术,并且该光学显微照片的标尺是30微米;
图6是对于用字母W、X、Y和Z表示的四种组成,描绘起始粉体混合物中的镱含量(按重量百分比)与两相复合物(即,α′SiAlON相和β′SiAlON相)中的α′SiAlON相含量(按重量百分比)之间的关系的坐标图;以及
图7是描绘陶瓷体中的铝当量百分比与氧当量百分比之间的关系的坐标图,其中由点A、B、C和D限定的区域显示了目标组成区域。
发明详述
SiAlON陶瓷材料已经在多种金属切削应用中用作刀头。SiAlON陶瓷材料还已经在多种磨损应用中用作磨损件,并在多种冲击应用中用作冲击件。本发明的SiAlON陶瓷材料可以用作刀头、磨损件、冲击件以及其中希望坚硬致密的陶瓷材料性能的任何其它制品。
本发明涉及陶瓷材料,以及制造这种陶瓷材料的方法,其中具体的陶瓷是硅铝氧氮化物(SiAlON)陶瓷材料。更具体地,本发明涉及这样的SiAlON材料:该材料在起始粉体混合物中包含在烧结期间不会进入到α-SiAlON结构中的形成非结合液相的添加剂(该添加剂可以是选定的稀土元素(例如镧或铈)),以及至少一种将进入α-SiAlON结构中的稀土元素。在烧结该粉体混合物时,形成非结合液相的添加剂和这种稀土添加剂各自形成液相。
在烧结过程期间,基本上没有有效部分(即,基本上没有可检测量)的形成非结合液相的添加剂构成α′SiAlON相(或者β′SiAlON相)的一部分,因此该液相在整个烧结过程期间得以保持。更具体地,如其化学式所示,β′SiAlON相不含任何(一种或多种)形成非结合液相的添加剂。对于α′SiAlON相,在α′SiAlON相中基本上不存在可检测量的(一种或多种)形成非结合液相的添加剂,这意味着使用EDS/SEM技术对直径大于或者等于约2微米的α′SiAlON相的晶粒进行分析检测不到任何(一种或多种)形成非结合液相的添加剂的存在。
液相的存在促进(即增加)α′SiAlON相的形成,其中α′SiAlON相包括其中的这种稀土元素,即进入α-SiAlON结构中的稀土元素。这些添加剂可包含如下文所述的许多化合物或者元素(包括选定的稀土元素)。构成α′SiAlON相一部分的具体稀土元素也在下文进行讨论。
对于含α′SiAlON相和β′SiAlON相的SiAlON陶瓷材料,在本发明的该方面,起始粉体混合物含有至少两种选定的稀土元素。该选定稀土元素选自下面三组稀土元素中的至少两组中,其中第I组包括La、Ce、Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu。α′SiAlON相的化学式为(RE)xSi12-(m+n)Alm+nOnN16-n,其中RE是上述的至少一种选定稀土元素(不包括La和Ce)的成分(contribution)。在本发明的这个方面,申请人倾向认为这些稀土元素之一(例如镧或者铈,其可被认为是形成非结合液相的稀土元素)在烧结过程期间和整个烧结过程中形成液相。形成液相的稀土元素不会构成α′SiAlON相的一部分,因而在α′SiAlON相中基本上不存在可检测量的形成非结合液相的稀土元素。通过x射线衍射技术,α′SiAlON相中的x值在等于约0.10的下限和等于约0.45的上限之间。m的值等于x值的三倍。α′SiAlON相通常包含等轴晶粒。尽管上面的讨论提到了两种稀土元素,然而应当清楚的是起始粉体混合物中可以包括三种或更多种稀土元素来制造SiAlON陶瓷体。
对于含有α′SiAlON相和β′SiAlON相的SiAlON陶瓷材料,在本发明的该方面,该SiAlON陶瓷材料含有并非稀土元素的形成非结合液相的添加剂,和至少一种稀土元素(且可能为两种或者更多种稀土元素),α′相的化学式为(RE)xSi12-(m+n)Alm+nOnN16-n,其中RE是α′SiAlON相中(一种或多种)稀土元素的成分。根据下面的参数选择该(一种或多种)稀土元素:(a)在一种选定稀土元素的情况下,该选定稀土元素选自任何下面的组中,其中第I组包括Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu;(b)在多种选定稀土元素的情况下,这些稀土元素选自下面三组稀土元素中的至少两组中,其中第IA组包括La、Ce、Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu。本申请人希望x、m和n的值保持与上文所述基本相同。对于这种陶瓷,α′SiAlON相通常具有等轴晶粒。
对于这些陶瓷体中的任意一种,β′SiAlON相的化学式为Si6-zAlzOzN8-z。z的优选值的范围在大于.3和小于1.5之间,其中不同的金属切削应用具有不同的“z”值优选范围。例如,对于将本发明用作切具以机加工铸铁的应用,z的优选值的范围在大于.3和小于.6之间。作为另一个例子,对于将本发明用作切具以机加工高温合金(如Inconel718)的应用,z的优选值的范围在大于.7和小于1.5之间。β′SiAlON相通常包含伸长的晶粒。起始粉体混合物包括的氮化硅起始粉体不含或者含有少量(即下限等于0重量且上限等于约1.6重量%的量)的β氮化硅是重要的。最优选使用β氮化硅含量基本为0重量%的氮化硅起始粉体。
这里所讨论的SiAlON陶瓷材料还含有一种或多种另外的相,包括晶粒间相。该晶粒间相可包含玻璃态相,且有时还可能存在晶粒间结晶相。玻璃态相一般是含有稀土元素、硅、氧、铝和氮的非晶态相。
参照附图,图1说明了一种RNG-T型刀头,总体上表示为20。刀头20具有通常为圆柱形的侧表面(flank surface)22和一对通常为圆形的彼此相对的前刀面(rake surface)24。侧表面22与前刀面24相交构成圆形切削刃26。切削刃26具有斜面(bevel)。刀头20包含本发明的SiAlON陶瓷材料。
对于构成刀头20的SiAlON陶瓷材料,这种SiAlON陶瓷材料是作为本发明主题的陶瓷类型。显然,本发明的SiAlON陶瓷具有不同方面,并且该陶瓷材料可以是这些方面中的任何一种。此外,尽管本申请人不希望被优选应用限制,然而这种陶瓷刀头的一种优选应用是用于铸铁级工件材料的高速车削(例如,等于或者大于约1500英尺每分钟的速度)。
图2说明了刀头的第二个具体实施方案,该刀头总体上表示为30。刀头30具有基材32和涂层34。刀头30通常具有圆筒形的侧表面36和一对彼此相对的通常为圆形的前刀面38。侧表面36与前刀面38相交形成圆形切削刃40。每个切削刃40具有斜面。基材32包含本发明的SiAlON材料。基材32的材料可以与无涂层的刀头20的材料相同。
制造图2中的陶瓷基材的工艺与用于制造图1中的陶瓷材料的工艺基本相同。在这点上,压制的粉体混合物一般要么被分批烧结要么被带式烧结。烧结后的基材任选地进行热等静压(HIP)处理。也可以使用压力烧结工艺来使陶瓷材料致密化。下面给出某些工艺的细节。
该涂层可以包括通过已知技术施用的一层或多层的涂层体系,该已知技术包括化学气相淀积(CVD)和物理气相淀积(PVD)。涂层材料可以包括CVD施用的氧化铝,施用厚度为1-10微米,或者更优选施用厚度为3-5微米。例如,涂层材料可以包括PVD施用的钛铝氮化物。涂层材料可以包括多层涂层体系,其中优选与基材相邻的层包含氧化铝。如果钛铝氮化物涂层具有富铝的组成则其是优选的。
下面描述本发明的一些实施例。下面讨论的实施例包括含镱和镧的SiAlON陶瓷材料。镱是本文所述第III组稀土元素中的一种,而镧是本文所述的第I组稀土元素中的一种。尽管这些实施例含有镱和镧,然而本申请人并不意图通过这些实施例的组成来限制本发明的范围。
在α′-β′SiAlON陶瓷体的制造中,一个有利的特征是控制(或者至少进行一些控制)所得陶瓷体的组成和结晶相含量的能力。例如,本申请人认为陶瓷中的α′SiAlON相的含量会影响陶瓷的性能,特别是可以使该陶瓷非常好地用作无涂层陶瓷刀头或者用作带涂层陶瓷刀头基材以及良好磨损件的那些性能。
下面描述本申请人对为何可以(至少在某些程度上)控制这种SiAlON陶瓷体中的α′SiAlON含量的理解。然而,本申请人并不意图通过关于本申请人理解的下述讨论进行限制。
本申请人还认为,在烧结时和烧结过程中形成硅酸盐液相但不构成α′SiAlON相的一部分的其它添加剂(即非结合的添加剂)还应当提供与镧添加产生的结果一致的有利结果。在这点上,典型的非结合添加剂包括BaO、MgO、SrO和Sc2O3(这些非结合添加剂是良好的致密化添加剂,并且它们不会进入α-SiAlON相),其中这些添加剂的加入量的范围是从等于起始粉体混合物的约0.1重量%的下限到等于起始粉体混合物的约1.0重量%的上限。在本发明的这个方面,起始粉体混合物包括在烧结时形成硅酸盐液相的添加剂,其中该添加剂不形成α′SiAlON相的一部分,即形成非结合液相的添加剂。液相的持续存在促进了α′SiAlON相的形成,从而产生具有增加的α′SiAlON相含量的SiAlON陶瓷。
尽管本申请人不希望被据认为在本发明中起作用的下述理论所限制,然而本申请人认为通过上面所选择的参数而获得优点的原因在于,选自不同的第I、II和/或III组(如上所述)中的所述两种或者更多种稀土元素不会形成固溶体。这些组中的元素的离子半径随这些稀土元素的系列而降低,并且当这些稀土元素的离子半径之间的差异变得更大时,这些元素不进入相同晶体结构的趋势增加。这意味着在致密化和从烧结温度冷却期间,由于选自第I、II和/或III组中的稀土元素试图在晶粒间区域中结晶,因而结晶速率减慢。
本申请人还认为,改良的性能得到提高的原因在于,SiAlON陶瓷材料是由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量%的量)β氮化硅的氮化硅起始粉体的起始粉体混合物制成的。在这点上,尽管本申请人不希望被任何具体的理论所限制,但本申请人认为β氮化硅颗粒是β′SiAlON晶粒成核和生长的晶种。当β氮化硅颗粒的数目增加时,β′SiAlON晶粒彼此的碰撞更早(sooner),由此限制了高纵横比的β′SiAlON晶粒的形成。另外,当β氮化硅颗粒的数目增加时,α′SiAlON晶粒的含量下降。在起始粉体混合物中使用较少的β氮化硅颗粒,会导致在烧结期间β′SiAlON晶粒生长到α′SiAlON基体中的成核位置的数目有限。这导致β′SiAlON晶粒具有较高的纵横比,这引起α′SiAlON相基体的韧化。在Yeckley的美国专利No.6693054中也可以看到这种解释,该专利被转让给本专利申请的受让人。
如下所述,这些实施例的起始氮化硅粉体不包含任何β氮化硅。然而,这些实施例使用不含任何β氮化硅的氮化硅起始粉体的事实并不意图限制本发明的范围。如这里所述,氮化硅粉体中的β氮化硅含量的下限等于氮化硅粉体的0重量%且上限等于约1.6重量%。
现在来看具体的实施例,表1给出了批次2651A到2651D和批次2650C到2650D的起始粉体组成(按全部起始粉体混合物的重量百分比)。每一批次的起始粉体混合物包含的氮化硅粉体中,起始氮化硅粉体中的β-氮化硅粉体含量是0重量%,且余量(除杂质以外)包含α-氮化硅。
表1
对于批次2651A-2651D和2650C-2650D
起始粉体混合物中起始粉体的组成(按重量百分比计)
 
批次/组成标识 氮化硅[UBESNE-03] 氮化铝[StarckA级] 氧化铝[CeraloxHPA-0.5] 氧化镱(镱氧化物)[Molycorp] 氧化镧(镧氧化物)[Molycorp]
2651A/ab13(37)14 80.80 5.20 5.80 6.97 1.01
2651B/ab13(37)14 80.80 5.20 5.80 5.74 2.03
2651C/ab24(32)11 71.02 10.25 12.70 5.26 0.77
2651D/ab24(32)11 71.17 10.25 12.70 4.34 1.54
2650C/ab7(37)9 88.55 4.00 2.30 4.51 0.64
2650D/ab7(37)9 88.55 4.00 2.30 3.87 1.28
起始粉体简述如下。氮化硅粉体由UBE工业公司制造,并以SNE03名称销售。这种氮化硅粉体不含任何β氮化硅,但是相反地,其包含大约100%的α氮化硅(除杂质以外)。
氮化铝起始粉体由Herman C.Starck of New York,New York(美国)以名称Grade A提供。氧化铝起始粉体由Sasol North America公司,Ceralox Division of Tucson,Arizona(美国)以名称HPA-0.5(其中包含有意加入的0.5重量%的氧化镁)提供。氧化镱起始粉体和氧化镧起始粉体由Molycorp Corporation of Mountain Pass,California(美国)提供。
对于制造该陶瓷材料的方法,对于表1中给出的上述批次中的每一批次,使用α′SiAlON-β′SiAlON媒质将起始粉体混合物与异丙醇一起研磨约8小时到约16小时的时间以形成浆料。在研磨完成后,将浆料倒出经过400目的滤网,然后真空干燥形成干燥粉体。然后用流化床工艺将干燥粉体干粉研磨(fitzmilled)和粒化(pellitized)。在流化过程期间加入松香和Carbowax400作为粘合剂。然后将粒化的材料(干燥粉体和粘合剂材料)干压成密度在约2到约2.15g/cm3之间的生坯体。然后通过最大温度约875℃的空气烧尽循环除去该粘合剂。
然后以下述许多方式之一对坯体进行烧结;也就是说,坯体要么进行带式烧结要么进行分批烧结。对于分批烧结,工艺包括将坯体放在石墨盒中。将坯体埋在80重量%氮化硅-20重量%氮化硼的粉体混合物中。在等于1825℃的温度下于一种氮气氛中烧结坯体,持续时间等于60分钟。
对于带式烧结工艺,将坯体装入尺寸为4英寸×8英寸×1.25英寸的BN(氮化硼)烧箱(sagger)中。对于RNG43和CNGA433型刀头,每个盒中有三层坯体且每层有55个坯体。将BN烧箱叠成两个高并放到连续烧结炉的输送带上。该炉具有4个独立控制的加热区,其中每个加热区长12英寸。加热的升温速率是每分钟约150℃。将加热区保持在下述的温度下:第一加热区处在等于约1550℃的温度下,第二加热区处在等于约1650℃的温度下,第三加热区保持在等于约1765℃的温度下,且第四加热区保持在等于约1765℃的温度下。坯体在每个加热区内停留约30分钟。所得到的物体即是带式烧结的陶瓷体。除这些实施例中使用的炉具有4个加热区之外,该炉与标题为HIGH TEMPERATURE BELT FURNACE APPARATUS ANDMETHOD OF USING THE SAME的Miller,Jr.的美国专利No.5648042中所述的炉一致。
对于一般的带式烧结,Wittmer等的“Economic Comparison ofContinuous and Batch Sintering of Silicon Nitride”,American Ceramic Society Bulletin,第72卷,第6期(1993年),第129-137页;Wittmer等的“Comparison of Continuous Sintering to BatchSintering of Si3N4”,Ceramic Bulletin,第70卷,第9期(1991年),第1519-1527页;以及Wittmer等的“Continuous Sintering of Si3N4ina Controlled Atmosphere Belt Furnace”中公开了带式炉在烧结坯体中的应用。国际申请日为1999年6月23日的关于CERAMIC ANDPROCESS FOR THE CONTINUOUS SINTERING THEREOF的已公开PCT专利申请No.PCT/US99/14231公开了在带式炉中的陶瓷连续烧结,其中烧结产品包括α′SiAlON相和β′SiAlON相。
现在将描述下表中指出的具体工艺。
工艺E572和工艺E573每个都包括按上述参数的分批烧结工艺;即,将坯体放在石墨盒中,其中将坯体埋在80重量%氮化硅-20重量%氮化硼的粉体混合物中。然后,在等于1825℃的温度下在一种氮气氛中烧结坯体,持续时间等于60分钟。
工艺BSWK1004包括:按上文所述的带式烧结工艺;即,该炉具有4个温区,其中这些温区具有如下温度:第一加热区处在等于约1550℃的温度下,第二加热区处在等于约1650℃的温度下,第三加热区保持在等于约1765℃的温度下,且第四加热区保持在等于约1765℃的温度下。坯体在每个加热区中停留约30分钟。
工艺Kz533、工艺Kz534和工艺Kz535每个都包括热等静压(HIP)循环,其包括在等于约10000磅每平方英寸(psi)到约20000psi之间的气压下,在等于1800℃的温度下进行压制30分钟。这些HIP循环在烧结后进行,因此可以对烧结的基材进行这些HIP循环,其中该基材可以是分批烧结的或者带式烧结的。
现在来看这些实施例的特定组成的性能,下表2给出了表1中列出的SiAlON组成的密度(其中对于大多数实施例)。表2给出了两个密度测量结果。然而在某些情况下,只给出一个密度测量结果,并且用短横线表示缺少的第二个测量结果。密度以克每立方厘米(g/cm3)为单位给出。按照与实施例一致命名的工艺对表2中列出的每个实施例进行处理。
表2
批次2651A-2651D和2650C-2650D中的SiAlON组成的密度(g/cm3)
 
批次/工艺 E572[分批烧结] E573[分批烧结] BSWK1004[带式烧结] Kz533[分批烧结-HIP] Kz535[带式烧结-HIP]
2651A 3.3153.319 3.3133.306 3.32933.3283 3.3383.339 3.3383.338
2651B 3.2973.303 3.2873.287 3.31413.3117 3.3273.328 3.3293.331
2651C 3.2753.27 3.2613.251 3.28433.2843 3.2913.292 3.2913.293
2651D 3.2583.206 3.1923.184 3.27813.2764 3.289- 3.2893.289
2650C 3.2153.242 3.1943.22 3.2557- 3.2813.282 3.289-
2650D 3.2043.239 3.1973.222 3.241- 3.278- 3.286-
表3给出了在表1中给出的SiAlON组成中存在的相。表3还给出了用来制造该SiAlON陶瓷体的具体工艺。
按下文所述来确定下表3中给出的相。对每种结晶相(即Yb4SiAlO8N结晶相和SiAl5O结晶相)所给出的值是特定结晶相的峰与主峰(即β′SiAlON相的峰)比较的相对峰强度。
对于α′-SiAlON相的重量百分比的确定,按如下关系计算α′-SiAlON相的重量百分比:
α′-SiAlON的重量百分比=(1.72Iα′-SiAlON÷(1.72Iα′-SiAlON+Iβ′-siAlON+0.23ISi+0.48ISic))×100%
相似地,β′-SiAlON相的重量百分比按如下关系进行计算:
β′-SiAlON的重量百分比=(Iβ′-SiAlON÷(1.72Iα′-SiAlON+Iβ′-SiAlON+0.23ISi+0.48ISiC))×100%
对于上述关系,存在下述:
Iα′-SiAlON=α′-SiAlON的(201)反射的实测x射线衍射
Iβ′-SiAlON=β′-SiAlON的(200)反射的实测x射线衍射强度
ISi=硅金属的(111)反射的实测x射线衍射强度
ISiC=碳化硅(6h)的(015)反射的实测x射线衍射强度
这种方法采纳自下述文章中所述的方法:Z.Mencik,M.A.Short和R.C.Peters的“Quantitative Phase Analysis of Synthetic SiliconNitride by X-ray Diffraction”,Advances in X-ray Analysis,第23卷,1979年,第375-379页。
使用在45KV和40MA下操作的Bragg-Brentano聚焦光学衍射仪测量这些衍射x射线的强度。入射x射线光学系统包括1/2度发散狭缝和1-度抗散射狭缝。接收光学系统包括0.15mm的接收狭缝;曲面石墨单色仪和密封式检测器。以步进模式从10度到90度的20采集衍射数据,并使用计算方法进行分析。
首先通过拟合多项式背景函数对采集到的衍射数据进行修正。使用线形拟合技术对背景修正过的数据进行分析,以确定所述衍射反射的峰位置和强度。
对于Yb4SiAlO8N结晶相和SiAl5O结晶相的相对强度的确定,Yb4SiAlO8N结晶相和SiAl5O结晶相的相对强度的计算如下:
Yb4SiAlO8N相的相对强度=IYb4SiAlO8N÷I最高
SiAl5O相的相对强度=ISiAl5O÷I最高
对于如上关系,存在下述:
IYb4SiAlO8N=Yb4SiAlO8N的(211)反射的实测x射线衍射强度
ISiA15O=SiAl5O的(201)反射的实测x射线衍射强度
I最高=检测到的最高峰(一般是β′-SiAlON)的实测x射线强度该衍射配置与用于确定α′-SiAlON和β′-SiAlON的重量百分比的衍射配置相同。
在那些含有镧的组成中,镧被包含在非晶态相之中。在那些含有铈的组成中,铈被包含在非晶态相之中。
表3
批次2651A-2651D和2650C-2650D中的SiAlON组成中存在的相
 
组成 烧结标识 工艺类型 α′SiAlONw/o Yb4SiAlO8NRI SiAl5ORI
2651A BSWK1004 带式烧结 31.3 - -
2651A E572 分批烧结 33.3 - -
2651B BSWK1004 带式烧结 32.4 - -
2651B E572 分批烧结 34.7 - -
 
2651C BSWK1004 带式烧结 18.1 - 5
2651C E572 分批烧结 14.6 - 4.2
2651D BSWK1004 带式烧结 2.6 - 6
2651D E572 分批烧结 6.7 - 5.9
2650C - -
2650C E572 分批烧结 61.1 - -
2650D BSWK1004 带式烧结 50.9 - -
2650D E572 分批烧结 70 - -
表4给出表1中列出的SiAlON组成中存在的相和物理性能。表4给出了α′SiAlON相(按两相复合物即α′SiAlON相和β′SiAlON相的重量百分比),晶间相Yb4SiAlO8N相的相对强度(R.I.)和晶间相SiAl5O2N5的相对强度(R.I.)。根据上面所述的技术确定α′SiAlON的含量。根据上面所述的技术确定每种结晶相的相对强度(R.I.)。
表4还在标题“烧结HIP”下给出了用来制造SiAlON陶瓷体所使用的工艺。对于物理性能的测量,使用18.5千克的载荷测量维氏硬度(Hvn),并以GPa给出。利用Palmqvist压痕技术在抛光表面上并使用18.5kg的载荷在维氏压痕仪上测量断裂韧性(KIC),依据Evans和Charles的文章“Fracture Toughness Determination byIndentation”,J.American Ceramic Society,第59卷,第7-8期,第371-372页。
表4
批次2651A-2651D和2650C-2650D中的
SiAlON组成中存在的相和物理性能
 
组成/性能 烧结HIP工艺 按重量%的αSiAlON R.I.Yb4SiAlO8N R.I.SiAl5O2N5 HvnGpa 标准偏差 KICMPa·m1/2 标准偏差
2651A E573Kz533 27.1 - - 17.65 0.16 7.03 0.09
2651A BSWKKz534 28.4 - - 17.29 0.37 7.27 0.13
2651B E573Kz533 29.6 - - 17.57 0.23 6.92 0.19
 
2651B BSWKKz534 26.9 - - 17.43 0.28 7.27 0.17
2651C E573Kz533 7.1 - 4.5 16.69 0.14 5.67 0.08
2651C BSWKKz534 26.9 - 5.2 16.54 0.21 5.48 0.24
2651D E573Kz533 2.8 - 5.6 16.08 0.26 5.76 0.13
2651D BSWKKz534 2.3 - 5.9 17.37 0.39 4.49 0.29
2650C E573Kz533 51.3 - - 19.55 0.47 6.88 0.18
2650C BSWK1004Kz535 38.7 - - 18.17 0.38 7.42 0.22
2650D E573Kz533 59.4 - - 19.41 0.28 6.82 0.07
2650D BSWK1004Kz535 41.8 - - 18.57 0.41 7.04 0.14
图3是显示现有技术的只含有镱作为添加剂的SiAlON陶瓷材料(ab8378)的显微组织的光学显微照片。起始粉体混合物的组成如下:88.25重量%的氮化硅(0重量%的氮化硅粉体包含β氮化硅)、4.0重量%的氮化铝、2.6重量%的氧化铝、以及5.15的氧化镱。将该起始粉体混合物研磨并压制成生坯体,根据下面的参数对该生坯体进行带式烧结和热等静压。对于带式烧结,存在保持在如下温度的4个加热区:第一加热区处在等于约1550℃的温度下,第二加热区处在等于约1650℃的温度下,第三加热区保持在等于约1765℃的温度下,且第四加热区保持在等于约1765℃的温度下。坯体在每个加热区中停留约30分钟。在等于约10000磅每平方英寸(psi)和约20000psi之间的气压下,在等于1800℃的温度下对带式烧结过的陶瓷体进行热等静压持续30分钟。
对于图3所示的陶瓷体的显微组织,暗色晶粒是β′SiAlON相的晶粒,中等灰色的晶粒是α′SiAlON相的晶粒,而明亮的相是晶粒间相。应注意的是暗色晶粒具有一定的纵横比。
图4是显示包含上述实施例2650C(组成标识ab7(37)9)的本发明SiAlON陶瓷材料的显微组织的光学显微照片。在图4中,暗色晶粒是β′SiAlON相的晶粒,中等灰色的晶粒是α′SiAlON相的晶粒,明亮的相是晶粒间相。该陶瓷体由上述带式烧结工艺和上述热等静压工艺制造。图4所示的显微组织揭示了该α′SiAlON相的晶粒尺寸小于图3陶瓷体中的α′SiAlON相的晶粒尺寸。
图5是显示包含上述实施例2650C的本发明SiAlON陶瓷材料的显微组织的光学显微照片。在图5中,暗色晶粒是β′SiAlON相的晶粒,中等灰色的晶粒是α′SiAlON相的晶粒,明亮的相是晶粒间相。该陶瓷体由上述分批烧结工艺和上述热等静压工艺制造。图5所示的显微组织揭示了该α′SiAlON相的晶粒尺寸小于图4陶瓷体中的α′SiAlON相的晶粒尺寸。
总的来说,这些光学显微照片的审核表明,较细晶粒的显微组织对于磨损应用是优选的,并且与不具有细晶粒显微组织的材料相比,其可望表现出更高的强度。
本申请人认为起始氮化硅粉体中的β氮化硅的量会影响刚烧结状态的显微组织中存在的α′SiAlON相的量。上面提到的Yeckley的美国专利No.6693054中对这方面进行了更详细的描述。更具体地,当起始氮化硅粉体中的β氮化硅量增加时,刚烧结状态的显微组织中的α′SiAlON相的量减少。本申请人进一步认为当氮化硅起始粉体不含或者含有少量(即下限等于0重量%且上限等于约1.6重量%的量)的β氮化硅时,可获得具有较高韧性的SiAlON陶瓷体。对于批次2651A-2651D和2650C-2650D中的每一批,起始氮化硅粉体混合物中的β氮化硅的含量都为0重量%,而起始氮化硅粉体中的α氮化硅的含量是约100重量%(注意可能存在一些杂质)。
可以按两种方式之一来控制起始粉体混合物中的β氮化硅的量。一种方式是将预定量的两种或者更多种氮化硅粉体混合,其中每种粉体的α和β含量是已知的,由此得到已知β含量的氮化硅粉体。另一种方式是取100%的α氮化硅粉体,然后向其加入选定量的100%的β氮化硅粉体,由此得到已知β含量的氮化硅粉体。后一种方式有利于控制β氮化硅组分的颗粒尺寸。
对于如上文所述的起始氮化硅粉体中的β氮化硅含量的影响,尽管本申请人不希望受被任何具体的理论所限制,然而本申请人认为β氮化硅颗粒是β′SiAlON晶粒成核和生长的晶种。当β氮化硅颗粒的数目增加时,β′SiAlON晶粒彼此的碰撞更早,由此限制了高纵横比的β′SiAlON晶粒的形成。另外,当β氮化硅颗粒的数目增加时,α′SiAlON晶粒的含量减少。在起始粉体混合物中使用较少的β氮化硅颗粒,会导致在烧结期间β′SiAlON晶粒生长到α′SiAlON基体中的成核位置的数量有限。这导致β′SiAlON晶粒具有较高的纵横比,这引起α′SiAlON相基体的韧化。
本申请人认为镧(优选的以氧化镧的形式加入)形成液相,并且还不会变为α′SiAlON相的一部分。换而言之,化学式为(RE)xSi12-(m+n)Alm+nOnN16-n的α′SiAlON基本上不含任何可检测量的镧,其中RE是稀土成分(其可以是不包括La和Ce的一种或者多种稀土的作用项),因此该化学式中的RE基本上不包括镧。由于镧不会形成α′SiAlON相(或者至少在α′SiAlON相中基本上不存在可检测量的镧),因此在烧结温度下和烧结过程期间存在液相,因为α′SiAlON相(或者β′SiAlON相)不会消耗液相中包含的镧。本申请人认为在烧结过程的早期,液相的存在可促进α′SiAlON相的形成,其中其它稀土元素(优选以其氧化物的形式加入到起始粉体混合物中)成为α′SiAlON相的一部分(即一种或者多种其它的稀土元素构成上述化学式中的RE)。本申请人认为使用铈也可引起液相形成,其中铈不会成为α′SiAlON相的一部分。
图6是表现α′SiAlON相的含量(按重量百分比)与不同组成的起始粉体混合物中的氧化镱(即,镱氧化物)添加量之间的函数关系的坐标图。以字母W、X、Y和Z表示这些组成。下表5给出了起始粉体混合物的组成和组成标识,以及按重量百分比计的α′SiAlON相的含量。
表5
图6中的实施例W到Z的起始粉体混合物
的组成[重量百分比]和α′SiAlON相的含量
 
实施例 氮化硅 氮化铝 氧化铝 氧化镱 氧化镧 α′SiAlON(重量%)
W[ab13(37)14/2651B] 80.80 5.20 5.80 5.74 2.03
X[ab13(37)14/2651A] 80.80 5.20 5.80 6.97 1.01
Y[ab13(37)10] 82.10 5.20 6.50 6.20 -
Z[ab13(37)14] 80.80 5.20 5.80 8.20 -
从上面的表5可以清楚,实施例Y和Z(以三角形表示)只含有镱(在起始粉体混合物中以氧化镱的形式)作为唯一的稀土元素。实施例W和X(以圆形表示)含有镱和镧(在起始粉体混合物中以氧化镱和氧化镧的形式)。
进一步来看图6所示的陶瓷体,可以看到镧作为稀土元素的存在,与镱一起,会影响陶瓷体中的α′SiAlON相的含量。如图6中W、X和Z点所代表的组成的比较所示,尽管组成标识(即abx(y)z)中的“x”、“y”和“z”的值是相同的,然而镧的存在导致包含更大α′SiAlON相含量的陶瓷。此外,图6中W点到Z点所代表的陶瓷中的镱含量的比较表明,即使镱含量较低(即比较5.74重量%处的W点与6.20重量%处的Y点),然而当镧存在时,α′SiAlON相的含量仍较高。即使镱的含量较大(即比较6.97重量%处的X点和6.20重量%处的Y点),然而当镧存在时,α′SiAlON相的含量仍较大。
参照图7,氮化硅、氧化铝、铝氧化物、氧化硅之间可形成的所有凝聚相都可以表示在相互作用盐图上(参见L.J.Gauckler和G.Petzow,Representation of Multicomponent Silicon Nitride BasedSystems,Nitrogen Ceramics,Nordoff International,1977年,第41-60页)。当稀土被包括作为致密化添加剂时,该四元图描绘了形成的相。该四元图中的单位是当量。
使用下式由克-原子来计算当量:4·Si/(4·Si+3·Al+3·RE)=Si当量(Si当量)。如下对Al和RE进行当量计算:3·Al/(4·Si+3·Al+3·RE)=Al当量(Al当量),和3·RE/(4·Si+3·Al+3·RE)=RE当量(RE当量)。氮当量按3·N/(2·O+3·N)计算,如下对氧进行当量计算:2·O/(2·O+3·N)。
这里所述实施例中的起始粉体组成按重量百分比给出。从起始粉体混合物的组分的重量百分比计算克-原子。该计算假定氮化硅因表面氧化而含有2.2重量%的氧化硅,且氮化铝因表面氧化而含有2.55重量%的氧化铝。本专利中的组成名称由这些当量计算出。
组成标识由abx(y)z构成,其中“ab”指含有α′SiAlON相和β′SiAlON相的陶瓷材料。在组成标识中,x是从氮化硅角到基面上的该组成点之间的距离。所有组成均含有稀土,因而组成都在基面上方。基面上的点位置的第一个坐标由1-(RE当量·COS(60)+Si当量)确定。基面上的点位置的第二个坐标是O当量。用毕达哥拉斯定理确定距离“x”。将结果乘以100并四舍五入为最接近的一个。在点D的情形中,命名为L的线代表了点D的距离“x”(组成标识abx(y)z中)。
数值“y”是与氮化硅-AlN轴之间的最近角度,由arcsin(O当量/x)确定。在点D的情形中,角M是与氮化硅-AlN轴的角。
最后一个数值z是高于基面的高度且代表稀土的含量。该高度由RE当量·SIN(60)·1000计算。
βSiAlON相线与氮化硅-AlN轴构成33度的角(见角P)。这意味着具有的“y”值大于33度的组成在βSiAlON相线的氧一侧,并且具有的“y”值小于33度的组成在β′SiAlON相和α′SiAlON相之间的氮一侧。
通过用组成标识(即abx(y)z)来表示组成,可以看到在x和y值的固定值下,当稀土含量的增加时,陶瓷体中α′SiAlON相的含量(按重量百分比)会发生变化。
组成标识是可用来限定本发明目标组成区域的一种方式。组成区域是四元图内的体积。前两个数限定了基面上的面积。矢量上的线段限定了组成区域的每个边界(界线)。上边界(线Q)落在与氮化硅-AlN轴成37度角(R)的矢量上。下角(点A)在长度等于7的地方,且上角(点B)等于23。下边界(线S)与氮化硅-AlN轴所成的角(T)等于25度,并且具有与上边界(线Q)相同的长度。由于这些SiAlON含有稀土,因此组成位于基面上方。高于该基面的高度的范围是7到16。点B和C通过边界(线V)连接。通过图7中的边界(Q、S、U、V)界定并由点A、B、C和D限定的区域显示了目标的组成空间。这个区域是在基面上的投影,从而由于实际组成含有(一种或多种)稀土成分,因此这些实际组成位于该基面上方。
显然,本发明提供了一种陶瓷材料,且具体为SiAlON材料,该材料表现出改良的性能,因此这种材料适合用作金属切削应用中的刀头,以及用作磨损件(例如用于泵的柱塞杆、球头柱塞坯、井下泵的单向阀坯、衬套、喷砂嘴以及其它磨损和冲击应用)。
通过引用将这里提到的专利、专利申请以及其它文献并入本文。
考虑这里所公开的本发明实施的说明书,本发明的其它实施方案对本领域的技术人员将是显而易见的。说明书和实施例应当仅被认为是说明性的,本发明的真正主旨和范围由下面的权利要求书给出。

Claims (27)

1.一种由起始粉体混合物制成的SiAlON陶瓷体,所述起始粉体混合物包括:氮化硅粉体和向该SiAlON陶瓷体提供铝、氧、氮、和至少一种选定稀土元素的一种或多种粉体,其中所述选定稀土元素选自下列稀土元素:Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu;以及至少一种选自La和Ce的其它稀土元素,并且该SiAlON陶瓷体包括:
含有α′SiAlON相和β′SiAlON相的两相复合物,且α′SiAlON相中含有一种或多种选定稀土元素,且α′SiAlON相中没有可检测量的La和Ce;并且
氮化硅粉体占起始粉体混合物的至少约70重量%,氮化硅粉体中β-氮化硅含量的下限等于氮化硅粉体的0重量%且上限等于约1.6重量%。
2.权利要求1的SiAlON陶瓷体,其中维氏硬度(18.5kg载荷)大于或者等于约17GPa,且断裂韧性(KIC Evans&Charles)大于或者等于约6.8MPa·m1/2
3.权利要求1的SiAlON陶瓷体,其中维氏硬度(18.5kg载荷)大于或者等于约18.5GPa,且断裂韧性(KIC Evans&Charles)大于或者等于约6.8MPa·m1/2
4.权利要求1的SiAlON陶瓷体,其中α′SiAlON相的存在量大于或者等于两相复合物的约35重量%,维氏硬度(18.5kg的载荷)大于或者等于约18GPa,且断裂韧性(KIC Evans&Charles)大于或者等于约6.8MPa·m1/2
5.权利要求1的SiAlON陶瓷体,其中α′SiAlON相的存在量大于或者等于两相复合物的约50重量%。
6.权利要求1的SiAlON陶瓷体,其中氮化硅起始粉体占起始粉体混合物的至少约80重量%,α′SiAlON相的存在量大于或者等于两相复合物的约25重量%,维氏硬度(18.5 kg 的载荷)大于或者等于约17GPa,且断裂韧性(KIC Evans&Charles)大于或者等于约6.8MPa·m1/2
7.权利要求1的SiAlON陶瓷体,其中氮化硅起始粉体占起始粉体混合物的至少约85重量%,α′SiAlON相的存在量大于或者等于两相复合物的约35重量%,维氏硬度(18.5kg的载荷)大于或者等于约18GPa,且断裂韧性(KIC Evans&Charles)大于或者等于约6.8MPa·m1/2
8.权利要求1的SiAlON陶瓷体,其中氮化硅起始粉体含有约0重量%的β氮化硅。
9.权利要求1的SiAlON陶瓷体,其中α′SiAlON相的存在量大于或者等于两相复合物的约25重量%,维氏硬度(18.5kg载荷)大于或者等于约16.5GPa,且断裂韧性(KIC Evans&Charles)大于或者等于约5.4MPa·m1/2
10.权利要求1的SiAlON陶瓷体,其中维氏硬度(18.5kg载荷)大于或者等于约16.0GPa,且断裂韧性(KIC Evans&Charles)大于或者等于约4.4MPa·m1/2
11.权利要求1的SiAlON陶瓷体,其中起始粉体混合物中的选定稀土元素包括镱和镧,并且α′SiAlON相含有镱,其中α′SiAlON相中没有可检测量的镧。
12.权利要求1的SiAlON陶瓷体,其进一步在SiAlON陶瓷体上包括含有一个或者多个涂层的涂层体系。
13.权利要求12的SiAlON陶瓷体,其中涂层体系包括由化学气相淀积施用的氧化铝涂层。
14.权利要求12的SiAlON陶瓷体,其中涂层体系包括由物理气相淀积施用的钛铝氮化物涂层。
15.权利要求1的SiAlON陶瓷体,其中该陶瓷体具有的组成落在由图7中点A、B、C和D限定的四边形所界定的区域内。
16.权利要求1的SiAlON陶瓷体,其中该陶瓷体包括具有前刀面、侧表面、和前刀面与侧表面接合处的切削刃的刀头。
17.一种由起始粉体混合物制成的SiAlON陶瓷体,所述起始粉体混合物包括:氮化硅粉体和向该SiAlON陶瓷体提供铝、氧、氮、和至少一种选定稀土元素的一种或多种粉体,其中所述选定稀土元素选自下列稀土元素:Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu;以及至少一种选自La和Ce的其它稀土元素,这种SiAlON陶瓷体包括:
含有α′SiAlON相和β′SiAlON相的两相复合物,且α′SiAlON相中含有一种或多种选定稀土元素,且α′SiAlON相中没有可检测量的La和Ce;
该陶瓷体具有落在图7中的点A、B、C和D限定的四边形所限定的区域内的组成;
氮化硅粉体占起始粉体混合物的至少约70重量%,氮化硅粉体中β-氮化硅的含量的下限等于氮化硅粉体的0重量%且上限等于约1.6重量%。
18.权利要求17的SiAlON陶瓷体,其中起始粉体混合物中的氮化硅粉体中含有基本上0重量%的β氮化硅。
19.权利要求17的SiAlON陶瓷体,其中该陶瓷体包括具有前刀面、侧表面、和前刀面与侧表面接合处的切削刃的刀头。
20.一种制造包括含α′SiAlON相和β′SiAlON相的两相复合物的SiAlON陶瓷体的方法,该方法包括步骤:
提供起始粉体,该起始粉体包括:至少约70重量%的氮化硅粉体和向SiAlON陶瓷体提供铝、氧、氮、和至少一种选定稀土元素的一种或多种其它粉体,其中所述选定稀土元素选自下列稀土元素:Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu;以及至少一种选自La和Ce的其它稀土元素;和
固结该起始粉体混合物以形成包括含α′SiAlON相和β′SiAlON相的两相复合物的陶瓷体,并且该α′SiAlON相含有一种或多种所述的选定稀土元素,且α′SiAlON相中没有可检测量的La和Ce,并且该陶瓷体具有落在图7中的点A、B、C和D限定的四边形所界定的区域内的组成。
21.权利要求20的方法,其中固结步骤包括烧结步骤。
22.权利要求21的方法,其中固结步骤进一步包括在烧结步骤之后的热等静压步骤。
23.权利要求20的方法,其中起始粉体混合物中的氮化硅粉体含有基本上0重量%的β氮化硅。
24.一种由起始粉体混合物制成的SiAlON陶瓷体,所述起始粉体混合物包括:氮化硅粉体和向该SiAlON陶瓷体提供铝、氧、氮、形成液相的元素、以及至少一种选定稀土元素的一种或多种粉体,其中:
所述选定稀土元素选自下列稀土元素:Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu;以及至少一种选自La和Ce的其它稀土元素;且该SiAlON陶瓷体包括:
含有α′SiAlON相和β′SiAlON相的两相复合物,且该α′SiAlON相含有一种或多种所述选定稀土元素,且α′SiAlON相中没有可检测量的La和Ce;并且
氮化硅粉体占起始粉体混合物的至少约70重量%,氮化硅粉体中β-氮化硅含量的下限等于氮化硅粉体的0重量%且上限等于约1.6重量%。
25.权利要求24的SiAlON陶瓷体,其中形成液相的元素选自包含Ba、Mg、Sr和Sc中的一种或者多种的组中。
26.权利要求24的SiAlON陶瓷体,其中该陶瓷体所具有的组成落在由图7中点A、B、C和D限定的四边形所界定的区域内。
27.权利要求24的SiAlON陶瓷体,其中起始粉体混合物中的氮化硅粉体含有基本为0重量%的β氮化硅。
CN2006800064280A 2005-02-09 2006-02-03 SiAlON陶瓷及其制造方法 Expired - Fee Related CN101133001B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/054,004 US7309673B2 (en) 2005-02-09 2005-02-09 SiAlON ceramic and method of making the same
US11/054,004 2005-02-09
PCT/US2006/004616 WO2006121477A2 (en) 2005-02-09 2006-02-03 SiAlON CERAMIC AND METHOD OF MAKING THE SAME

Publications (2)

Publication Number Publication Date
CN101133001A CN101133001A (zh) 2008-02-27
CN101133001B true CN101133001B (zh) 2011-02-16

Family

ID=36780655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800064280A Expired - Fee Related CN101133001B (zh) 2005-02-09 2006-02-03 SiAlON陶瓷及其制造方法

Country Status (7)

Country Link
US (2) US7309673B2 (zh)
EP (2) EP1856006B1 (zh)
JP (1) JP4971194B2 (zh)
KR (1) KR101243088B1 (zh)
CN (1) CN101133001B (zh)
CA (1) CA2596743C (zh)
WO (1) WO2006121477A2 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855159B1 (en) * 2007-01-11 2010-12-21 Kennametal Inc. Alpha-beta SiAlON ballistic ceramic armor
WO2009012455A1 (en) 2007-07-18 2009-01-22 Oxane Materials, Inc. Proppants with carbide and/or nitride phases
KR20100075886A (ko) * 2007-09-04 2010-07-05 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 복합체 사이아론계 세라믹 재료를 포함하는 발광 장치
GB2465737B (en) * 2007-10-09 2013-03-20 Cameron Int Corp Erosion resistant material
CN102036999A (zh) * 2008-03-21 2011-04-27 内诺格雷姆公司 金属硅氮化物或金属硅氧氮化物亚微米荧光粉颗粒及合成这些荧光粉的方法
EP2177492A1 (en) * 2008-10-16 2010-04-21 Korea Institute Of Machinery & Materials Sialon having magnetic properties and method of manufacturing the same
US8318622B2 (en) 2010-01-06 2012-11-27 Kennametal Inc. Alpha-beta SiAlON ballistic armor ceramic and method for making the same
CN102010209B (zh) * 2010-11-03 2013-01-16 淄博恒世科技发展有限公司 塞隆陶瓷粉末生产方法
US8367576B2 (en) 2010-11-18 2013-02-05 Kennametal Inc. Charge-dispersing alpha prime-beta prime SiA1ON
US8647025B2 (en) 2011-01-17 2014-02-11 Kennametal Inc. Monolithic ceramic end mill
CN103420678B (zh) * 2013-07-23 2014-11-12 株洲钻石切削刀具股份有限公司 采用非均相沉淀法制备SiAlON陶瓷材料的方法
DE102013111596A1 (de) 2013-10-21 2015-06-03 Walter Ag Schaftfräser für warmfeste Superlegierungen
CA2868293C (en) 2013-12-27 2016-05-03 Ryoji Toyoda Sialon sintered body and cutting insert
MX2017004119A (es) 2014-09-29 2017-12-07 Ngk Spark Plug Co Cuerpo sinterizado de nitrito de silicio-alumina (sialon) y pieza de insercion de corte.
US10195673B2 (en) 2015-12-11 2019-02-05 Kennametal Inc. Ceramic cutting insert and method of making same
US9764988B1 (en) 2016-03-18 2017-09-19 King Fahd University Of Petroleum And Minerals SiAlON ceramics and a method of preparation thereof
KR101923311B1 (ko) 2017-04-28 2018-11-28 선문대학교 산학협력단 사중 도핑된 업컨버팅 알파사이알론 세라믹스 및 그 제조방법
DE102017116319A1 (de) 2017-07-19 2019-01-24 Kennametal Inc. Panzerungsplatte und Panzerung bestehend aus Träger und Panzerungsplatte
DE102019116153A1 (de) 2019-06-13 2020-12-17 Kennametal Inc. Panzerungsplatte, Panzerungsplattenverbund und Panzerung
US20210276923A1 (en) * 2019-12-04 2021-09-09 Kennametal Inc. Composite ceramic bodies and applications thereof
CN112723895A (zh) * 2020-12-29 2021-04-30 广东工业大学 一种α-SiAlON陶瓷数控车刀及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913936A (en) * 1987-05-19 1990-04-03 Kennametal Inc. Method of surface alloying sialon articles
US6124225A (en) * 1998-07-29 2000-09-26 The Regents Of The University Of Michigan Cutting tools and wear resistant articles and material for same
CN1478061A (zh) * 2000-11-28 2004-02-25 ��̼����Ӳ�ʺϽ�˾ 含镱的SiAlON及其制备方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711644A (en) 1982-02-22 1987-12-08 Kennametal Inc. Ceramic material and method of manufacture
US4563433A (en) 1982-02-22 1986-01-07 Kennametal Inc. Ceramic material and method of manufacture
JPS59199579A (ja) 1983-04-25 1984-11-12 三菱マテリアル株式会社 耐摩耗性のすぐれたサイアロン基セラミツクス
US4826791A (en) 1987-05-29 1989-05-02 Kennametal Inc. Silicon carbide-alpha prime sialon beta prime sialon
US4770673A (en) 1987-10-09 1988-09-13 Corning Glass Works Ceramic cutting tool inserts
JPH0686331B2 (ja) 1990-04-17 1994-11-02 宇部興産株式会社 高強度サイアロン基焼結体
US5200374A (en) 1990-04-06 1993-04-06 Ube Industries, Ltd. Sialon-based sintered body and process for producing same
JP2988966B2 (ja) * 1990-06-11 1999-12-13 日立金属株式会社 サイアロン焼結体およびその製造方法ならびにこれを用いたガスタービン翼
US5173458A (en) 1990-12-28 1992-12-22 Sumitomo Electric Industries, Ltd. Silicon nitride sintered body and process for producing the same
JPH0543333A (ja) 1991-08-02 1993-02-23 Ube Ind Ltd 高強度サイアロン基焼結体の製造方法
US5370716A (en) 1992-11-30 1994-12-06 Kennamental Inc. High Z sialon and cutting tools made therefrom and method of using
US5413972A (en) 1993-12-23 1995-05-09 The Dow Chemical Company SiAlON composites and method of preparing the same
JP4070254B2 (ja) * 1995-04-12 2008-04-02 本田技研工業株式会社 窒化珪素と炭化珪素の複合焼結体及びその製造方法
US5648042A (en) 1995-10-10 1997-07-15 Centorr/Vacuum Industries, Inc High-temperature belt furnace apparatus and method of using same
WO1998023554A1 (en) 1996-11-25 1998-06-04 The Regents Of The University Of Michigan IN-SITU TOUGHENED ALPHA PRIME-SiAlON-BASED CERAMICS
US6471734B1 (en) 1998-07-09 2002-10-29 Kennametal Pc Inc. Ceramic and process for the continuous sintering thereof
DE19850597B4 (de) * 1998-11-03 2009-11-26 Ceramtec Ag α-SiAION-Werkstoffe
US6610113B1 (en) * 1999-09-09 2003-08-26 Kennametal Pc Inc. Process for heat treating ceramics and articles of manufacture made thereby
WO2002028800A2 (en) * 2000-10-02 2002-04-11 Indexable Cutting Tools Of Canada Limited 'SiAION MATERIAL AND CUTTING TOOLS MADE THEREOF'
JP2002124365A (ja) * 2000-10-12 2002-04-26 Ngk Spark Plug Co Ltd セラミックヒータ及びその製造方法
US7094717B2 (en) 2000-11-28 2006-08-22 Kennametal Inc. SiAlON containing ytterbium and method of making
US7049256B2 (en) 2000-11-28 2006-05-23 Kennametal Inc. SiAlON containing ytterbium and method of making
ES2295335T3 (es) * 2001-03-01 2008-04-16 Hasan Mandal Materiales ceramicos de siaion alfa y beta dopado con multiples cationes.
DE102013220620A1 (de) 2013-10-12 2015-04-16 Battenfeld-Cincinnati Germany Gmbh Ablängvorrichtung für extrudierte Kunststoffprofile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913936A (en) * 1987-05-19 1990-04-03 Kennametal Inc. Method of surface alloying sialon articles
US6124225A (en) * 1998-07-29 2000-09-26 The Regents Of The University Of Michigan Cutting tools and wear resistant articles and material for same
CN1478061A (zh) * 2000-11-28 2004-02-25 ��̼����Ӳ�ʺϽ�˾ 含镱的SiAlON及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Mandal H, Hoffmann MJ.Preparation of multiple-cation alpha-SiAlON ceramicscontaining lanthanum.JOURNAL OF THE AMERICAN CERAMIC SOCIETY82 1.1999,82(1),229-232.
Mandal H, Hoffmann MJ.Preparation of multiple-cation alpha-SiAlON ceramicscontaining lanthanum.JOURNAL OF THE AMERICAN CERAMIC SOCIETY82 1.1999,82(1),229-232. *
孙维莹等.复合稀土-α-β-Sialon 的力学性能和热稳定性特性.无机材料学报14 4.1999,14(4),575-579.
孙维莹等.复合稀土-α-β-Sialon 的力学性能和热稳定性特性.无机材料学报14 4.1999,14(4),575-579. *

Also Published As

Publication number Publication date
JP2008529948A (ja) 2008-08-07
US20060240971A1 (en) 2006-10-26
EP1856006B1 (en) 2014-06-25
US7223709B2 (en) 2007-05-29
WO2006121477A2 (en) 2006-11-16
US7309673B2 (en) 2007-12-18
KR101243088B1 (ko) 2013-03-13
EP2511248A3 (en) 2013-05-15
US20060178256A1 (en) 2006-08-10
CA2596743C (en) 2014-01-21
JP4971194B2 (ja) 2012-07-11
EP2511248A2 (en) 2012-10-17
CA2596743A1 (en) 2006-11-16
EP1856006A4 (en) 2011-04-20
CN101133001A (zh) 2008-02-27
WO2006121477A3 (en) 2007-02-22
EP1856006A2 (en) 2007-11-21
KR20070110346A (ko) 2007-11-16

Similar Documents

Publication Publication Date Title
CN101133001B (zh) SiAlON陶瓷及其制造方法
US7094717B2 (en) SiAlON containing ytterbium and method of making
CA2430056C (en) Sialon containing ytterbium and method of making
US7855159B1 (en) Alpha-beta SiAlON ballistic ceramic armor
US7049256B2 (en) SiAlON containing ytterbium and method of making
US10058925B2 (en) Sialon sintered body and cutting insert
US8318622B2 (en) Alpha-beta SiAlON ballistic armor ceramic and method for making the same
US20220306545A1 (en) Armor component comprising a titanium carbonitride phase
JPH0881270A (ja) 立方晶窒化ホウ素含有セラミックス焼結体および切削工具
WO1990009361A1 (en) Diamond composites
JPH06329470A (ja) 窒化ケイ素基焼結体およびその被覆焼結体
CN103601500B (zh) 含结晶相Y4SiAlO8N的SiAlON陶瓷及其制备方法和应用
JP4385122B2 (ja) α−サイアロン焼結体の製造方法およびα−サイアロン焼結体
AU5094490A (en) Diamond composites
JPH0764640B2 (ja) 切削工具用窒化ケイ素焼結体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110216

Termination date: 20130203